1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396
|
//
// Copyright (c) 2016, Guillaume GODIN
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following
// disclaimer in the documentation and/or other materials provided
// with the distribution.
// * Neither the name of Institue of Cancer Research.
// nor the names of its contributors may be used to endorse or promote
// products derived from this software without specific prior written
// permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// for build & set RDBASE! => export RDBASE=/Users/GVALMTGG/Github/rdkit_mine/
#include <GraphMol/RDKitBase.h>
#include "WHIM.h"
#include "MolData3Ddescriptors.h"
#include <math.h>
#include <Eigen/Dense>
#include <Eigen/SVD>
using namespace Eigen;
namespace RDKit {
namespace Descriptors {
namespace {
MolData3Ddescriptors moldata3D;
double roundn(double in, int factor) {
return round(in * pow(10., factor)) / pow(10., factor);
}
MatrixXd GetCenterMatrix(MatrixXd &Mat) {
VectorXd v = Mat.colwise().mean();
MatrixXd X = Mat.rowwise() - v.transpose();
return X;
}
MatrixXd GetCovMatrix(MatrixXd &X, MatrixXd &Weigth, double weigth) {
return X.transpose() * Weigth * X / weigth;
}
JacobiSVD<MatrixXd> *getSVD(MatrixXd &Mat) {
JacobiSVD<MatrixXd> *svd =
new JacobiSVD<MatrixXd>(Mat, ComputeThinU | ComputeThinV);
return svd;
}
std::vector<double> getWhimD(std::vector<double> weigthvector,
MatrixXd MatOrigin, int numAtoms, double th) {
double *weigtharray = &weigthvector[0];
Map<VectorXd> Weigth(weigtharray, numAtoms);
// std::cerr << "Weigth:\n" << Weigth << "\n";
MatrixXd WeigthMat = Weigth.asDiagonal();
double weigth = WeigthMat.diagonal().sum();
// fix issue if the sum is close to zeros
// only for the charges cases normaly
if (fabs(weigth) < 1e-4) {
weigth = 1.0;
// std::cerr << "fix weigth sum:\n";
}
MatrixXd Xmean = GetCenterMatrix(MatOrigin);
// std::cerr << "Xmean:\n" << Xmean << "\n";
MatrixXd covmat = GetCovMatrix(Xmean, WeigthMat, weigth);
JacobiSVD<MatrixXd> *svd = getSVD(covmat);
std::vector<double> w(18);
// prepare data for Whim parameter computation
const double *SingVal = svd->singularValues().data();
MatrixXd Scores = Xmean * svd->matrixV(); // V is similar
// compute parameters
w[0] = SingVal[0];
w[1] = SingVal[1];
w[2] = SingVal[2];
w[3] = SingVal[0] + SingVal[1] + SingVal[2]; // T
w[4] = SingVal[0] * SingVal[1] + SingVal[0] * SingVal[2] +
SingVal[1] * SingVal[2]; // A
w[5] = w[3] + w[4] + SingVal[0] * SingVal[1] * SingVal[2]; // V
w[6] = SingVal[0] / (SingVal[0] + SingVal[1] + SingVal[2]); // P1
w[7] = SingVal[1] / (SingVal[0] + SingVal[1] + SingVal[2]); // p2
w[8] = SingVal[2] / (SingVal[0] + SingVal[1] + SingVal[2]); // P3
double res = 0.0;
for (int i = 0; i < 3; i++) {
res += std::fabs(w[i] / w[3] - 1.0 / 3.0);
}
w[9] = 3.0 / 4.0 * res; // K
// center original matrix
VectorXd v1 = Scores.col(0);
VectorXd v2 = Scores.col(1);
VectorXd v3 = Scores.col(2);
// inverse of the kurtosis
if (v1.array().pow(4).sum() > 0) {
w[10] = numAtoms * pow(w[0], 2) / v1.array().pow(4).sum(); // E1
} else {
w[10] = 0.0;
}
if (v2.array().pow(4).sum() > 0) {
w[11] = numAtoms * pow(w[1], 2) / v2.array().pow(4).sum(); // E2
} else {
w[11] = 0.0;
}
if (v3.array().pow(4).sum() > 0) {
w[12] = numAtoms * pow(w[2], 2) / v3.array().pow(4).sum(); // E3
} else {
w[12] = 0.0;
}
w[13] = (w[10] + w[11] + w[12]) / 3.0; // mean total density of the atoms
// called D is used on Dragon 6 not
// just the sum!
// check if the molecule is fully symmetrical "like CH4" using Canonical Rank
// Index and/or Sphericity !
double gamma[3]; // Gamma values
double nAT = (double)numAtoms;
// check if two atoms are symetric versus the new axis ie newx,newy,newz a
for (int i = 0; i < 3; i++) {
for (int j = 0; j < numAtoms; j++) {
Scores(j, i) = roundn(Scores(j, i),
3); // round the matrix! same as eigen tolerance !
}
}
// we should take into account atoms that are in the axis too!!! which is not
// trivial
for (int i = 0; i < 3; i++) {
std::vector<double> Symetric(2 * numAtoms, 0.0);
double ns = 0.0;
double na = 0.0;
for (int j = 0; j < numAtoms; j++) {
bool amatch = false;
for (int k = 0; k < numAtoms; k++) {
if (j == k) {
continue;
}
if (std::fabs(Scores(j, i) + Scores(k, i)) <= th) {
// those that are close opposite & not close to the axis!
ns += 1; // check only once the symetric none null we need to add +2!
// (reduce the loop duration)
amatch = true;
Symetric[j] = 1.0;
Symetric[j + numAtoms] = 2.0;
Symetric[k] = 1.0;
Symetric[k + numAtoms] = 2.0;
break;
}
}
if (!amatch) {
na += 1;
Symetric[j] = 0.0;
Symetric[j + numAtoms] = std::fabs(Scores(j, i));
}
}
// take into account the atoms close to the axis
for (int aj = 0; aj < numAtoms; aj++) {
if (Symetric[aj + numAtoms] < th && Symetric[aj] < 1.0) {
ns += 1;
na -= 1;
}
}
gamma[i] = 0.0;
double gammainv = 1.0;
if (ns == 0) {
gammainv = 1.0 - (na / nAT) * log(1.0 / nAT) / log(2.);
}
if (ns > 0) {
gammainv = 1.0 - ((ns / nAT) * log(ns / nAT) / log(2.) +
(na / nAT) * log(1.0 / nAT) / log(2.));
}
gamma[i] = 1.0 / gammainv;
}
w[14] = gamma[0]; // G1
w[15] = gamma[1]; // G2
w[16] = gamma[2]; // G3
w[17] = pow(gamma[0] * gamma[1] * gamma[2], 1.0 / 3.0);
delete svd;
return w;
}
void GetWHIMs(const Conformer &conf, std::vector<double> &result,
double *Vpoints, double th) {
std::vector<double> wu(18);
std::vector<double> wm(18);
std::vector<double> wv(18);
std::vector<double> we(18);
std::vector<double> wp(18);
std::vector<double> wi(18);
std::vector<double> ws(18);
int numAtoms = conf.getNumAtoms();
Map<MatrixXd> matorigin(Vpoints, 3, numAtoms);
MatrixXd MatOrigin = matorigin.transpose();
std::vector<double> weigthvector;
// intermediate 18 values stored in this order per weighted vector :
// "L1","L2","L3","T","A","V","P1","P2","P3","K","E1","E2","E3","D","G1","G2","G3","G"
weigthvector = moldata3D.GetUn(numAtoms);
wu = getWhimD(weigthvector, MatOrigin, numAtoms, th);
weigthvector = moldata3D.GetRelativeMW(conf.getOwningMol());
wm = getWhimD(weigthvector, MatOrigin, numAtoms, th);
weigthvector = moldata3D.GetRelativeVdW(conf.getOwningMol());
wv = getWhimD(weigthvector, MatOrigin, numAtoms, th);
weigthvector = moldata3D.GetRelativeENeg(conf.getOwningMol());
we = getWhimD(weigthvector, MatOrigin, numAtoms, th);
weigthvector = moldata3D.GetRelativePol(conf.getOwningMol());
wp = getWhimD(weigthvector, MatOrigin, numAtoms, th);
weigthvector = moldata3D.GetRelativeIonPol(conf.getOwningMol());
wi = getWhimD(weigthvector, MatOrigin, numAtoms, th);
weigthvector = moldata3D.GetIState(conf.getOwningMol());
ws = getWhimD(weigthvector, MatOrigin, numAtoms, th);
result.clear();
result.resize(126);
for (int i = 0; i < 18; i++) {
result[i + 18 * 0] = wu[i];
result[i + 18 * 1] = wm[i];
result[i + 18 * 2] = wv[i];
result[i + 18 * 3] = we[i];
result[i + 18 * 4] = wp[i];
result[i + 18 * 5] = wi[i];
result[i + 18 * 6] = ws[i];
}
wu.clear();
wm.clear();
wv.clear();
we.clear();
wp.clear();
wi.clear();
ws.clear();
}
void GetWHIMsCustom(const Conformer &conf, std::vector<double> &result,
double *Vpoints, double th,
const std::string &customAtomPropName) {
std::vector<double> wc(18);
result.clear();
result.resize(18);
int numAtoms = conf.getNumAtoms();
Map<MatrixXd> matorigin(Vpoints, 3, numAtoms);
MatrixXd MatOrigin = matorigin.transpose();
// intermediate 18 values stored in this order per weighted vector :
// "L1","L2","L3","T","A","V","P1","P2","P3","K","E1","E2","E3","D","G1","G2","G3","G"
std::vector<double> weigthvector =
moldata3D.GetCustomAtomProp(conf.getOwningMol(), customAtomPropName);
wc = getWhimD(weigthvector, MatOrigin, numAtoms, th);
for (int i = 0; i < 18; i++) {
result[i] = wc[i];
}
wc.clear();
}
void getWHIM(const ROMol &mol, std::vector<double> &res, int confId,
double th) {
int numAtoms = mol.getNumAtoms();
const Conformer &conf = mol.getConformer(confId);
double *Vpoints = new double[3 * numAtoms];
for (int i = 0; i < numAtoms; ++i) {
Vpoints[3 * i] = conf.getAtomPos(i).x;
Vpoints[3 * i + 1] = conf.getAtomPos(i).y;
Vpoints[3 * i + 2] = conf.getAtomPos(i).z;
}
std::vector<double> w(126);
GetWHIMs(conf, w, Vpoints, th);
delete[] Vpoints;
// Dragon extract only this list in this order : L1 L2 L3 P1 P2 G1 G2 G3 E1 E2
// E3
int map1[11] = {0, 1, 2, 6, 7, 14, 15, 16, 10, 11, 12};
for (int k = 0; k < 7; k++) {
for (int i = 0; i < 11; i++) {
res[i + 11 * k] = roundn(w[map1[i] + 18 * k], 3);
}
}
for (int i = 0; i < 2; i++) {
res[i + 13 * 7] = roundn(w[17 + 18 * i], 3); // 92 93 for Gu Gm
}
for (int i = 0; i < 7; i++) {
res[i + 11 * 7] =
roundn(w[3 + 18 * i],
3); // 78 79 80 81 82 83 84 for Tu Tm Tv Te Tp Ti Ts
res[i + 12 * 7] =
roundn(w[4 + 18 * i],
3); // 85 86 87 88 89 90 91 for Tu Am Av Ae Ap Ai As
res[i + 13 * 7 + 2] =
roundn(w[9 + 18 * i],
3); // 94 95 96 97 98 99 100 for Ku Km Kv Ke Kp Ki Ks
res[i + 14 * 7 + 2] =
roundn(w[13 + 18 * i],
3); // 101 102 103 104 105 106 107 for Du Dm Dv De Dp Di Ds
res[i + 15 * 7 + 2] =
roundn(w[5 + 18 * i],
3); // 108 109 110 111 112 113 114 for Vu Vm Vv Ve Vp Vi Vs
}
}
void getWHIMone(const ROMol &mol, std::vector<double> &res, int confId,
double th, const std::string &customAtomPropName) {
int numAtoms = mol.getNumAtoms();
const Conformer &conf = mol.getConformer(confId);
double *Vpoints = new double[3 * numAtoms];
for (int i = 0; i < numAtoms; ++i) {
Vpoints[3 * i] = conf.getAtomPos(i).x;
Vpoints[3 * i + 1] = conf.getAtomPos(i).y;
Vpoints[3 * i + 2] = conf.getAtomPos(i).z;
}
std::vector<double> w(18);
GetWHIMsCustom(conf, w, Vpoints, th, customAtomPropName);
delete[] Vpoints;
// Dragon extract only this list in this order : L1 L2 L3 P1 P2 G1 G2 G3 E1 E2
// E3
// "L1","L2","L3","T","A","V","P1","P2","P3","K","E1","E2","E3","D","G1","G2","G3","G"
int map1[17] = {0, 1, 2, 6, 7, 14, 15, 16, 10, 11, 12, 3, 4, 17, 9, 13, 5};
for (int i = 0; i < 17; i++) {
res[i] = roundn(w[map1[i]], 3);
}
}
} // end of anonymous namespace
void WHIM(const ROMol &mol, std::vector<double> &res, int confId, double th,
const std::string &customAtomPropName) {
PRECONDITION(mol.getNumConformers() >= 1, "molecule has no conformers")
// Dragon final list is: L1u L2u L3u P1u P2u G1u G2u G3u E1u E2u E3u
// Tu Au Gu Ku Du Vu
if (customAtomPropName != "") {
res.clear();
res.resize(17);
getWHIMone(mol, res, confId, th, customAtomPropName);
} else {
res.clear();
res.resize(114);
getWHIM(mol, res, confId, th);
}
}
} // namespace Descriptors
} // namespace RDKit
|