1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038
|
//
// Copyright (C) 2004-2018 Greg Landrum and Rational Discovery LLC
//
// @@ All Rights Reserved @@
// This file is part of the RDKit.
// The contents are covered by the terms of the BSD license
// which is included in the file license.txt, found at the root
// of the RDKit source tree.
//
// define DEBUG_EMBEDDING 1
#include "Embedder.h"
#include <DistGeom/BoundsMatrix.h>
#include <DistGeom/DistGeomUtils.h>
#include <DistGeom/TriangleSmooth.h>
#include <DistGeom/ChiralViolationContrib.h>
#include "BoundsMatrixBuilder.h"
#include <ForceField/ForceField.h>
#include <GraphMol/ROMol.h>
#include <GraphMol/Atom.h>
#include <GraphMol/AtomIterators.h>
#include <GraphMol/RingInfo.h>
#include <GraphMol/Conformer.h>
#include <RDGeneral/types.h>
#include <RDGeneral/RDLog.h>
#include <RDGeneral/Exceptions.h>
#include <Geometry/Transform3D.h>
#include <Numerics/Alignment/AlignPoints.h>
#include <DistGeom/ChiralSet.h>
#include <GraphMol/MolOps.h>
#include <GraphMol/ForceFieldHelpers/CrystalFF/TorsionPreferences.h>
#include <boost/dynamic_bitset.hpp>
#include <iomanip>
#include <RDGeneral/RDThreads.h>
#ifdef RDK_THREADSAFE_SSS
#include <future>
#endif
//#define DEBUG_EMBEDDING 1
#define ERROR_TOL 0.00001
// these tolerances, all to detect and filter out bogus conformations, are a
// delicate balance between sensitive enough to detect obviously bad
// conformations but not so sensitive that a bunch of ok conformations get
// filtered out, which slows down the whole conformation generation process
#define MAX_MINIMIZED_E_PER_ATOM 0.05
#define MAX_MINIMIZED_E_CONTRIB 0.20
#define MIN_TETRAHEDRAL_CHIRAL_VOL 0.50
#define TETRAHEDRAL_CENTERINVOLUME_TOL 0.30
namespace RDKit {
namespace DGeomHelpers {
typedef std::pair<int, int> INT_PAIR;
typedef std::vector<INT_PAIR> INT_PAIR_VECT;
//! Parameters corresponding to Sereina Riniker's KDG approach
const EmbedParameters KDG(0, // maxIterations
1, // numThreads
-1, // randomSeed
true, // clearConfs
false, // useRandomCoords
2.0, // boxSizeMult
true, // randNegEig
1, // numZeroFail
NULL, // coordMap
1e-3, // optimizerForceTol
false, // ignoreSmoothingFailures
true, // enforceChirality
false, // useExpTorsionAnglePrefs
true, // useBasicKnowledge
false, // verbose
5.0, // basinThresh
-1.0, // pruneRmsThresh
true, // onlyHeavyAtomsForRMS
1 // ETversion
);
//! Parameters corresponding to Sereina Riniker's ETDG approach
const EmbedParameters ETDG(0, // maxIterations
1, // numThreads
-1, // randomSeed
true, // clearConfs
false, // useRandomCoords
2.0, // boxSizeMult
true, // randNegEig
1, // numZeroFail
NULL, // coordMap
1e-3, // optimizerForceTol
false, // ignoreSmoothingFailures
false, // enforceChirality
true, // useExpTorsionAnglePrefs
false, // useBasicKnowledge
false, // verbose
5.0, // basinThresh
-1.0, // pruneRmsThresh
true, // onlyHeavyAtomsForRMS
1 // ETversion
);
//! Parameters corresponding to Sereina Riniker's ETKDG approach
const EmbedParameters ETKDG(0, // maxIterations
1, // numThreads
-1, // randomSeed
true, // clearConfs
false, // useRandomCoords
2.0, // boxSizeMult
true, // randNegEig
1, // numZeroFail
NULL, // coordMap
1e-3, // optimizerForceTol
false, // ignoreSmoothingFailures
true, // enforceChirality
true, // useExpTorsionAnglePrefs
true, // useBasicKnowledge
false, // verbose
5.0, // basinThresh
-1.0, // pruneRmsThresh
true, // onlyHeavyAtomsForRMS
1 // ETversion
);
//! Parameters corresponding to Sereina Riniker's ETKDG approach - version 2
const EmbedParameters ETKDGv2(0, // maxIterations
1, // numThreads
-1, // randomSeed
true, // clearConfs
false, // useRandomCoords
2.0, // boxSizeMult
true, // randNegEig
1, // numZeroFail
NULL, // coordMap
1e-3, // optimizerForceTol
false, // ignoreSmoothingFailures
true, // enforceChirality
true, // useExpTorsionAnglePrefs
true, // useBasicKnowledge
false, // verbose
5.0, // basinThresh
-1.0, // pruneRmsThresh
true, // onlyHeavyAtomsForRMS
2 // ETversion
);
bool _volumeTest(const DistGeom::ChiralSetPtr &chiralSet,
const RDGeom::PointPtrVect &positions, bool verbose = false) {
RDGeom::Point3D p0((*positions[chiralSet->d_idx0])[0],
(*positions[chiralSet->d_idx0])[1],
(*positions[chiralSet->d_idx0])[2]);
RDGeom::Point3D p1((*positions[chiralSet->d_idx1])[0],
(*positions[chiralSet->d_idx1])[1],
(*positions[chiralSet->d_idx1])[2]);
RDGeom::Point3D p2((*positions[chiralSet->d_idx2])[0],
(*positions[chiralSet->d_idx2])[1],
(*positions[chiralSet->d_idx2])[2]);
RDGeom::Point3D p3((*positions[chiralSet->d_idx3])[0],
(*positions[chiralSet->d_idx3])[1],
(*positions[chiralSet->d_idx3])[2]);
RDGeom::Point3D p4((*positions[chiralSet->d_idx4])[0],
(*positions[chiralSet->d_idx4])[1],
(*positions[chiralSet->d_idx4])[2]);
// even if we are minimizing in higher dimension the chiral volume is
// calculated using only the first 3 dimensions
RDGeom::Point3D v1 = p0 - p1;
v1.normalize();
RDGeom::Point3D v2 = p0 - p2;
v2.normalize();
RDGeom::Point3D v3 = p0 - p3;
v3.normalize();
RDGeom::Point3D v4 = p0 - p4;
v4.normalize();
RDGeom::Point3D crossp = v1.crossProduct(v2);
double vol = crossp.dotProduct(v3);
if (verbose) std::cerr << " " << fabs(vol) << std::endl;
if (fabs(vol) < MIN_TETRAHEDRAL_CHIRAL_VOL) return false;
crossp = v1.crossProduct(v2);
vol = crossp.dotProduct(v4);
if (verbose) std::cerr << " " << fabs(vol) << std::endl;
if (fabs(vol) < MIN_TETRAHEDRAL_CHIRAL_VOL) return false;
crossp = v1.crossProduct(v3);
vol = crossp.dotProduct(v4);
if (verbose) std::cerr << " " << fabs(vol) << std::endl;
if (fabs(vol) < MIN_TETRAHEDRAL_CHIRAL_VOL) return false;
crossp = v2.crossProduct(v3);
vol = crossp.dotProduct(v4);
if (verbose) std::cerr << " " << fabs(vol) << std::endl;
if (fabs(vol) < MIN_TETRAHEDRAL_CHIRAL_VOL) return false;
return true;
}
bool _sameSide(const RDGeom::Point3D &v1, const RDGeom::Point3D &v2,
const RDGeom::Point3D &v3, const RDGeom::Point3D &v4,
const RDGeom::Point3D &p0, double tol = 0.1) {
RDGeom::Point3D normal = (v2 - v1).crossProduct(v3 - v1);
double d1 = normal.dotProduct(v4 - v1);
double d2 = normal.dotProduct(p0 - v1);
// std::cerr << " " << d1 << " - " << d2 << std::endl;
if (fabs(d1) < tol || fabs(d2) < tol) return false;
return !((d1 < 0.) ^ (d2 < 0.));
}
bool _centerInVolume(unsigned int idx0, unsigned int idx1, unsigned int idx2,
unsigned int idx3, unsigned int idx4,
const RDGeom::PointPtrVect &positions, double tol,
bool verbose = false) {
RDGeom::Point3D p0((*positions[idx0])[0], (*positions[idx0])[1],
(*positions[idx0])[2]);
RDGeom::Point3D p1((*positions[idx1])[0], (*positions[idx1])[1],
(*positions[idx1])[2]);
RDGeom::Point3D p2((*positions[idx2])[0], (*positions[idx2])[1],
(*positions[idx2])[2]);
RDGeom::Point3D p3((*positions[idx3])[0], (*positions[idx3])[1],
(*positions[idx3])[2]);
RDGeom::Point3D p4((*positions[idx4])[0], (*positions[idx4])[1],
(*positions[idx4])[2]);
// RDGeom::Point3D centroid = (p1+p2+p3+p4)/4.;
if (verbose) {
std::cerr << _sameSide(p1, p2, p3, p4, p0, tol) << " "
<< _sameSide(p2, p3, p4, p1, p0, tol) << " "
<< _sameSide(p3, p4, p1, p2, p0, tol) << " "
<< _sameSide(p4, p1, p2, p3, p0, tol) << std::endl;
}
bool res = _sameSide(p1, p2, p3, p4, p0, tol) &&
_sameSide(p2, p3, p4, p1, p0, tol) &&
_sameSide(p3, p4, p1, p2, p0, tol) &&
_sameSide(p4, p1, p2, p3, p0, tol);
return res;
}
bool _centerInVolume(const DistGeom::ChiralSetPtr &chiralSet,
const RDGeom::PointPtrVect &positions, double tol = 0.1,
bool verbose = false) {
if (chiralSet->d_idx0 ==
chiralSet->d_idx4) { // this happens for three-coordinate centers
return true;
}
return _centerInVolume(chiralSet->d_idx0, chiralSet->d_idx1,
chiralSet->d_idx2, chiralSet->d_idx3,
chiralSet->d_idx4, positions, tol, verbose);
}
bool _boundsFulfilled(const std::vector<int> &atoms,
const DistGeom::BoundsMatrix &mmat,
const RDGeom::PointPtrVect &positions) {
// unsigned int N = mmat.numRows();
// std::cerr << N << " " << atoms.size() << std::endl;
// loop over all pair of atoms
for (unsigned int i = 0; i < atoms.size() - 1; ++i) {
for (unsigned int j = i + 1; j < atoms.size(); ++j) {
int a1 = atoms[i];
int a2 = atoms[j];
RDGeom::Point3D p0((*positions[a1])[0], (*positions[a1])[1],
(*positions[a1])[2]);
RDGeom::Point3D p1((*positions[a2])[0], (*positions[a2])[1],
(*positions[a2])[2]);
double d2 = (p0 - p1).length(); // distance
double lb = mmat.getLowerBound(a1, a2);
double ub = mmat.getUpperBound(a1, a2); // bounds
if (((d2 < lb) && (fabs(d2 - lb) > 0.1 * ub)) ||
((d2 > ub) && (fabs(d2 - ub) > 0.1 * ub))) {
#ifdef DEBUG_EMBEDDING
std::cerr << a1 << " " << a2 << ":" << d2 << " " << lb << " " << ub
<< " " << fabs(d2 - lb) << " " << fabs(d2 - ub) << std::endl;
#endif
return false;
}
}
}
return true;
}
// the minimization using experimental torsion angle preferences
bool _minimizeWithExpTorsions(
RDGeom::PointPtrVect &positions, DistGeom::BoundsMatPtr mmat,
double optimizerForceTol, double basinThresh,
const std::vector<std::pair<int, int>> &bonds,
const std::vector<std::vector<int>> &angles,
const std::vector<std::vector<int>> &expTorsionAtoms,
const std::vector<std::pair<std::vector<int>, std::vector<double>>>
&expTorsionAngles,
const std::vector<std::vector<int>> &improperAtoms,
const std::vector<int> &atomNums, bool useBasicKnowledge) {
RDUNUSED_PARAM(basinThresh);
bool planar = true;
// convert to 3D positions and create coordMap
RDGeom::Point3DPtrVect positions3D;
for (auto &position : positions) {
positions3D.push_back(
new RDGeom::Point3D((*position)[0], (*position)[1], (*position)[2]));
}
// create the force field
ForceFields::ForceField *field;
if (useBasicKnowledge) { // ETKDG or KDG
field = DistGeom::construct3DForceField(*mmat, positions3D, bonds, angles,
expTorsionAtoms, expTorsionAngles,
improperAtoms, atomNums);
} else { // plain ETDG
field = DistGeom::constructPlain3DForceField(*mmat, positions3D, bonds,
angles, expTorsionAtoms,
expTorsionAngles, atomNums);
}
// minimize!
field->initialize();
// std::cout << "Field with torsion constraints: " << field->calcEnergy() <<
// "
// " << ERROR_TOL << std::endl;
if (field->calcEnergy() > ERROR_TOL) {
// while (needMore) {
field->minimize(300, optimizerForceTol);
// ++nPasses;
//}
}
// std::cout << field->calcEnergy() << std::endl;
delete field;
// check for planarity if ETKDG or KDG
if (useBasicKnowledge) {
// create a force field with only the impropers
ForceFields::ForceField *field2;
field2 = DistGeom::construct3DImproperForceField(*mmat, positions3D,
improperAtoms, atomNums);
field2->initialize();
// check if the energy is low enough
double planarityTolerance = 0.7;
if (field2->calcEnergy() > improperAtoms.size() * planarityTolerance) {
#ifdef DEBUG_EMBEDDING
std::cerr << " planar fail: " << field2->calcEnergy() << " "
<< improperAtoms.size() * planarityTolerance << std::endl;
#endif
planar = false;
}
delete field2;
}
// overwrite positions and delete the 3D ones
for (unsigned int i = 0; i < positions3D.size(); ++i) {
(*positions[i])[0] = (*positions3D[i])[0];
(*positions[i])[1] = (*positions3D[i])[1];
(*positions[i])[2] = (*positions3D[i])[2];
delete positions3D[i];
}
return planar;
}
bool _embedPoints(
RDGeom::PointPtrVect *positions, const DistGeom::BoundsMatPtr mmat,
bool useRandomCoords, double boxSizeMult, bool randNegEig,
unsigned int numZeroFail, double optimizerForceTol, double basinThresh,
int seed, unsigned int maxIterations,
const DistGeom::VECT_CHIRALSET *chiralCenters,
const DistGeom::VECT_CHIRALSET *tetrahedralCarbons, bool enforceChirality,
bool useExpTorsionAnglePrefs, bool useBasicKnowledge,
const std::vector<std::pair<int, int>> &bonds,
const std::vector<std::vector<int>> &angles,
const std::vector<std::vector<int>> &expTorsionAtoms,
const std::vector<std::pair<std::vector<int>, std::vector<double>>>
&expTorsionAngles,
const std::vector<std::vector<int>> &improperAtoms,
const std::vector<int> &atomNums) {
unsigned int nat = positions->size();
if (maxIterations == 0) {
maxIterations = 10 * nat;
}
RDNumeric::DoubleSymmMatrix distMat(nat, 0.0);
// The basin threshold just gets us into trouble when we're using
// random coordinates since it ends up ignoring 1-4 (and higher)
// interactions. This causes us to get folded-up (and self-penetrating)
// conformations for large flexible molecules
if (useRandomCoords) basinThresh = 1e8;
RDKit::double_source_type *rng = nullptr;
RDKit::rng_type *generator;
RDKit::uniform_double *distrib;
CHECK_INVARIANT(seed >= -1,
"random seed must either be positive, zero, or negative one");
if (seed > -1) {
generator = new RDKit::rng_type(42u);
generator->seed(seed);
distrib = new RDKit::uniform_double(0.0, 1.0);
rng = new RDKit::double_source_type(*generator, *distrib);
} else {
rng = &RDKit::getDoubleRandomSource();
}
bool gotCoords = false;
unsigned int iter = 0;
double largestDistance = -1.0;
RDUNUSED_PARAM(largestDistance);
while ((gotCoords == false) && (iter < maxIterations)) {
++iter;
if (!useRandomCoords) {
largestDistance = DistGeom::pickRandomDistMat(*mmat, distMat, *rng);
gotCoords = DistGeom::computeInitialCoords(distMat, *positions, *rng,
randNegEig, numZeroFail);
} else {
double boxSize;
if (boxSizeMult > 0) {
boxSize = 5. * boxSizeMult;
} else {
boxSize = -1 * boxSizeMult;
}
gotCoords = DistGeom::computeRandomCoords(*positions, boxSize, *rng);
}
#ifdef DEBUG_EMBEDDING
if (!gotCoords) {
std::cerr << "Initial embedding failed!, Iter: " << iter << std::endl;
}
#endif
// std::cerr << " ITER: " << iter << " gotCoords: " << gotCoords <<
// std::endl;
if (gotCoords) {
boost::scoped_ptr<ForceFields::ForceField> field(
DistGeom::constructForceField(*mmat, *positions, *chiralCenters, 1.0,
0.1, nullptr, basinThresh));
unsigned int nPasses = 0;
field->initialize();
// std::cerr << "FIELD E: " << field->calcEnergy() << std::endl;
if (field->calcEnergy() > ERROR_TOL) {
int needMore = 1;
while (needMore) {
needMore = field->minimize(400, optimizerForceTol);
++nPasses;
}
}
std::vector<double> e_contribs;
double local_e = field->calcEnergy(&e_contribs);
// if (e_contribs.size()) {
// std::cerr << " check: " << local_e / nat << " "
// << *(std::max_element(e_contribs.begin(),
// e_contribs.end()))
// << std::endl;
// }
#ifdef DEBUG_EMBEDDING
std::cerr << " Energy : " << local_e / nat << " "
<< *(std::max_element(e_contribs.begin(), e_contribs.end()))
<< std::endl;
// std::copy(e_contribs.begin(), e_contribs.end(),
// std::ostream_iterator<double>(std::cerr, " "));
// std::cerr << std::endl;
#endif
// check that neither the energy nor any of the contributions to it are
// too high (this is part of github #971)
if (local_e / nat >= MAX_MINIMIZED_E_PER_ATOM ||
(e_contribs.size() &&
*(std::max_element(e_contribs.begin(), e_contribs.end())) >
MAX_MINIMIZED_E_CONTRIB)) {
#ifdef DEBUG_EMBEDDING
std::cerr << " Energy fail: " << local_e / nat << " "
<< *(std::max_element(e_contribs.begin(), e_contribs.end()))
<< std::endl;
#endif
gotCoords = false;
continue;
}
// for each of the atoms in the "tetrahedralCarbons" list, make sure
// that there is a minimum volume around them and that they are inside
// that volume. (this is part of github #971)
BOOST_FOREACH (DistGeom::ChiralSetPtr tetSet, *tetrahedralCarbons) {
// it could happen that the centroid is outside the volume defined
// by the other
// four points. That is also a fail.
if (!_volumeTest(tetSet, *positions) ||
!_centerInVolume(tetSet, *positions,
TETRAHEDRAL_CENTERINVOLUME_TOL)) {
#ifdef DEBUG_EMBEDDING
std::cerr << " fail2! (" << tetSet->d_idx0 << ") iter: " << iter
<< " vol: " << _volumeTest(tetSet, *positions, true)
<< " center: "
<< _centerInVolume(tetSet, *positions,
TETRAHEDRAL_CENTERINVOLUME_TOL, true)
<< std::endl;
#endif
gotCoords = false;
continue;
}
}
// Check if any of our chiral centers are badly out of whack. If so, try
// again
if (gotCoords && enforceChirality && chiralCenters->size() > 0) {
// check the chiral volume:
BOOST_FOREACH (DistGeom::ChiralSetPtr chiralSet, *chiralCenters) {
double vol = DistGeom::ChiralViolationContrib::calcChiralVolume(
chiralSet->d_idx1, chiralSet->d_idx2, chiralSet->d_idx3,
chiralSet->d_idx4, *positions);
double lb = chiralSet->getLowerVolumeBound();
double ub = chiralSet->getUpperVolumeBound();
if ((lb > 0 && vol < lb && (lb - vol) / lb > .2) ||
(ub < 0 && vol > ub && (vol - ub) / ub > .2)) {
#ifdef DEBUG_EMBEDDING
std::cerr << " fail! (" << chiralSet->d_idx0 << ") iter: " << iter
<< " " << vol << " " << lb << "-" << ub << std::endl;
#endif
gotCoords = false;
break;
}
}
}
// now redo the minimization if we have a chiral center
// or have started from random coords. This
// time removing the chiral constraints and
// increasing the weight on the fourth dimension
if (gotCoords && (chiralCenters->size() > 0 || useRandomCoords)) {
boost::scoped_ptr<ForceFields::ForceField> field2(
DistGeom::constructForceField(*mmat, *positions, *chiralCenters,
0.2, 1.0, nullptr, basinThresh));
field2->initialize();
// std::cerr<<"FIELD2 E: "<<field2->calcEnergy()<<std::endl;
if (field2->calcEnergy() > ERROR_TOL) {
int needMore = 1;
int nPasses2 = 0;
while (needMore) {
needMore = field2->minimize(200, optimizerForceTol);
++nPasses2;
}
// std::cerr<<" "<<field2->calcEnergy()<<" after npasses2:
// "<<nPasses2<<std::endl;
}
}
// (ET)(K)DG
if (gotCoords && (useExpTorsionAnglePrefs || useBasicKnowledge)) {
gotCoords = _minimizeWithExpTorsions(
*positions, mmat, optimizerForceTol, basinThresh, bonds, angles,
expTorsionAtoms, expTorsionAngles, improperAtoms, atomNums,
useBasicKnowledge);
}
// test if chirality is correct
if (enforceChirality && gotCoords && (chiralCenters->size() > 0)) {
// "distance matrix" chirality test
std::set<int> atoms;
BOOST_FOREACH (DistGeom::ChiralSetPtr chiralSet, *chiralCenters) {
if (chiralSet->d_idx0 != chiralSet->d_idx4) {
atoms.insert(chiralSet->d_idx0);
atoms.insert(chiralSet->d_idx1);
atoms.insert(chiralSet->d_idx2);
atoms.insert(chiralSet->d_idx3);
atoms.insert(chiralSet->d_idx4);
}
}
std::vector<int> atomsToCheck(atoms.begin(), atoms.end());
if (atomsToCheck.size() > 0) {
if (!_boundsFulfilled(atomsToCheck, *mmat, *positions)) {
gotCoords = false;
#ifdef DEBUG_EMBEDDING
std::cerr << " fail3a! (" << atomsToCheck[0] << ") iter: " << iter
<< std::endl;
#endif
}
}
// "center in volume" chirality test
if (gotCoords) {
BOOST_FOREACH (DistGeom::ChiralSetPtr chiralSet, *chiralCenters) {
// it could happen that the centroid is outside the volume defined
// by the other
// four points. That is also a fail.
if (!_centerInVolume(chiralSet, *positions)) {
#ifdef DEBUG_EMBEDDING
std::cerr << " fail3b! (" << chiralSet->d_idx0
<< ") iter: " << iter << std::endl;
#endif
gotCoords = false;
break;
}
}
}
}
} // if(gotCoords)
} // while
if (seed > -1 && rng) {
delete rng;
delete generator;
delete distrib;
}
return gotCoords;
}
void _findChiralSets(const ROMol &mol, DistGeom::VECT_CHIRALSET &chiralCenters,
DistGeom::VECT_CHIRALSET &tetrahedralCenters,
const std::map<int, RDGeom::Point3D> *coordMap) {
ROMol::ConstAtomIterator ati;
INT_VECT nbrs;
ROMol::OEDGE_ITER beg, end;
// Atom *oatom;
for (ati = mol.beginAtoms(); ati != mol.endAtoms(); ati++) {
if ((*ati)->getAtomicNum() != 1) { // skip hydrogens
Atom::ChiralType chiralType = (*ati)->getChiralTag();
if ((chiralType == Atom::CHI_TETRAHEDRAL_CW ||
chiralType == Atom::CHI_TETRAHEDRAL_CCW) ||
(((*ati)->getAtomicNum() == 6 || (*ati)->getAtomicNum() == 7) &&
(*ati)->getDegree() == 4)) {
// make a chiral set from the neighbors
nbrs.clear();
nbrs.reserve(4);
// find the neighbors of this atom and enter them into the
// nbr list
boost::tie(beg, end) = mol.getAtomBonds(*ati);
while (beg != end) {
nbrs.push_back(mol[*beg]->getOtherAtom(*ati)->getIdx());
++beg;
}
// if we have less than 4 heavy atoms as neighbors,
// we need to include the chiral center into the mix
// we should at least have 3 though
bool includeSelf = false;
RDUNUSED_PARAM(includeSelf);
CHECK_INVARIANT(nbrs.size() >= 3, "Cannot be a chiral center");
if (nbrs.size() < 4) {
nbrs.insert(nbrs.end(), (*ati)->getIdx());
includeSelf = true;
}
// now create a chiral set and set the upper and lower bound on the
// volume
if (chiralType == Atom::CHI_TETRAHEDRAL_CCW) {
// postive chiral volume
auto *cset = new DistGeom::ChiralSet(
(*ati)->getIdx(), nbrs[0], nbrs[1], nbrs[2], nbrs[3], 5.0, 100.0);
DistGeom::ChiralSetPtr cptr(cset);
chiralCenters.push_back(cptr);
} else if (chiralType == Atom::CHI_TETRAHEDRAL_CW) {
auto *cset =
new DistGeom::ChiralSet((*ati)->getIdx(), nbrs[0], nbrs[1],
nbrs[2], nbrs[3], -100.0, -5.0);
DistGeom::ChiralSetPtr cptr(cset);
chiralCenters.push_back(cptr);
} else {
if ((coordMap &&
coordMap->find((*ati)->getIdx()) != coordMap->end()) ||
(mol.getRingInfo()->isInitialized() &&
(mol.getRingInfo()->numAtomRings((*ati)->getIdx()) < 2 ||
mol.getRingInfo()->isAtomInRingOfSize((*ati)->getIdx(), 3)))) {
// we only want to these tests for ring atoms that are not part of
// the coordMap
// there's no sense doing 3-rings because those are a nightmare
} else {
auto *cset = new DistGeom::ChiralSet(
(*ati)->getIdx(), nbrs[0], nbrs[1], nbrs[2], nbrs[3], 0.0, 0.0);
DistGeom::ChiralSetPtr cptr(cset);
tetrahedralCenters.push_back(cptr);
}
}
} // if block -chirality check
} // if block - heavy atom check
} // for loop over atoms
} // end of _findChiralSets
void _fillAtomPositions(RDGeom::Point3DConstPtrVect &pts, const Conformer &conf,
const ROMol &mol, bool onlyHeavyAtomsForRMS) {
unsigned int na = conf.getNumAtoms();
pts.clear();
unsigned int ai;
pts.reserve(na);
for (ai = 0; ai < na; ++ai) {
// FIX: should we include D and T here?
if (onlyHeavyAtomsForRMS && mol.getAtomWithIdx(ai)->getAtomicNum() == 1) {
continue;
}
pts.push_back(&conf.getAtomPos(ai));
}
}
bool _isConfFarFromRest(const ROMol &mol, const Conformer &conf,
double threshold, bool onlyHeavyAtomsForRMS) {
// NOTE: it is tempting to use some triangle inequality to prune
// conformations here but some basic testing has shown very
// little advantage and given that the time for pruning fades in
// comparison to embedding - we will use a simple for loop below
// over all conformation until we find a match
ROMol::ConstConformerIterator confi;
RDGeom::Point3DConstPtrVect refPoints, prbPoints;
_fillAtomPositions(refPoints, conf, mol, onlyHeavyAtomsForRMS);
bool res = true;
unsigned int na = conf.getNumAtoms();
double ssrThres = na * threshold * threshold;
RDGeom::Transform3D trans;
double ssr;
for (confi = mol.beginConformers(); confi != mol.endConformers(); confi++) {
_fillAtomPositions(prbPoints, *(*confi), mol, onlyHeavyAtomsForRMS);
ssr = RDNumeric::Alignments::AlignPoints(refPoints, prbPoints, trans);
if (ssr < ssrThres) {
res = false;
break;
}
}
return res;
}
void adjustBoundsMatFromCoordMap(
DistGeom::BoundsMatPtr mmat, unsigned int nAtoms,
const std::map<int, RDGeom::Point3D> *coordMap) {
RDUNUSED_PARAM(nAtoms);
// std::cerr<<std::endl;
// for(unsigned int i=0;i<nAtoms;++i){
// for(unsigned int j=0;j<nAtoms;++j){
// std::cerr<<" "<<std::setprecision(3)<<mmat->getVal(i,j);
// }
// std::cerr<<std::endl;
// }
// std::cerr<<std::endl;
for (auto iIt = coordMap->begin(); iIt != coordMap->end(); ++iIt) {
int iIdx = iIt->first;
const RDGeom::Point3D &iPoint = iIt->second;
auto jIt = iIt;
while (++jIt != coordMap->end()) {
int jIdx = jIt->first;
const RDGeom::Point3D &jPoint = jIt->second;
double dist = (iPoint - jPoint).length();
mmat->setUpperBound(iIdx, jIdx, dist);
mmat->setLowerBound(iIdx, jIdx, dist);
}
}
// std::cerr<<std::endl;
// for(unsigned int i=0;i<nAtoms;++i){
// for(unsigned int j=0;j<nAtoms;++j){
// std::cerr<<" "<<std::setprecision(3)<<mmat->getVal(i,j);
// }
// std::cerr<<std::endl;
// }
// std::cerr<<std::endl;
}
namespace detail {
typedef struct {
boost::dynamic_bitset<> *confsOk;
bool fourD;
INT_VECT *fragMapping;
std::vector<Conformer *> *confs;
unsigned int fragIdx;
DistGeom::BoundsMatPtr mmat;
bool useRandomCoords;
double boxSizeMult;
bool randNegEig;
unsigned int numZeroFail;
double optimizerForceTol;
double basinThresh;
int seed;
unsigned int maxIterations;
DistGeom::VECT_CHIRALSET const *chiralCenters;
DistGeom::VECT_CHIRALSET const *tetrahedralCarbons;
bool enforceChirality;
bool useExpTorsionAnglePrefs;
bool useBasicKnowledge;
std::vector<std::pair<int, int>> *bonds;
std::vector<std::vector<int>> *angles;
std::vector<std::vector<int>> *expTorsionAtoms;
std::vector<std::pair<std::vector<int>, std::vector<double>>>
*expTorsionAngles;
std::vector<std::vector<int>> *improperAtoms;
std::vector<int> *atomNums;
} EmbedArgs;
template <class T>
bool multiplication_overflows_(T a, T b) {
// a * b > c if and only if a > c / b
if (a == 0 || b == 0) return false;
if (a > std::numeric_limits<T>::max() / b) return true;
return false;
}
void embedHelper_(int threadId, int numThreads, EmbedArgs *eargs) {
unsigned int nAtoms = eargs->mmat->numRows();
RDGeom::PointPtrVect positions;
for (unsigned int i = 0; i < nAtoms; ++i) {
if (eargs->fourD) {
positions.push_back(new RDGeom::PointND(4));
} else {
positions.push_back(new RDGeom::Point3D());
}
}
for (size_t ci = 0; ci < eargs->confs->size(); ci++) {
if (rdcast<int>(ci % numThreads) != threadId) continue;
if (!(*eargs->confsOk)[ci]) {
// if one of the fragments here has already failed, there's no
// sense in embedding this one
continue;
}
CHECK_INVARIANT(
eargs->seed >= -1,
"random seed must either be positive, zero, or negative one");
int new_seed = eargs->seed;
if (new_seed > -1) {
if (!multiplication_overflows_(rdcast<int>(ci + 1), eargs->seed)) {
// old method of computing a new seed
new_seed = (ci + 1) * eargs->seed;
} else {
// If the above simple multiplication will overflow, use a
// cheap and easy way to hash the conformer index and seed
// together: for N'ary numerical system, where N is the
// maximum possible value of the pair of numbers. The
// following will generate unique integers:
// hash(a, b) = a + b * N
size_t big_seed = rdcast<size_t>(eargs->seed);
size_t max_val = std::max(ci + 1, big_seed);
size_t big_num = big_seed + max_val * (ci + 1);
// only grab the first 31 bits xor'd with the next 31 bits to
// make sure its positive, careful, the 'ULL' is important
// here, 0x7fffffff is the 'int' type because of C default
// number semantics and that we definitely don't want!
const size_t positive_int_mask = 0x7fffffffULL;
size_t folded_num = (big_num & positive_int_mask) ^ (big_num >> 31ULL);
new_seed = rdcast<int>(folded_num & positive_int_mask);
}
}
CHECK_INVARIANT(new_seed >= -1,
"Something went wrong calculating a new seed");
bool gotCoords = _embedPoints(
&positions, eargs->mmat, eargs->useRandomCoords, eargs->boxSizeMult,
eargs->randNegEig, eargs->numZeroFail, eargs->optimizerForceTol,
eargs->basinThresh, new_seed, eargs->maxIterations,
eargs->chiralCenters, eargs->tetrahedralCarbons,
eargs->enforceChirality, eargs->useExpTorsionAnglePrefs,
eargs->useBasicKnowledge, *eargs->bonds, *eargs->angles,
*eargs->expTorsionAtoms, *eargs->expTorsionAngles,
*eargs->improperAtoms, *eargs->atomNums);
if (gotCoords) {
Conformer *conf = (*eargs->confs)[ci];
unsigned int fragAtomIdx = 0;
for (unsigned int i = 0; i < (*eargs->confs)[0]->getNumAtoms(); ++i) {
if ((*eargs->fragMapping)[i] == static_cast<int>(eargs->fragIdx)) {
conf->setAtomPos(i, RDGeom::Point3D((*positions[fragAtomIdx])[0],
(*positions[fragAtomIdx])[1],
(*positions[fragAtomIdx])[2]));
++fragAtomIdx;
}
}
} else {
(*eargs->confsOk)[ci] = 0;
}
}
for (unsigned int i = 0; i < nAtoms; ++i) {
delete positions[i];
}
}
} // end of namespace detail
void EmbedMultipleConfs(ROMol &mol, INT_VECT &res, unsigned int numConfs,
const EmbedParameters ¶ms) {
if (!mol.getNumAtoms()) {
throw ValueErrorException("molecule has no atoms");
}
if (params.ETversion < 1 || params.ETversion > 2) {
throw ValueErrorException(
"Only version 1 and 2 of the experimental "
"torsion-angle preferences (ETversion) supported");
}
INT_VECT fragMapping;
std::vector<ROMOL_SPTR> molFrags =
MolOps::getMolFrags(mol, true, &fragMapping);
const std::map<int, RDGeom::Point3D> *coordMap = params.coordMap;
if (molFrags.size() > 1 && coordMap) {
BOOST_LOG(rdWarningLog)
<< "Constrained conformer generation (via the coordMap argument) "
"does "
"not work with molecules that have multiple fragments."
<< std::endl;
coordMap = nullptr;
}
std::vector<Conformer *> confs;
confs.reserve(numConfs);
for (unsigned int i = 0; i < numConfs; ++i) {
confs.push_back(new Conformer(mol.getNumAtoms()));
}
boost::dynamic_bitset<> confsOk(numConfs);
confsOk.set();
if (params.clearConfs) {
res.clear();
mol.clearConformers();
}
for (unsigned int fragIdx = 0; fragIdx < molFrags.size(); ++fragIdx) {
ROMOL_SPTR piece = molFrags[fragIdx];
unsigned int nAtoms = piece->getNumAtoms();
auto *mat = new DistGeom::BoundsMatrix(nAtoms);
DistGeom::BoundsMatPtr mmat(mat);
initBoundsMat(mmat);
double tol = 0.0;
std::vector<std::vector<int>> expTorsionAtoms;
std::vector<std::pair<std::vector<int>, std::vector<double>>>
expTorsionAngles;
std::vector<std::vector<int>> improperAtoms;
std::vector<std::pair<int, int>> bonds;
std::vector<std::vector<int>> angles;
std::vector<int> atomNums(nAtoms);
if (params.useExpTorsionAnglePrefs || params.useBasicKnowledge) {
ForceFields::CrystalFF::getExperimentalTorsions(
*piece, expTorsionAtoms, expTorsionAngles, improperAtoms,
params.useExpTorsionAnglePrefs, params.useBasicKnowledge,
params.ETversion, params.verbose);
setTopolBounds(*piece, mmat, bonds, angles, true, false);
for (unsigned int i = 0; i < nAtoms; ++i) {
atomNums[i] = (*piece).getAtomWithIdx(i)->getAtomicNum();
}
} else {
setTopolBounds(*piece, mmat, true, false);
}
if (coordMap) {
adjustBoundsMatFromCoordMap(mmat, nAtoms, coordMap);
tol = 0.05;
}
if (!DistGeom::triangleSmoothBounds(mmat, tol)) {
// ok this bound matrix failed to triangle smooth - re-compute the
// bounds
// matrix
// without 15 bounds and with VDW scaling
initBoundsMat(mmat);
setTopolBounds(*piece, mmat, false, true);
if (coordMap) {
adjustBoundsMatFromCoordMap(mmat, nAtoms, coordMap);
}
// try triangle smoothing again
if (!DistGeom::triangleSmoothBounds(mmat, tol)) {
// ok, we're not going to be able to smooth this,
if (params.ignoreSmoothingFailures) {
// proceed anyway with the more relaxed bounds matrix
initBoundsMat(mmat);
setTopolBounds(*piece, mmat, false, true);
if (coordMap) {
adjustBoundsMatFromCoordMap(mmat, nAtoms, coordMap);
}
} else {
BOOST_LOG(rdWarningLog)
<< "Could not triangle bounds smooth molecule." << std::endl;
return;
}
}
}
#if 0
for(unsigned int li=0;li<piece->getNumAtoms();++li){
for(unsigned int lj=li+1;lj<piece->getNumAtoms();++lj){
std::cerr<<" ("<<li<<","<<lj<<"): "<<mat->getLowerBound(li,lj)<<" -> "<<mat->getUpperBound(li,lj)<<std::endl;
}
}
#endif
// find all the chiral centers in the molecule
DistGeom::VECT_CHIRALSET chiralCenters;
DistGeom::VECT_CHIRALSET tetrahedralCarbons;
MolOps::assignStereochemistry(*piece);
_findChiralSets(*piece, chiralCenters, tetrahedralCarbons, params.coordMap);
// if we have any chiral centers or are using random coordinates, we will
// first embed the molecule in four dimensions, otherwise we will use 3D
bool fourD = false;
if (params.useRandomCoords || chiralCenters.size() > 0) {
fourD = true;
}
#ifdef RDK_THREADSAFE_SSS
std::vector<std::future<void>> tg;
#endif
int numThreads = getNumThreadsToUse(params.numThreads);
detail::EmbedArgs eargs = {&confsOk,
fourD,
&fragMapping,
&confs,
fragIdx,
mmat,
params.useRandomCoords,
params.boxSizeMult,
params.randNegEig,
params.numZeroFail,
params.optimizerForceTol,
params.basinThresh,
params.randomSeed,
params.maxIterations,
&chiralCenters,
&tetrahedralCarbons,
params.enforceChirality,
params.useExpTorsionAnglePrefs,
params.useBasicKnowledge,
&bonds,
&angles,
&expTorsionAtoms,
&expTorsionAngles,
&improperAtoms,
&atomNums};
if (numThreads == 1) {
detail::embedHelper_(0, 1, &eargs);
}
#ifdef RDK_THREADSAFE_SSS
else {
for (int tid = 0; tid < numThreads; ++tid) {
tg.emplace_back(std::async(std::launch::async, detail::embedHelper_,
tid, numThreads, &eargs));
}
for (auto &fut : tg) {
fut.get();
}
}
#endif
}
for (unsigned int ci = 0; ci < confs.size(); ++ci) {
Conformer *conf = confs[ci];
if (confsOk[ci]) {
// check if we are pruning away conformations and
// a closeby conformation has already been chosen :
if (params.pruneRmsThresh > 0.0 &&
!_isConfFarFromRest(mol, *conf, params.pruneRmsThresh,
params.onlyHeavyAtomsForRMS)) {
delete conf;
} else {
int confId = (int)mol.addConformer(conf, true);
res.push_back(confId);
}
} else {
delete conf;
}
}
}
} // end of namespace DGeomHelpers
} // end of namespace RDKit
|