1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629
|
//
// Copyright (C) 2014 Novartis Institutes for BioMedical Research
//
// @@ All Rights Reserved @@
// This file is part of the RDKit.
// The contents are covered by the terms of the BSD license
// which is included in the file license.txt, found at the root
// of the RDKit source tree.
//
#include <list>
#include <algorithm>
#include <math.h>
#include <RDGeneral/BoostStartInclude.h>
#include <boost/property_tree/ptree.hpp>
#include <boost/property_tree/json_parser.hpp>
#include <RDGeneral/BoostEndInclude.h>
#include <iostream>
#include <sstream>
#include "SubstructMatchCustom.h"
#include "MaximumCommonSubgraph.h"
#include <GraphMol/QueryOps.h>
namespace RDKit {
void parseMCSParametersJSON(const char* json, MCSParameters* params) {
if (params && json && 0 != strlen(json)) {
std::istringstream ss;
ss.str(json);
boost::property_tree::ptree pt;
boost::property_tree::read_json(ss, pt);
RDKit::MCSParameters& p = *params;
p.MaximizeBonds = pt.get<bool>("MaximizeBonds", p.MaximizeBonds);
p.Threshold = pt.get<double>("Threshold", p.Threshold);
p.Timeout = pt.get<unsigned>("Timeout", p.Timeout);
p.AtomCompareParameters.MatchValences =
pt.get<bool>("MatchValences", p.AtomCompareParameters.MatchValences);
p.AtomCompareParameters.MatchChiralTag =
pt.get<bool>("MatchChiralTag", p.AtomCompareParameters.MatchChiralTag);
p.AtomCompareParameters.MatchFormalCharge = pt.get<bool>(
"MatchFormalCharge", p.AtomCompareParameters.MatchFormalCharge);
p.AtomCompareParameters.RingMatchesRingOnly = pt.get<bool>(
"RingMatchesRingOnly", p.AtomCompareParameters.RingMatchesRingOnly);
p.BondCompareParameters.RingMatchesRingOnly = pt.get<bool>(
"RingMatchesRingOnly", p.BondCompareParameters.RingMatchesRingOnly);
p.BondCompareParameters.CompleteRingsOnly = pt.get<bool>(
"CompleteRingsOnly", p.BondCompareParameters.CompleteRingsOnly);
p.BondCompareParameters.MatchStereo =
pt.get<bool>("MatchStereo", p.BondCompareParameters.MatchStereo);
std::string s = pt.get<std::string>("AtomCompare", "def");
if (0 == strcmp("Any", s.c_str()))
p.AtomTyper = MCSAtomCompareAny;
else if (0 == strcmp("Elements", s.c_str()))
p.AtomTyper = MCSAtomCompareElements;
else if (0 == strcmp("Isotopes", s.c_str()))
p.AtomTyper = MCSAtomCompareIsotopes;
s = pt.get<std::string>("BondCompare", "def");
if (0 == strcmp("Any", s.c_str()))
p.BondTyper = MCSBondCompareAny;
else if (0 == strcmp("Order", s.c_str()))
p.BondTyper = MCSBondCompareOrder;
else if (0 == strcmp("OrderExact", s.c_str()))
p.BondTyper = MCSBondCompareOrderExact;
p.InitialSeed = pt.get<std::string>("InitialSeed", "");
}
}
MCSResult findMCS(const std::vector<ROMOL_SPTR>& mols,
const MCSParameters* params) {
MCSParameters p;
if (nullptr == params) params = &p;
RDKit::FMCS::MaximumCommonSubgraph fmcs(params);
return fmcs.find(mols);
}
MCSResult findMCS_P(const std::vector<ROMOL_SPTR>& mols,
const char* params_json) {
MCSParameters p;
parseMCSParametersJSON(params_json, &p);
return findMCS(mols, &p);
}
MCSResult findMCS(const std::vector<ROMOL_SPTR>& mols, bool maximizeBonds,
double threshold, unsigned timeout, bool verbose,
bool matchValences, bool ringMatchesRingOnly,
bool completeRingsOnly, bool matchChiralTag,
AtomComparator atomComp, BondComparator bondComp) {
// AtomComparator atomComp=AtomCompareElements;
// BondComparator bondComp=BondCompareOrder;
auto* ps = new MCSParameters();
ps->MaximizeBonds = maximizeBonds;
ps->Threshold = threshold;
ps->Timeout = timeout;
ps->Verbose = verbose;
ps->AtomCompareParameters.MatchValences = matchValences;
ps->AtomCompareParameters.MatchChiralTag = matchChiralTag;
switch (atomComp) {
case AtomCompareAny:
ps->AtomTyper = MCSAtomCompareAny;
break;
case AtomCompareElements:
ps->AtomTyper = MCSAtomCompareElements;
break;
case AtomCompareIsotopes:
ps->AtomTyper = MCSAtomCompareIsotopes;
break;
}
ps->AtomCompareParameters.RingMatchesRingOnly = ringMatchesRingOnly;
switch (bondComp) {
case BondCompareAny:
ps->BondTyper = MCSBondCompareAny;
break;
case BondCompareOrder:
ps->BondTyper = MCSBondCompareOrder;
break;
case BondCompareOrderExact:
ps->BondTyper = MCSBondCompareOrderExact;
break;
}
ps->BondCompareParameters.RingMatchesRingOnly = ringMatchesRingOnly;
ps->BondCompareParameters.CompleteRingsOnly = completeRingsOnly;
MCSResult res = findMCS(mols, ps);
delete ps;
return res;
}
bool MCSProgressCallbackTimeout(const MCSProgressData& stat,
const MCSParameters& params, void* userData) {
RDUNUSED_PARAM(stat);
unsigned long long* t0 = (unsigned long long*)userData;
unsigned long long t = nanoClock();
return t - *t0 <= params.Timeout * 1000000ULL;
}
// PREDEFINED FUNCTORS:
//=== ATOM COMPARE ========================================================
static bool checkRingMatch(const MCSAtomCompareParameters& p, const ROMol& mol1,
unsigned int atom1, const ROMol& mol2,
unsigned int atom2) {
if (p.RingMatchesRingOnly) {
bool atom1inRing = queryIsAtomInRing(mol1.getAtomWithIdx(atom1));
bool atom2inRing = queryIsAtomInRing(mol2.getAtomWithIdx(atom2));
return atom1inRing == atom2inRing;
} else {
return true;
}
}
static bool checkAtomCharge(const MCSAtomCompareParameters& p,
const ROMol& mol1, unsigned int atom1,
const ROMol& mol2, unsigned int atom2) {
RDUNUSED_PARAM(p);
const Atom& a1 = *mol1.getAtomWithIdx(atom1);
const Atom& a2 = *mol2.getAtomWithIdx(atom2);
return a1.getFormalCharge() == a2.getFormalCharge();
}
static bool checkAtomChirality(const MCSAtomCompareParameters& p,
const ROMol& mol1, unsigned int atom1,
const ROMol& mol2, unsigned int atom2) {
RDUNUSED_PARAM(p);
const Atom& a1 = *mol1.getAtomWithIdx(atom1);
const Atom& a2 = *mol2.getAtomWithIdx(atom2);
Atom::ChiralType ac1 = a1.getChiralTag();
Atom::ChiralType ac2 = a2.getChiralTag();
if (ac1 == Atom::CHI_TETRAHEDRAL_CW || ac1 == Atom::CHI_TETRAHEDRAL_CCW) {
return (ac2 == Atom::CHI_TETRAHEDRAL_CW ||
ac2 == Atom::CHI_TETRAHEDRAL_CCW);
}
return true;
}
bool MCSAtomCompareAny(const MCSAtomCompareParameters& p, const ROMol& mol1,
unsigned int atom1, const ROMol& mol2,
unsigned int atom2, void*) {
if (p.MatchChiralTag && !checkAtomChirality(p, mol1, atom1, mol2, atom2))
return false;
if (p.MatchFormalCharge && !checkAtomCharge(p, mol1, atom1, mol2, atom2))
return false;
if (p.RingMatchesRingOnly) return checkRingMatch(p, mol1, atom1, mol2, atom2);
return true;
}
bool MCSAtomCompareElements(const MCSAtomCompareParameters& p,
const ROMol& mol1, unsigned int atom1,
const ROMol& mol2, unsigned int atom2, void*) {
const Atom& a1 = *mol1.getAtomWithIdx(atom1);
const Atom& a2 = *mol2.getAtomWithIdx(atom2);
if (a1.getAtomicNum() != a2.getAtomicNum()) return false;
if (p.MatchValences && a1.getTotalValence() != a2.getTotalValence())
return false;
if (p.MatchChiralTag && !checkAtomChirality(p, mol1, atom1, mol2, atom2))
return false;
if (p.MatchFormalCharge && !checkAtomCharge(p, mol1, atom1, mol2, atom2))
return false;
if (p.RingMatchesRingOnly) return checkRingMatch(p, mol1, atom1, mol2, atom2);
return true;
}
bool MCSAtomCompareIsotopes(const MCSAtomCompareParameters& p,
const ROMol& mol1, unsigned int atom1,
const ROMol& mol2, unsigned int atom2, void* ud) {
RDUNUSED_PARAM(ud);
// ignore everything except isotope information:
// if( ! MCSAtomCompareElements (p, mol1, atom1, mol2, atom2, ud))
// return false;
const Atom& a1 = *mol1.getAtomWithIdx(atom1);
const Atom& a2 = *mol2.getAtomWithIdx(atom2);
if (a1.getIsotope() != a2.getIsotope()) return false;
if (p.MatchChiralTag && !checkAtomChirality(p, mol1, atom1, mol2, atom2))
return false;
if (p.MatchFormalCharge && !checkAtomCharge(p, mol1, atom1, mol2, atom2))
return false;
if (p.RingMatchesRingOnly) return checkRingMatch(p, mol1, atom1, mol2, atom2);
return true;
}
//=== BOND COMPARE ========================================================
class BondMatchOrderMatrix {
bool MatchMatrix[Bond::ZERO + 1][Bond::ZERO + 1];
public:
BondMatchOrderMatrix(bool ignoreAromatization) {
memset(MatchMatrix, 0, sizeof(MatchMatrix));
for (size_t i = 0; i <= Bond::ZERO;
i++) { // fill cells of the same and unspecified type
MatchMatrix[i][i] = true;
MatchMatrix[Bond::UNSPECIFIED][i] = MatchMatrix[i][Bond::UNSPECIFIED] =
true;
MatchMatrix[Bond::ZERO][i] = MatchMatrix[i][Bond::ZERO] = true;
}
if (ignoreAromatization) {
MatchMatrix[Bond::SINGLE][Bond::AROMATIC] =
MatchMatrix[Bond::AROMATIC][Bond::SINGLE] = true;
MatchMatrix[Bond::SINGLE][Bond::ONEANDAHALF] =
MatchMatrix[Bond::ONEANDAHALF][Bond::SINGLE] = true;
MatchMatrix[Bond::DOUBLE][Bond::TWOANDAHALF] =
MatchMatrix[Bond::TWOANDAHALF][Bond::DOUBLE] = true;
MatchMatrix[Bond::TRIPLE][Bond::THREEANDAHALF] =
MatchMatrix[Bond::THREEANDAHALF][Bond::TRIPLE] = true;
MatchMatrix[Bond::QUADRUPLE][Bond::FOURANDAHALF] =
MatchMatrix[Bond::FOURANDAHALF][Bond::QUADRUPLE] = true;
MatchMatrix[Bond::QUINTUPLE][Bond::FIVEANDAHALF] =
MatchMatrix[Bond::FIVEANDAHALF][Bond::QUINTUPLE] = true;
}
}
inline bool isEqual(unsigned i, unsigned j) const {
return MatchMatrix[i][j];
}
};
static bool checkBondStereo(const MCSBondCompareParameters& p,
const ROMol& mol1, unsigned int bond1,
const ROMol& mol2, unsigned int bond2) {
RDUNUSED_PARAM(p);
const Bond* b1 = mol1.getBondWithIdx(bond1);
const Bond* b2 = mol2.getBondWithIdx(bond2);
Bond::BondStereo bs1 = b1->getStereo();
Bond::BondStereo bs2 = b2->getStereo();
if (b1->getBondType() == Bond::DOUBLE && b2->getBondType() == Bond::DOUBLE) {
if (bs1 > Bond::STEREOANY && !(bs2 > Bond::STEREOANY)) return false;
}
return true;
}
static bool checkRingMatch(const MCSBondCompareParameters& p, const ROMol& mol1,
unsigned int bond1, const ROMol& mol2,
unsigned int bond2, void* v_ringMatchMatrixSet) {
if (!v_ringMatchMatrixSet) throw "v_ringMatchMatrixSet is NULL"; // never
FMCS::RingMatchTableSet* ringMatchMatrixSet =
static_cast<FMCS::RingMatchTableSet*>(v_ringMatchMatrixSet);
const std::vector<size_t>& ringsIdx1 =
ringMatchMatrixSet->getQueryBondRings(bond1); // indices of rings
const std::vector<size_t>& ringsIdx2 =
ringMatchMatrixSet->getTargetBondRings(&mol2, bond2); // indices of rings
bool bond1inRing = !ringsIdx1.empty();
bool bond2inRing = !ringsIdx2.empty();
if (bond1inRing != bond2inRing) return false;
if ((!bond1inRing)) // the same: && (! bond2inRing)) // both bonds are NOT
// in rings
return true;
// both bonds are in rings
if (p.CompleteRingsOnly) {
const RingInfo::VECT_INT_VECT& r1 = mol1.getRingInfo()->bondRings();
const RingInfo::VECT_INT_VECT& r2 = mol2.getRingInfo()->bondRings();
// for each query ring contains bond1
for (unsigned long r1i : ringsIdx1) {
const INT_VECT& br1 = r1[r1i]; // ring contains bond1
// check all target rings contained bond2
for (unsigned long r2i : ringsIdx2) {
const INT_VECT& br2 = r2[r2i]; // ring contains bond2
if (br1.size() != br2.size()) // rings are different
continue;
// compare rings as substructures
if (ringMatchMatrixSet->isEqual(&br1, &br2,
&mol2)) // EQUAL Rings found
return true;
}
}
// all rings are different
return false;
} else
return true; // bond1inRing && bond2inRing; // both bonds are in rings
}
bool MCSBondCompareAny(const MCSBondCompareParameters& p, const ROMol& mol1,
unsigned int bond1, const ROMol& mol2,
unsigned int bond2, void* ud) {
if (p.MatchStereo && !checkBondStereo(p, mol1, bond1, mol2, bond2))
return false;
if (p.RingMatchesRingOnly)
return checkRingMatch(p, mol1, bond1, mol2, bond2, ud);
return true;
}
bool MCSBondCompareOrder(const MCSBondCompareParameters& p, const ROMol& mol1,
unsigned int bond1, const ROMol& mol2,
unsigned int bond2, void* ud) {
static const BondMatchOrderMatrix match(true); // ignore Aromatization
const Bond* b1 = mol1.getBondWithIdx(bond1);
const Bond* b2 = mol2.getBondWithIdx(bond2);
Bond::BondType t1 = b1->getBondType();
Bond::BondType t2 = b2->getBondType();
if (match.isEqual(t1, t2)) {
if (p.MatchStereo && !checkBondStereo(p, mol1, bond1, mol2, bond2))
return false;
if (p.RingMatchesRingOnly)
return checkRingMatch(p, mol1, bond1, mol2, bond2, ud);
return true;
}
return false;
}
bool MCSBondCompareOrderExact(const MCSBondCompareParameters& p,
const ROMol& mol1, unsigned int bond1,
const ROMol& mol2, unsigned int bond2, void* ud) {
static const BondMatchOrderMatrix match(false); // AROMATIC != SINGLE
const Bond* b1 = mol1.getBondWithIdx(bond1);
const Bond* b2 = mol2.getBondWithIdx(bond2);
Bond::BondType t1 = b1->getBondType();
Bond::BondType t2 = b2->getBondType();
if (match.isEqual(t1, t2)) {
if (p.MatchStereo && !checkBondStereo(p, mol1, bond1, mol2, bond2))
return false;
if (p.RingMatchesRingOnly)
return checkRingMatch(p, mol1, bond1, mol2, bond2, ud);
return true;
}
return false;
}
bool FinalChiralityCheckFunction(const short unsigned c1[],
const short unsigned c2[], const ROMol& mol1,
const FMCS::Graph& query, const ROMol& mol2,
const FMCS::Graph& target,
const MCSParameters* /*unused*/) {
const unsigned int qna = boost::num_vertices(query); // getNumAtoms()
// check chiral atoms only:
for (unsigned int i = 0; i < qna; ++i) {
const Atom& a1 = *mol1.getAtomWithIdx(query[c1[i]]);
Atom::ChiralType ac1 = a1.getChiralTag();
const Atom& a2 = *mol2.getAtomWithIdx(target[c2[i]]);
Atom::ChiralType ac2 = a2.getChiralTag();
///*------------------ OLD Code :
// ???: non chiral query atoms ARE ALLOWED TO MATCH to Chiral target atoms
// (see test for issue 481)
if (a1.getDegree() < 3 || //#688: doesn't deal with "explicit" Hs properly
!(ac1 == Atom::CHI_TETRAHEDRAL_CW || ac1 == Atom::CHI_TETRAHEDRAL_CCW))
continue; // skip non chiral center QUERY atoms
if (!(ac2 == Atom::CHI_TETRAHEDRAL_CW || ac2 == Atom::CHI_TETRAHEDRAL_CCW))
return false;
//--------------------
/* More accurate check:
if( !(ac1 == Atom::CHI_TETRAHEDRAL_CW || ac1 ==
Atom::CHI_TETRAHEDRAL_CCW)
&& !(ac2 == Atom::CHI_TETRAHEDRAL_CW || ac2 ==
Atom::CHI_TETRAHEDRAL_CCW))
continue; // skip check if both atoms are non chiral center
if(!( (ac1 == Atom::CHI_TETRAHEDRAL_CW || ac1 ==
Atom::CHI_TETRAHEDRAL_CCW)
&& (ac2 == Atom::CHI_TETRAHEDRAL_CW || ac2 ==
Atom::CHI_TETRAHEDRAL_CCW)))//ac2 != ac1)
return false; // both atoms must be chiral or not without a
query priority
*/
const unsigned a1Degree =
boost::out_degree(c1[i], query); // a1.getDegree();
// number of all connected atoms in a seed
if (a1Degree > a2.getDegree()) { //#688 was != . // FIX issue 631
// printf("atoms Degree (%u, %u) %u [%u], %u\n", query[c1[i]],
// target[c2[i]], a1Degree, a1.getDegree(), a2.getDegree());
if (1 == a1Degree && a1.getDegree() == a2.getDegree())
continue; // continue to grow the seed
else
return false;
}
INT_LIST qOrder;
for (unsigned int j = 0; j < qna && qOrder.size() != a1Degree; ++j) {
const Bond* qB = mol1.getBondBetweenAtoms(query[c1[i]], query[c1[j]]);
if (qB) qOrder.push_back(qB->getIdx());
}
//#688
INT_LIST qmoOrder;
{
ROMol::OEDGE_ITER dbeg, dend;
boost::tie(dbeg, dend) = mol1.getAtomBonds(&a1);
for (; dbeg != dend; dbeg++) {
int dbidx = mol1[*dbeg]->getIdx();
if (std::find(qOrder.begin(), qOrder.end(), dbidx) != qOrder.end())
qmoOrder.push_back(dbidx);
// else
// qmoOrder.push_back(-1);
}
}
int qPermCount = // was: a1.getPerturbationOrder(qOrder);
static_cast<int>(countSwapsToInterconvert(qmoOrder, qOrder));
INT_LIST mOrder;
for (unsigned int j = 0; j < qna && mOrder.size() != a2.getDegree(); ++j) {
const Bond* mB = mol2.getBondBetweenAtoms(target[c2[i]], target[c2[j]]);
if (mB) mOrder.push_back(mB->getIdx());
}
//#688
while (mOrder.size() < a2.getDegree()) {
mOrder.push_back(-1);
}
INT_LIST moOrder;
ROMol::OEDGE_ITER dbeg, dend;
boost::tie(dbeg, dend) = mol2.getAtomBonds(&a2);
for (; dbeg != dend; dbeg++) {
int dbidx = mol2[*dbeg]->getIdx();
if (std::find(mOrder.begin(), mOrder.end(), dbidx) != mOrder.end())
moOrder.push_back(dbidx);
else
moOrder.push_back(-1);
}
int mPermCount = // was: a2.getPerturbationOrder(mOrder);
static_cast<int>(countSwapsToInterconvert(moOrder, mOrder));
//----
if ((qPermCount % 2 == mPermCount % 2 &&
a1.getChiralTag() != a2.getChiralTag()) ||
(qPermCount % 2 != mPermCount % 2 &&
a1.getChiralTag() == a2.getChiralTag()))
return false;
}
// check double bonds ONLY (why ???)
const unsigned int qnb = boost::num_edges(query);
std::map<unsigned int, unsigned int> qMap;
for (unsigned int j = 0; j < qna; ++j) qMap[query[c1[j]]] = j;
RDKit::FMCS::Graph::BOND_ITER_PAIR bpIter = boost::edges(query);
RDKit::FMCS::Graph::EDGE_ITER bIter = bpIter.first;
for (unsigned int i = 0; i < qnb; i++, ++bIter) {
const Bond* qBnd = mol1.getBondWithIdx(query[*bIter]);
if (qBnd->getBondType() != Bond::DOUBLE ||
qBnd->getStereo() <= Bond::STEREOANY)
continue;
// don't think this can actually happen, but check to be sure:
if (qBnd->getStereoAtoms().size() != 2) // MUST check it in the seed, not
// in full query molecule, but
// never happens !!!
continue;
const Bond* mBnd =
mol2.getBondBetweenAtoms(target[c2[qMap[qBnd->getBeginAtomIdx()]]],
target[c2[qMap[qBnd->getEndAtomIdx()]]]);
CHECK_INVARIANT(mBnd, "Matching bond not found");
if (mBnd->getBondType() != Bond::DOUBLE ||
mBnd->getStereo() <= Bond::STEREOANY)
continue;
// don't think this can actually happen, but check to be sure:
if (mBnd->getStereoAtoms().size() != 2) continue;
unsigned int end1Matches = 0;
unsigned int end2Matches = 0;
if (target[c2[qMap[qBnd->getBeginAtomIdx()]]] ==
rdcast<unsigned int>(mBnd->getBeginAtomIdx())) {
// query Begin == mol Begin
if (target[c2[qMap[qBnd->getStereoAtoms()[0]]]] ==
rdcast<unsigned int>(mBnd->getStereoAtoms()[0]))
end1Matches = 1;
if (target[c2[qMap[qBnd->getStereoAtoms()[1]]]] ==
rdcast<unsigned int>(mBnd->getStereoAtoms()[1]))
end2Matches = 1;
} else {
// query End == mol Begin
if (target[c2[qMap[qBnd->getStereoAtoms()[0]]]] ==
rdcast<unsigned int>(mBnd->getStereoAtoms()[1]))
end1Matches = 1;
if (target[c2[qMap[qBnd->getStereoAtoms()[1]]]] ==
rdcast<unsigned int>(mBnd->getStereoAtoms()[0]))
end2Matches = 1;
}
// std::cerr<<" bnd: "<<qBnd->getIdx()<<":"<<qBnd->getStereo()<<" -
// "<<mBnd->getIdx()<<":"<<mBnd->getStereo()<<" -- "<<end1Matches<<"
// "<<end2Matches<<std::endl;
if (mBnd->getStereo() == qBnd->getStereo() &&
(end1Matches + end2Matches) == 1)
return false;
if (mBnd->getStereo() != qBnd->getStereo() &&
(end1Matches + end2Matches) != 1)
return false;
}
return true;
}
bool FinalChiralityCheckFunction_1(const short unsigned c1[],
const short unsigned c2[], const ROMol& mol1,
const FMCS::Graph& query, const ROMol& mol2,
const FMCS::Graph& target,
const MCSParameters* p) {
RDUNUSED_PARAM(p);
const unsigned int qna = boost::num_vertices(query); // getNumAtoms()
// check chiral atoms:
for (unsigned int i = 0; i < qna; ++i) {
const Atom& a1 = *mol1.getAtomWithIdx(query[c1[i]]);
Atom::ChiralType ac1 = a1.getChiralTag();
if (!(ac1 == Atom::CHI_TETRAHEDRAL_CW || ac1 == Atom::CHI_TETRAHEDRAL_CCW))
continue; // skip non chiral center query atoms
const Atom& a2 = *mol2.getAtomWithIdx(target[c2[i]]);
Atom::ChiralType ac2 = a2.getChiralTag();
if (!(ac2 == Atom::CHI_TETRAHEDRAL_CW || ac2 == Atom::CHI_TETRAHEDRAL_CCW))
continue; // skip non chiral center TARGET atoms even if query atom is
// chiral
//// return false;
// both atoms are chiral:
const unsigned a1Degree =
boost::out_degree(c1[i], query); // a1.getDegree();
if (a1Degree != a2.getDegree()) // number of all connected atoms in seed
return false; // ???
INT_LIST qOrder;
for (unsigned int j = 0; j < qna && qOrder.size() != a1Degree; ++j) {
const Bond* qB = mol1.getBondBetweenAtoms(query[c1[i]], query[c1[j]]);
if (qB) qOrder.push_back(qB->getIdx());
}
int qPermCount = a1.getPerturbationOrder(qOrder);
INT_LIST mOrder;
for (unsigned int j = 0; j < qna && mOrder.size() != a2.getDegree(); ++j) {
const Bond* mB = mol2.getBondBetweenAtoms(target[c2[i]], target[c2[j]]);
if (mB) mOrder.push_back(mB->getIdx());
}
int mPermCount = a2.getPerturbationOrder(mOrder);
if ((qPermCount % 2 == mPermCount % 2 &&
a1.getChiralTag() != a2.getChiralTag()) ||
(qPermCount % 2 != mPermCount % 2 &&
a1.getChiralTag() == a2.getChiralTag()))
return false;
}
// check double bonds ONLY (why ???)
const unsigned int qnb = boost::num_edges(query);
std::map<unsigned int, unsigned int> qMap;
for (unsigned int j = 0; j < qna; ++j) qMap[query[c1[j]]] = j;
RDKit::FMCS::Graph::BOND_ITER_PAIR bpIter = boost::edges(query);
RDKit::FMCS::Graph::EDGE_ITER bIter = bpIter.first;
for (unsigned int i = 0; i < qnb; i++, ++bIter) {
const Bond* qBnd = mol1.getBondWithIdx(query[*bIter]);
if (qBnd->getBondType() != Bond::DOUBLE ||
qBnd->getStereo() <= Bond::STEREOANY)
continue;
// don't think this can actually happen, but check to be sure:
if (qBnd->getStereoAtoms().size() != 2) // MUST check it in the seed, not
// in full query molecule, but
// never happens !!!
continue;
const Bond* mBnd =
mol2.getBondBetweenAtoms(target[c2[qMap[qBnd->getBeginAtomIdx()]]],
target[c2[qMap[qBnd->getEndAtomIdx()]]]);
CHECK_INVARIANT(mBnd, "Matching bond not found");
if (mBnd->getBondType() != Bond::DOUBLE ||
mBnd->getStereo() <= Bond::STEREOANY)
continue;
// don't think this can actually happen, but check to be sure:
if (mBnd->getStereoAtoms().size() != 2) continue;
unsigned int end1Matches = 0;
unsigned int end2Matches = 0;
if (target[c2[qMap[qBnd->getBeginAtomIdx()]]] == mBnd->getBeginAtomIdx()) {
// query Begin == mol Begin
if (target[c2[qMap[qBnd->getStereoAtoms()[0]]]] ==
rdcast<unsigned int>(mBnd->getStereoAtoms()[0]))
end1Matches = 1;
if (target[c2[qMap[qBnd->getStereoAtoms()[1]]]] ==
rdcast<unsigned int>(mBnd->getStereoAtoms()[1]))
end2Matches = 1;
} else {
// query End == mol Begin
if (target[c2[qMap[qBnd->getStereoAtoms()[0]]]] ==
rdcast<unsigned int>(mBnd->getStereoAtoms()[1]))
end1Matches = 1;
if (target[c2[qMap[qBnd->getStereoAtoms()[1]]]] ==
rdcast<unsigned int>(mBnd->getStereoAtoms()[0]))
end2Matches = 1;
}
// std::cerr<<" bnd: "<<qBnd->getIdx()<<":"<<qBnd->getStereo()<<" -
// "<<mBnd->getIdx()<<":"<<mBnd->getStereo()<<" -- "<<end1Matches<<"
// "<<end2Matches<<std::endl;
if (mBnd->getStereo() == qBnd->getStereo() &&
(end1Matches + end2Matches) == 1)
return false;
if (mBnd->getStereo() != qBnd->getStereo() &&
(end1Matches + end2Matches) != 1)
return false;
}
return true;
}
} // namespace RDKit
|