File: MaximumCommonSubgraph.cpp

package info (click to toggle)
rdkit 201809.1%2Bdfsg-6
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 123,688 kB
  • sloc: cpp: 230,509; python: 70,501; java: 6,329; ansic: 5,427; sql: 1,899; yacc: 1,739; lex: 1,243; makefile: 445; xml: 229; fortran: 183; sh: 123; cs: 93
file content (1147 lines) | stat: -rw-r--r-- 44,506 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
//
//  Copyright (C) 2014 Novartis Institutes for BioMedical Research
//
//   @@ All Rights Reserved @@
//  This file is part of the RDKit.
//  The contents are covered by the terms of the BSD license
//  which is included in the file license.txt, found at the root
//  of the RDKit source tree.
//
#include <list>
#include <algorithm>
#include <math.h>
#include "../QueryAtom.h"
#include "../QueryBond.h"
#include "../SmilesParse/SmilesWrite.h"
#include "../SmilesParse/SmartsWrite.h"
#include "../SmilesParse/SmilesParse.h"
#include "../Substruct/SubstructMatch.h"
#include "SubstructMatchCustom.h"
#include "MaximumCommonSubgraph.h"

namespace RDKit {
namespace FMCS {

struct LabelDefinition {
  unsigned ItemIndex;  // item with this label value
  unsigned Value;
  LabelDefinition() : ItemIndex(NotSet), Value(NotSet) {}
  LabelDefinition(unsigned i, unsigned value) : ItemIndex(i), Value(value) {}
};

MaximumCommonSubgraph::MaximumCommonSubgraph(const MCSParameters* params) {
  Parameters = (nullptr != params ? *params : MCSParameters());
  if (!Parameters.ProgressCallback) {
    Parameters.ProgressCallback = MCSProgressCallbackTimeout;
    Parameters.ProgressCallbackUserData = &To;
  }
  if (Parameters.AtomCompareParameters.MatchChiralTag &&
      nullptr == Parameters.FinalMatchChecker) {
    Parameters.FinalMatchChecker = FinalChiralityCheckFunction;
    Parameters.BondCompareParameters.MatchStereo = true;
  }
  To = nanoClock();
}

static bool molPtr_NumBondLess(
    const ROMol* l,
    const ROMol* r) {  // need for sorting the source molecules by size
  return l->getNumBonds() < r->getNumBonds();
}

void MaximumCommonSubgraph::init() {
  QueryMolecule = Molecules.front();

  Targets.clear();
#ifdef FAST_SUBSTRUCT_CACHE
  QueryAtomLabels.clear();
  QueryBondLabels.clear();
  QueryAtomMatchTable.clear();
  QueryBondMatchTable.clear();
  RingMatchTables.clear();
#endif
#ifdef DUP_SUBSTRUCT_CACHE
  DuplicateCache.clear();
#endif
  void* userData = Parameters.CompareFunctionsUserData;

  if (Parameters.BondCompareParameters.CompleteRingsOnly ||
      Parameters.BondCompareParameters.RingMatchesRingOnly ||
      Parameters.AtomCompareParameters.RingMatchesRingOnly) {
#ifdef FAST_SUBSTRUCT_CACHE
    RingMatchTables.init(QueryMolecule);
    Parameters.CompareFunctionsUserData = &RingMatchTables;
#endif
  }
  size_t nq = 0;
#ifdef FAST_SUBSTRUCT_CACHE
  // fill out RingMatchTables to check cache Hash collision by checking match a
  // part of Query to Query
  if (!userData  // predefined functor - compute RingMatchTable for all targets
      && (Parameters.BondCompareParameters.CompleteRingsOnly ||
          Parameters.BondCompareParameters.RingMatchesRingOnly ||
          Parameters.AtomCompareParameters.RingMatchesRingOnly))
    RingMatchTables.computeRingMatchTable(QueryMolecule, QueryMolecule,
                                          Parameters);

  // fill out match tables
  nq = QueryMolecule->getNumAtoms();
  QueryAtomMatchTable.resize(nq, nq);
  for (size_t aj = 0; aj < nq; aj++)
    for (size_t ai = 0; ai < nq; ai++)
      QueryAtomMatchTable.set(
          ai, aj,
          Parameters.AtomTyper(Parameters.AtomCompareParameters, *QueryMolecule,
                               ai, *QueryMolecule, aj,
                               Parameters.CompareFunctionsUserData));

  nq = QueryMolecule->getNumBonds();
  QueryBondMatchTable.resize(nq, nq);
  for (size_t aj = 0; aj < nq; aj++)
    for (size_t ai = 0; ai < nq; ai++)
      QueryBondMatchTable.set(
          ai, aj,
          Parameters.BondTyper(Parameters.BondCompareParameters, *QueryMolecule,
                               ai, *QueryMolecule, aj,
                               Parameters.CompareFunctionsUserData));
  // Compute label values based on current functor and parameters for code
  // Morgan correct computation.
  unsigned currentLabelValue = 1;
  std::vector<LabelDefinition> labels;
  nq = QueryMolecule->getNumAtoms();
  QueryAtomLabels.resize(nq);
  for (size_t ai = 0; ai < nq; ai++) {
    if (MCSAtomCompareAny ==
        Parameters
            .AtomTyper)  // predefined functor without atom compare parameters
      QueryAtomLabels[ai] = 1;
    else {
      const Atom* atom = QueryMolecule->getAtomWithIdx(ai);
      if (MCSAtomCompareElements ==
          Parameters
              .AtomTyper)  // predefined functor without atom compare parameters
        QueryAtomLabels[ai] = atom->getAtomicNum() |
                              (Parameters.AtomCompareParameters.MatchValences
                                   ? (atom->getTotalValence() >> 8)
                                   : 0);
      else if (MCSAtomCompareIsotopes ==
               Parameters.AtomTyper)  // predefined functor without atom compare
                                      // parameters
        QueryAtomLabels[ai] = atom->getAtomicNum() | (atom->getIsotope() >> 8) |
                              (Parameters.AtomCompareParameters.MatchValences
                                   ? (atom->getTotalValence() >> 16)
                                   : 0);
      else {  // custom user defined functor
        QueryAtomLabels[ai] = NotSet;
        for (auto& label : labels)
          if (Parameters.AtomTyper(Parameters.AtomCompareParameters,
                                   *QueryMolecule, label.ItemIndex,
                                   *QueryMolecule, ai,
                                   userData)) {  // equal itoms
            QueryAtomLabels[ai] = label.Value;
            break;
          }
        if (NotSet == QueryAtomLabels[ai]) {  // not found -> create new label
          QueryAtomLabels[ai] = ++currentLabelValue;
          labels.push_back(LabelDefinition(ai, currentLabelValue));
        }
      }
    }
  }
  labels.clear();
  currentLabelValue = 1;
  nq = QueryMolecule->getNumBonds();
  QueryBondLabels.resize(nq);
  for (size_t aj = 0; aj < nq; aj++) {
    const Bond* bond = QueryMolecule->getBondWithIdx(aj);
    unsigned ring = 0;
    if (Parameters.BondCompareParameters.CompleteRingsOnly ||
        Parameters.BondCompareParameters.RingMatchesRingOnly) {
      ring = RingMatchTables.isQueryBondInRing(aj) ? 0 : 1;  // is bond in ring
    }
    if (MCSBondCompareAny ==
        Parameters
            .BondTyper)  // predefined functor without atom compare parameters
      QueryBondLabels[aj] = 1 | (ring >> 8);
    else if (MCSBondCompareOrderExact ==
             Parameters
                 .BondTyper)  // predefined functor without compare parameters
      QueryBondLabels[aj] = (bond->getBondType() + 1) | (ring >> 8);
    else if (MCSBondCompareOrder ==
             Parameters
                 .BondTyper) {  // predefined functor, ignore Aromatization
      unsigned order = bond->getBondType();
      if (Bond::AROMATIC == order ||
          Bond::ONEANDAHALF == order)  // ignore Aromatization
        order = Bond::SINGLE;
      else if (Bond::TWOANDAHALF == order)
        order = Bond::DOUBLE;
      else if (Bond::THREEANDAHALF == order)
        order = Bond::TRIPLE;
      else if (Bond::FOURANDAHALF == order)
        order = Bond::QUADRUPLE;
      else if (Bond::FIVEANDAHALF == order)
        order = Bond::QUINTUPLE;
      QueryBondLabels[aj] = (order + 1) | (ring >> 8);
    } else {  // custom user defined functor
      QueryBondLabels[aj] = NotSet;
      for (auto& label : labels)
        if (Parameters.BondTyper(Parameters.BondCompareParameters,
                                 *QueryMolecule, label.ItemIndex,
                                 *QueryMolecule, aj,
                                 userData)) {  // equal bonds + ring ...
          QueryBondLabels[aj] = label.Value;
          break;
        }
      if (NotSet == QueryAtomLabels[aj]) {  // not found -> create new label
        QueryBondLabels[aj] = ++currentLabelValue;
        labels.push_back(LabelDefinition(aj, currentLabelValue));
      }
    }
  }
#endif
  Targets.resize(Molecules.size() - 1);
  size_t i = 0;
  for (auto it = Molecules.begin() + 1; it != Molecules.end(); it++, i++) {
    Targets[i].Molecule = *it;
    // build Target Topology ADD ATOMs
    size_t j = 0;  // current item
    for (ROMol::ConstAtomIterator a = Targets[i].Molecule->beginAtoms();
         a != Targets[i].Molecule->endAtoms(); a++, j++) {
      Targets[i].Topology.addAtom((*a)->getIdx());
    }
    // build Target Topology ADD BONDs
    for (ROMol::ConstBondIterator b = Targets[i].Molecule->beginBonds();
         b != Targets[i].Molecule->endBonds(); b++) {
      const Bond* bond = *b;
      unsigned ii = bond->getBeginAtomIdx();
      unsigned jj = bond->getEndAtomIdx();
      Targets[i].Topology.addBond((*b)->getIdx(), ii, jj);
    }

    // fill out RingMatchTables
    if (!userData  // predefined functor - compute RingMatchTable for all
                   // targets
        && (Parameters.BondCompareParameters.CompleteRingsOnly ||
            Parameters.BondCompareParameters.RingMatchesRingOnly)) {
#ifdef FAST_SUBSTRUCT_CACHE
      RingMatchTables.addTargetBondRingsIndeces(Targets[i].Molecule);
      RingMatchTables.computeRingMatchTable(QueryMolecule, Targets[i].Molecule,
                                            Parameters);
#endif
    }

    // fill out match tables
    size_t nq = QueryMolecule->getNumAtoms();
    size_t nt = (*it)->getNumAtoms();
    Targets[i].AtomMatchTable.resize(nq, nt);

    for (size_t aj = 0; aj < nt; aj++)
      for (size_t ai = 0; ai < nq; ai++)
        Targets[i].AtomMatchTable.set(
            ai, aj,
            Parameters.AtomTyper(Parameters.AtomCompareParameters,
                                 *QueryMolecule, ai, *Targets[i].Molecule, aj,
                                 Parameters.CompareFunctionsUserData));

    nq = QueryMolecule->getNumBonds();
    nt = (*it)->getNumBonds();
    Targets[i].BondMatchTable.resize(nq, nt);
    for (size_t aj = 0; aj < nt; aj++)
      for (size_t ai = 0; ai < nq; ai++)
        Targets[i].BondMatchTable.set(
            ai, aj,
            Parameters.BondTyper(Parameters.BondCompareParameters,
                                 *QueryMolecule, ai, *Targets[i].Molecule, aj,
                                 Parameters.CompareFunctionsUserData));
  }

  Parameters.CompareFunctionsUserData = userData;  // restore
}

struct QueryRings {
  std::vector<unsigned> BondRings;  // amount of rings
  std::vector<unsigned> AtomRings;  // amount of rings

  QueryRings(const ROMol* query)
      : BondRings(query->getNumBonds()), AtomRings(query->getNumAtoms()) {
    {
      for (unsigned int& BondRing : BondRings) BondRing = 0;
      const RingInfo::VECT_INT_VECT& rings = query->getRingInfo()->bondRings();
      for (const auto& ring : rings)
        for (int ri : ring) ++BondRings[ri];
    }
    {
      for (unsigned int& AtomRing : AtomRings) AtomRing = 0;
      const RingInfo::VECT_INT_VECT& rings = query->getRingInfo()->atomRings();
      for (const auto& ring : rings)
        for (int ri : ring) ++AtomRings[ri];
    }
  }

  inline unsigned getNumberRings(const Bond* bond) const {
    return BondRings[bond->getIdx()];
  }

  inline unsigned getNumberRings(const Atom* atom) const {
    return AtomRings[atom->getIdx()];
  }
};

struct WeightedBond {
  const Bond* BondPtr;
  unsigned Weight;
  WeightedBond() : BondPtr(nullptr), Weight(0) {}
  WeightedBond(const Bond* bond, const QueryRings& r)
      : BondPtr(bond), Weight(0) {
    // score ((bond.is_in_ring + atom1.is_in_ring + atom2.is_in_ring)
    if (r.getNumberRings(bond)) Weight += 1;
    if (r.getNumberRings(bond->getBeginAtom())) Weight += 1;
    if (r.getNumberRings(bond->getEndAtom())) Weight += 1;
  }
  bool operator<(const WeightedBond& r) {
    return Weight >= r.Weight;  // sort in Z-A order (Rings first)
  }
};

void MaximumCommonSubgraph::makeInitialSeeds() {
  // build a set of initial seeds as "all" single bonds from query molecule
  std::vector<bool> excludedBonds(QueryMolecule->getNumBonds());
  for (auto&& excludedBond : excludedBonds) excludedBond = false;

  Seeds.clear();
  QueryMoleculeMatchedBonds = 0;
  QueryMoleculeMatchedAtoms = 0;
  if (!Parameters.InitialSeed.empty()) {  // make user defined seed
    std::auto_ptr<const ROMol> initialSeedMolecule(
        (const ROMol*)SmartsToMol(Parameters.InitialSeed));
    // make a set of of seed as indeces and pointers to current query molecule
    // items based on matching results
    std::vector<MatchVectType> matching_substructs;
    SubstructMatch(*QueryMolecule, *initialSeedMolecule, matching_substructs);
    // loop throw all fragments of Query matched to initial seed
    for (std::vector<MatchVectType>::const_iterator ms =
             matching_substructs.begin();
         ms != matching_substructs.end(); ms++) {
      Seed seed;
      seed.ExcludedBonds = excludedBonds;
      seed.MatchResult.resize(Targets.size());
#ifdef VERBOSE_STATISTICS_ON
      {
        ++VerboseStatistics.Seed;
        ++VerboseStatistics.InitialSeed;
      }
#endif
      // add all matched atoms of the matched query fragment
      std::map<unsigned, unsigned> initialSeedToQueryAtom;
      for (const auto& msb : *ms) {
        unsigned qai = msb.second;
        unsigned sai = msb.first;
        seed.addAtom(QueryMolecule->getAtomWithIdx(qai));
        initialSeedToQueryAtom[sai] = qai;
      }
      // add all bonds (existed in initial seed !!!) between all matched atoms
      // in query
      for (const auto& msb : *ms) {
        const Atom* atom = initialSeedMolecule->getAtomWithIdx(msb.first);
        ROMol::OEDGE_ITER beg, end;
        for (boost::tie(beg, end) = initialSeedMolecule->getAtomBonds(atom);
             beg != end; beg++) {
          const Bond& initialBond = *((*initialSeedMolecule)[*beg]);
          unsigned qai1 =
              initialSeedToQueryAtom.find(initialBond.getBeginAtomIdx())
                  ->second;
          unsigned qai2 =
              initialSeedToQueryAtom.find(initialBond.getEndAtomIdx())->second;

          const Bond* b = QueryMolecule->getBondBetweenAtoms(qai1, qai2);
          if (!seed.ExcludedBonds[b->getIdx()]) {
            seed.addBond(b);
            seed.ExcludedBonds[b->getIdx()] = true;
          }
        }
      }
      seed.computeRemainingSize(*QueryMolecule);

      if (checkIfMatchAndAppend(seed))
        QueryMoleculeMatchedBonds = seed.getNumBonds();
    }
  } else {  // create a set of seeds from each query bond
    // R1 additional performance OPTIMISATION
    // if(Parameters.BondCompareParameters.CompleteRingsOnly)
    // disable all mismatched rings, and do not generate initial seeds from such
    // disabled bonds
    //  for(  rings .....) for(i......)
    //   if(mismatched) excludedBonds[i.......] = true;
    QueryRings r(QueryMolecule);
    std::vector<WeightedBond> wb;
    wb.reserve(QueryMolecule->getNumBonds());
    for (RWMol::ConstBondIterator bi = QueryMolecule->beginBonds();
         bi != QueryMolecule->endBonds(); bi++)
      wb.push_back(WeightedBond(*bi, r));

    for (std::vector<WeightedBond>::const_iterator bi = wb.begin();
         bi != wb.end(); bi++) {
      // R1 additional performance OPTIMISATION
      // if(excludedBonds[(*bi)->getIdx()])
      //    continue;
      Seed seed;
      seed.MatchResult.resize(Targets.size());

#ifdef VERBOSE_STATISTICS_ON
      {
        ++VerboseStatistics.Seed;
        ++VerboseStatistics.InitialSeed;
      }
#endif
      seed.addAtom(bi->BondPtr->getBeginAtom());
      seed.addAtom(bi->BondPtr->getEndAtom());
      seed.ExcludedBonds = excludedBonds;  // all bonds from first to current
      seed.addBond(bi->BondPtr);
      excludedBonds[bi->BondPtr->getIdx()] = true;

      seed.computeRemainingSize(*QueryMolecule);

      if (checkIfMatchAndAppend(seed)) {
        ++QueryMoleculeMatchedBonds;
      } else {
        // optionally remove all such bonds from all targets TOPOLOGY where it
        // exists.
        //..........

        // disable (mark as already processed) mismatched bond in all seeds
        for (auto& Seed : Seeds)
          Seed.ExcludedBonds[bi->BondPtr->getIdx()] = true;

#ifdef VERBOSE_STATISTICS_ON
        ++VerboseStatistics.MismatchedInitialSeed;
#endif
      }
    }
  }
  size_t nq = QueryMolecule->getNumAtoms();
  for (size_t i = 0; i < nq; i++) {  // all query's atoms
    unsigned matched = 0;
    for (std::vector<Target>::const_iterator tag = Targets.begin();
         tag != Targets.end(); tag++) {
      size_t nt = tag->Molecule->getNumAtoms();
      for (size_t aj = 0; aj < nt; aj++) {
        if (tag->AtomMatchTable.at(i, aj)) {
          ++matched;
          break;
        }
      }
    }
    if (matched >= ThresholdCount) ++QueryMoleculeMatchedAtoms;
  }
}

bool MaximumCommonSubgraph::growSeeds() {
  bool mcsFound = false;
  bool canceled = false;
  unsigned steps = 99999;  // steps from last progress callback call. call it
                           // immediately in the begining

  // Find MCS -- SDF Seed growing OPTIMISATION (it works in 3 times faster)
  while (!Seeds.empty()) {
    if (getMaxNumberBonds() == QueryMoleculeMatchedBonds)  // MCS == Query
      break;
    ++steps;
#ifdef VERBOSE_STATISTICS_ON
    VerboseStatistics.TotalSteps++;
#endif
    auto si = Seeds.begin();

    si->grow(*this);
    {
      const Seed& fs = Seeds.front();
      // bigger substructure found
      if (fs.CopyComplete)
        if ((!Parameters.MaximizeBonds &&
             (fs.getNumAtoms() > getMaxNumberAtoms() ||
              (fs.getNumAtoms() == getMaxNumberAtoms() &&
               fs.getNumBonds() > getMaxNumberBonds()))) ||
            (Parameters.MaximizeBonds &&
             (fs.getNumBonds() > getMaxNumberBonds() ||
              (fs.getNumBonds() == getMaxNumberBonds() &&
               fs.getNumAtoms() > getMaxNumberAtoms())))) {
          mcsFound = true;
#ifdef VERBOSE_STATISTICS_ON
          VerboseStatistics.MCSFoundStep = VerboseStatistics.TotalSteps;
          VerboseStatistics.MCSFoundTime = nanoClock();
#endif
          McsIdx.Atoms = fs.MoleculeFragment.Atoms;
          McsIdx.Bonds = fs.MoleculeFragment.Bonds;
          McsIdx.AtomsIdx = fs.MoleculeFragment.AtomsIdx;
          McsIdx.BondsIdx = fs.MoleculeFragment.BondsIdx;
          if (Parameters.Verbose) {
            std::cout << VerboseStatistics.TotalSteps
                      << " Seeds:" << Seeds.size() << " MCS "
                      << McsIdx.Atoms.size() << " atoms, "
                      << McsIdx.Bonds.size() << " bonds";
            printf(" for %.4lf seconds. bond[0]=%u\n",
                   double(VerboseStatistics.MCSFoundTime - To) / 1000000.,
                   McsIdx.BondsIdx[0]);
          }
        }
    }
    if (NotSet == si->GrowingStage)  // finished
      Seeds.erase(si);
    if (Parameters.ProgressCallback && (steps >= 377)) {
      steps = 0;
      Stat.NumAtoms = getMaxNumberAtoms();
      Stat.NumBonds = getMaxNumberBonds();
      if (!Parameters.ProgressCallback(Stat, Parameters,
                                       Parameters.ProgressCallbackUserData)) {
        canceled = true;
        break;
      }
    }
  }

  if (mcsFound) {  // postponed copy of current set of molecules for threshold <
                   // 1.
    McsIdx.QueryMolecule = QueryMolecule;
    McsIdx.Targets = Targets;
  }
  return !canceled;
}

struct AtomMatch {  // for each seed atom (matched)
  unsigned QueryAtomIdx;
  unsigned TargetAtomIdx;
  AtomMatch() : QueryAtomIdx(NotSet), TargetAtomIdx(NotSet) {}
};
typedef std::vector<AtomMatch> AtomMatchSet;

std::string MaximumCommonSubgraph::generateResultSMARTS(
    const MCS& mcsIdx) const {
  // match the result MCS with all targets to check if it is exact match or
  // template
  Seed seed;  // result MCS
  seed.ExcludedBonds.resize(mcsIdx.QueryMolecule->getNumBonds());
  for (auto&& ExcludedBond : seed.ExcludedBonds) ExcludedBond = false;
  std::vector<AtomMatchSet> atomMatchResult(mcsIdx.Targets.size());
  std::vector<unsigned> atomIdxMap(mcsIdx.QueryMolecule->getNumAtoms());
  std::vector<std::map<unsigned, const Bond*>> bondMatchSet(
      mcsIdx.Bonds.size());  // key is unique BondType
  std::vector<std::map<unsigned, const Atom*>> atomMatchSet(
      mcsIdx.Atoms.size());  // key is unique atomic number

  for (auto atom : mcsIdx.Atoms) {
    atomIdxMap[atom->getIdx()] = seed.getNumAtoms();
    seed.addAtom(atom);
  }
  for (auto bond : mcsIdx.Bonds) seed.addBond(bond);

  unsigned itarget = 0;
  for (auto tag = mcsIdx.Targets.begin(); tag != mcsIdx.Targets.end();
       tag++, itarget++) {
    match_V_t match;  // THERE IS NO Bonds match INFO !!!!
    bool target_matched = SubstructMatchCustomTable(
        tag->Topology, *tag->Molecule, seed.Topology, *QueryMolecule,
        tag->AtomMatchTable, tag->BondMatchTable, &Parameters, &match);
    if (!target_matched) continue;
    atomMatchResult[itarget].resize(seed.getNumAtoms());
    for (match_V_t::const_iterator mit = match.begin(); mit != match.end();
         mit++) {
      unsigned ai = mit->first;  // SeedAtomIdx
      atomMatchResult[itarget][ai].QueryAtomIdx = seed.Topology[mit->first];
      atomMatchResult[itarget][ai].TargetAtomIdx = tag->Topology[mit->second];
      const Atom* ta =
          tag->Molecule->getAtomWithIdx(tag->Topology[mit->second]);
      if (ta &&
          ta->getAtomicNum() != seed.MoleculeFragment.Atoms[ai]->getAtomicNum())
        atomMatchSet[ai][ta->getAtomicNum()] = ta;  // add
    }
    // AND BUILD BOND MATCH INFO
    unsigned bi = 0;
    for (auto bond = mcsIdx.Bonds.begin(); bond != mcsIdx.Bonds.end();
         bond++, bi++) {
      unsigned i = atomIdxMap[(*bond)->getBeginAtomIdx()];
      unsigned j = atomIdxMap[(*bond)->getEndAtomIdx()];
      unsigned ti = atomMatchResult[itarget][i].TargetAtomIdx;
      unsigned tj = atomMatchResult[itarget][j].TargetAtomIdx;
      const Bond* tb = tag->Molecule->getBondBetweenAtoms(ti, tj);
      if (tb && (*bond)->getBondType() != tb->getBondType())
        bondMatchSet[bi][tb->getBondType()] = tb;  // add
    }
  }

  // Generate result's SMARTS

  RWMol mol;        // create molecule from MCS for MolToSmarts()
  unsigned ai = 0;  // SeedAtomIdx
  for (auto atom = mcsIdx.Atoms.begin(); atom != mcsIdx.Atoms.end();
       atom++, ai++) {
    if (Parameters.AtomTyper ==
        MCSAtomCompareIsotopes) {  // do '[0*]-[0*]-[13*]' for CC[13NH2]
      QueryAtom a;
      a.setQuery(makeAtomIsotopeQuery((int)(*atom)->getIsotope()));
      mol.addAtom(&a, true, false);
    } else {
      QueryAtom a;  // generate [#6] instead of C or c !
      a.setQuery(makeAtomNumQuery((*atom)->getAtomicNum()));
      // for all atomMatchSet[ai] items add atom query to template like
      // [#6,#17,#9, ... ]
      for (std::map<unsigned, const Atom*>::const_iterator am =
               atomMatchSet[ai].begin();
           am != atomMatchSet[ai].end(); am++) {
        a.expandQuery(makeAtomNumQuery(am->second->getAtomicNum()),
                      Queries::COMPOSITE_OR);
        if (Parameters.AtomCompareParameters.MatchChiralTag &&
            (am->second->getChiralTag() == Atom::CHI_TETRAHEDRAL_CW ||
             am->second->getChiralTag() == Atom::CHI_TETRAHEDRAL_CCW))
          a.setChiralTag(am->second->getChiralTag());
      }
      mol.addAtom(&a, true, false);
    }
  }
  unsigned bi = 0;  // Seed Idx
  for (auto bond = mcsIdx.Bonds.begin(); bond != mcsIdx.Bonds.end();
       bond++, bi++) {
    QueryBond b;
    unsigned beginAtomIdx = atomIdxMap[(*bond)->getBeginAtomIdx()];
    unsigned endAtomIdx = atomIdxMap[(*bond)->getEndAtomIdx()];
    b.setBeginAtomIdx(beginAtomIdx);
    b.setEndAtomIdx(endAtomIdx);
    b.setQuery(makeBondOrderEqualsQuery((*bond)->getBondType()));
    // add OR template if need
    for (std::map<unsigned, const Bond*>::const_iterator bm =
             bondMatchSet[bi].begin();
         bm != bondMatchSet[bi].end(); bm++) {
      b.expandQuery(makeBondOrderEqualsQuery(bm->second->getBondType()),
                    Queries::COMPOSITE_OR);
      if (Parameters.BondCompareParameters.MatchStereo &&
          bm->second->getStereo() > Bond::STEREOANY)
        b.setStereo(bm->second->getStereo());
    }
    mol.addBond(&b, false);
  }

  return MolToSmarts(mol, true);
}

bool MaximumCommonSubgraph::createSeedFromMCS(size_t newQueryTarget,
                                              Seed& newSeed) {
  Seed mcs;
  mcs.ExcludedBonds.resize(McsIdx.QueryMolecule->getNumBonds());
  for (auto&& ExcludedBond : mcs.ExcludedBonds) ExcludedBond = false;
  std::vector<unsigned> mcsAtomIdxMap(McsIdx.QueryMolecule->getNumAtoms());

  for (std::vector<const Atom*>::const_iterator atom = McsIdx.Atoms.begin();
       atom != McsIdx.Atoms.end(); atom++) {
    mcsAtomIdxMap[(*atom)->getIdx()] = mcs.addAtom((*atom));
  }
  for (std::vector<const Bond*>::const_iterator bond = McsIdx.Bonds.begin();
       bond != McsIdx.Bonds.end(); bond++)
    mcs.addBond((*bond));

  const Target& newQuery = McsIdx.Targets[newQueryTarget];

  match_V_t match;
  bool target_matched = SubstructMatchCustomTable(
      newQuery.Topology, *newQuery.Molecule, mcs.Topology,
      *McsIdx.QueryMolecule, newQuery.AtomMatchTable, newQuery.BondMatchTable,
      &Parameters, &match);
  if (!target_matched) return false;

  AtomMatchSet atomMatchResult(mcs.getNumAtoms());

  newSeed.ExcludedBonds.resize(newQuery.Molecule->getNumBonds());
  for (auto&& ExcludedBond : newSeed.ExcludedBonds) ExcludedBond = false;

  for (match_V_t::const_iterator mit = match.begin(); mit != match.end();
       mit++) {
    unsigned ai = mit->first;  // SeedAtomIdx in mcs seed
    atomMatchResult[ai].QueryAtomIdx = mcs.Topology[mit->first];
    atomMatchResult[ai].TargetAtomIdx = newQuery.Topology[mit->second];
    const Atom* ta =
        newQuery.Molecule->getAtomWithIdx(newQuery.Topology[mit->second]);
    newSeed.addAtom(ta);
  }

  for (std::vector<const Bond*>::const_iterator bond = McsIdx.Bonds.begin();
       bond != McsIdx.Bonds.end(); bond++) {
    unsigned i = mcsAtomIdxMap[(*bond)->getBeginAtomIdx()];
    unsigned j = mcsAtomIdxMap[(*bond)->getEndAtomIdx()];
    unsigned ti = atomMatchResult[i].TargetAtomIdx;
    unsigned tj = atomMatchResult[j].TargetAtomIdx;
    const Bond* tb = newQuery.Molecule->getBondBetweenAtoms(ti, tj);
    newSeed.addBond(tb);
  }
  newSeed.computeRemainingSize(*newQuery.Molecule);
  return true;
}

MCSResult MaximumCommonSubgraph::find(const std::vector<ROMOL_SPTR>& src_mols) {
  clear();
  MCSResult res;

  if (src_mols.size() < 2)
    throw std::runtime_error(
        "FMCS. Invalid argument. mols.size() must be at least 2");
  if (Parameters.Threshold > 1.0)
    throw std::runtime_error(
        "FMCS. Invalid argument. Parameter Threshold must be 1.0 or less.");

  ThresholdCount = (unsigned)ceil((src_mols.size()) * Parameters.Threshold) -
                   1;      // minimal required number of matched targets
  if (ThresholdCount < 1)  // at least one target
    ThresholdCount = 1;
  if (ThresholdCount > src_mols.size() - 1)  // max all targets
    ThresholdCount = src_mols.size() - 1;

  // Selecting CompleteRingsOnly option also enables --ring-matches-ring-only.
  // ring--ring and chain bonds only match chain bonds.
  if (Parameters.BondCompareParameters.CompleteRingsOnly)
    Parameters.BondCompareParameters.RingMatchesRingOnly = true;

  for (const auto& src_mol : src_mols) {
    Molecules.push_back(src_mol.get());
    if (!Molecules.back()->getRingInfo()->isInitialized())
      Molecules.back()->getRingInfo()->initialize();  // but do not fill out !!!
  }

  // sort source set of molecules by their 'size' and assume the smallest
  // molecule as a query
  std::stable_sort(Molecules.begin(), Molecules.end(), molPtr_NumBondLess);

  for (size_t i = 0; i < Molecules.size() - ThresholdCount && !res.Canceled;
       i++) {
    init();
    if (Targets.empty()) break;
    MCSFinalMatchCheckFunction tff = Parameters.FinalMatchChecker;
    if (FinalChiralityCheckFunction == Parameters.FinalMatchChecker)
      Parameters.FinalMatchChecker = nullptr;  // skip final chirality check for
    // initial seed to allow future growing
    // of it
    makeInitialSeeds();
    Parameters.FinalMatchChecker = tff;  // restore final functor

    if (Parameters.Verbose)
      std::cout << "Query " << MolToSmiles(*QueryMolecule) << " "
                << QueryMolecule->getNumAtoms() << "("
                << QueryMoleculeMatchedAtoms << ") atoms, "
                << QueryMolecule->getNumBonds() << "("
                << QueryMoleculeMatchedBonds << ") bonds\n";

    if (Seeds.empty()) break;
    res.Canceled = growSeeds() ? false : true;
    // verify what MCS is equal to one of initial seed for chirality match
    if (FinalChiralityCheckFunction == Parameters.FinalMatchChecker &&
        1 == getMaxNumberBonds()) {
      McsIdx = MCS();      // clear
      makeInitialSeeds();  // check all possible initial seeds
      if (!Seeds.empty()) {
        const Seed& fs = Seeds.front();
        McsIdx.QueryMolecule = QueryMolecule;
        McsIdx.Atoms = fs.MoleculeFragment.Atoms;
        McsIdx.Bonds = fs.MoleculeFragment.Bonds;
        McsIdx.AtomsIdx = fs.MoleculeFragment.AtomsIdx;
        McsIdx.BondsIdx = fs.MoleculeFragment.BondsIdx;
      }

    } else if (i + 1 < Molecules.size() - ThresholdCount) {
      Seed seed;
      if (createSeedFromMCS(i, seed))  // MCS is matched with new query
        Seeds.push_back(seed);
      std::swap(Molecules[0],
                Molecules[i + 1]);  // change query molecule for threshold < 1.
    }
  }

  res.NumAtoms = getMaxNumberAtoms();
  res.NumBonds = getMaxNumberBonds();
  if (res.NumBonds > 0) res.SmartsString = generateResultSMARTS(McsIdx);

#ifdef VERBOSE_STATISTICS_ON
  if (Parameters.Verbose) {
    unsigned itarget = 0;
    for (std::vector<Target>::const_iterator tag = Targets.begin();
         res.NumAtoms > 0 && tag != Targets.end(); tag++, itarget++) {
      MatchVectType match;
      RWMol* m = SmartsToMol(res.SmartsString.c_str());

      bool target_matched = SubstructMatch(*tag->Molecule, *m, match);
      if (!target_matched)
        std::cout << "Target " << itarget + 1
                  << (target_matched ? " matched " : " MISMATCHED ")
                  << MolToSmiles(*tag->Molecule) << "\n";
      delete m;
    }

    std::cout << "STATISTICS:\n";
    std::cout << "Total Growing Steps  = " << VerboseStatistics.TotalSteps
              << ", MCS found on " << VerboseStatistics.MCSFoundStep << " step";
    if (VerboseStatistics.MCSFoundTime - To > 0)
      printf(", for %.4lf seconds\n",
             double(VerboseStatistics.MCSFoundTime - To) / 1000000.);
    else
      std::cout << ", for less than 1 second\n";
    std::cout << "Initial   Seeds      = " << VerboseStatistics.InitialSeed
              << ",  Mismatched " << VerboseStatistics.MismatchedInitialSeed
              << "\n";
    std::cout << "Inspected Seeds      = " << VerboseStatistics.Seed << "\n";
    std::cout << "Rejected by BestSize = "
              << VerboseStatistics.RemainingSizeRejected << "\n";
    std::cout << "SingleBondExcluded   = "
              << VerboseStatistics.SingleBondExcluded << "\n";
#ifdef EXCLUDE_WRONG_COMPOSITION
    std::cout << "Rejected by WrongComposition = "
              << VerboseStatistics.WrongCompositionRejected << " [ "
              << VerboseStatistics.WrongCompositionDetected << " Detected ]\n";
#endif
    std::cout << "MatchCheck Seeds     = " << VerboseStatistics.SeedCheck
              << "\n";
    std::cout  //<< "\n"
        << "     MatchCalls = " << VerboseStatistics.MatchCall << "\n"
        << "     MatchFound = " << VerboseStatistics.MatchCallTrue << "\n";
    std::cout << " fastMatchCalls = " << VerboseStatistics.FastMatchCall << "\n"
              << " fastMatchFound = " << VerboseStatistics.FastMatchCallTrue
              << "\n";
    std::cout << " slowMatchCalls = "
              << VerboseStatistics.MatchCall -
                     VerboseStatistics.FastMatchCallTrue
              << "\n"
              << " slowMatchFound = " << VerboseStatistics.SlowMatchCallTrue
              << "\n";

#ifdef VERBOSE_STATISTICS_FASTCALLS_ON
    std::cout << "AtomFunctorCalls = " << VerboseStatistics.AtomFunctorCalls
              << "\n";
    std::cout << "BondCompareCalls = " << VerboseStatistics.BondCompareCalls
              << "\n";
#endif
    std::cout << "  DupCacheFound = " << VerboseStatistics.DupCacheFound
              << "   " << VerboseStatistics.DupCacheFoundMatch << " matched, "
              << VerboseStatistics.DupCacheFound -
                     VerboseStatistics.DupCacheFoundMatch
              << " mismatched\n";
#ifdef FAST_SUBSTRUCT_CACHE
    std::cout << "HashCache size  = " << HashCache.keyssize() << " keys\n";
    std::cout << "HashCache size  = " << HashCache.fullsize() << " entries\n";
    std::cout << "FindHashInCache = " << VerboseStatistics.FindHashInCache
              << "\n";
    std::cout << "HashFoundInCache= " << VerboseStatistics.HashKeyFoundInCache
              << "\n";
    std::cout << "ExactMatchCalls = " << VerboseStatistics.ExactMatchCall
              << "\n"
              << "ExactMatchFound = " << VerboseStatistics.ExactMatchCallTrue
              << "\n";
#endif
  }
#endif

  clear();
  return res;
}

bool MaximumCommonSubgraph::checkIfMatchAndAppend(Seed& seed) {
#ifdef VERBOSE_STATISTICS_ON
  ++VerboseStatistics.SeedCheck;
#endif
#ifdef FAST_SUBSTRUCT_CACHE
  SubstructureCache::HashKey cacheKey;
  SubstructureCache::TIndexEntry* cacheEntry = nullptr;
  bool cacheEntryIsValid = false;
  RDUNUSED_PARAM(cacheEntryIsValid);  // unused var
#endif

  bool foundInCache = false;
  bool foundInDupCache = false;

  {
#ifdef DUP_SUBSTRUCT_CACHE
    if (DuplicateCache.find(seed.DupCacheKey, foundInCache)) {
// duplicate found. skip match() but store both seeds, because they will grow by
// different paths !!!
#ifdef VERBOSE_STATISTICS_ON
      VerboseStatistics.DupCacheFound++;
      VerboseStatistics.DupCacheFoundMatch += foundInCache ? 1 : 0;
#endif
      if (!foundInCache)  // mismatched !!!
        return false;
    }
    foundInDupCache = foundInCache;
#endif
#ifdef FAST_SUBSTRUCT_CACHE
    if (!foundInCache) {
#ifdef VERBOSE_STATISTICS_ON
      ++VerboseStatistics.FindHashInCache;
#endif
      cacheEntry =
          HashCache.find(seed, QueryAtomLabels, QueryBondLabels, cacheKey);
      cacheEntryIsValid = true;
      if (cacheEntry) {  // possibly found. check for hash collision
#ifdef VERBOSE_STATISTICS_ON
        ++VerboseStatistics.HashKeyFoundInCache;
#endif
        // check hash collisions (time +3%):
        for (SubstructureCache::TIndexEntry::const_iterator g =
                 cacheEntry->begin();
             !foundInCache && g != cacheEntry->end(); g++) {
          if (g->m_vertices.size() != seed.getNumAtoms() ||
              g->m_edges.size() != seed.getNumBonds())
            continue;
#ifdef VERBOSE_STATISTICS_ON
          ++VerboseStatistics.ExactMatchCall;
#endif
          // EXACT MATCH
          foundInCache = SubstructMatchCustomTable(
              (*g), *QueryMolecule, seed.Topology, *QueryMolecule,
              QueryAtomMatchTable, QueryBondMatchTable, &Parameters);
#ifdef VERBOSE_STATISTICS_ON
          if (foundInCache) ++VerboseStatistics.ExactMatchCallTrue;
#endif
        }
      }
    }
#endif
  }
  bool found = foundInCache;

  if (!found) {
    found = match(seed);
  }

  Seed* newSeed = nullptr;

  {
    if (found) {  // Store new generated seed, if found in cache or in all(-
                  // threshold) targets
      {
        newSeed = &Seeds.add(seed);
        newSeed->CopyComplete = false;
      }

#ifdef DUP_SUBSTRUCT_CACHE
      if (!foundInDupCache && seed.getNumBonds() >= 3)  // only seed with a ring
                                                        // can be duplicated -
                                                        // do not store very
                                                        // small seed in cache
        DuplicateCache.add(seed.DupCacheKey, true);
#endif
#ifdef FAST_SUBSTRUCT_CACHE
      if (!foundInCache) HashCache.add(seed, cacheKey, cacheEntry);
#endif
    } else {
#ifdef DUP_SUBSTRUCT_CACHE
      if (seed.getNumBonds() > 3)
        DuplicateCache.add(seed.DupCacheKey,
                           false);  // opt. cache mismatched duplicates too
#endif
    }
  }
  if (newSeed)
    *newSeed =
        seed;  // non-blocking copy for MULTI_THREAD and best CPU utilization

  return found;  // new matched seed has been actualy added
}

bool MaximumCommonSubgraph::match(Seed& seed) {
  unsigned max_miss = Targets.size() - ThresholdCount;
  unsigned missing = 0;
  unsigned passed = 0;
  unsigned itarget = 0;

  for (std::vector<Target>::const_iterator tag = Targets.begin();
       tag != Targets.end(); tag++, itarget++) {
#ifdef VERBOSE_STATISTICS_ON
    { ++VerboseStatistics.MatchCall; }
#endif
    bool target_matched = false;
    if (!seed.MatchResult.empty() && !seed.MatchResult[itarget].empty())
      target_matched = matchIncrementalFast(seed, itarget);
    if (!target_matched) {  // slow full match
      match_V_t match;      // THERE IS NO Bonds match INFO !!!!
      target_matched = SubstructMatchCustomTable(
          tag->Topology, *tag->Molecule, seed.Topology, *QueryMolecule,
          tag->AtomMatchTable, tag->BondMatchTable, &Parameters, &match);
      // save current match info
      if (target_matched) {
        if (seed.MatchResult.empty()) seed.MatchResult.resize(Targets.size());
        seed.MatchResult[itarget].init(seed, match, *QueryMolecule, *tag);
      } else if (!seed.MatchResult.empty())
        seed.MatchResult[itarget].clear();  //.Empty = true; // == fast clear();
#ifdef VERBOSE_STATISTICS_ON
      if (target_matched) {
        ++VerboseStatistics.SlowMatchCallTrue;
      }
#endif
    }

    if (target_matched) {
      if (++passed >= ThresholdCount)  // it's enought
        break;
    } else {  // mismatched
      if (++missing > max_miss) break;
    }
  }
  if (missing <= max_miss) {
#ifdef VERBOSE_STATISTICS_ON
    ++VerboseStatistics.MatchCallTrue;
#endif
    return true;
  }
  return false;
}

// call it for each target, if failed perform full match check
bool MaximumCommonSubgraph::matchIncrementalFast(Seed& seed, unsigned itarget) {
// use and update results of previous match stored in the seed
#ifdef VERBOSE_STATISTICS_ON
  { ++VerboseStatistics.FastMatchCall; }
#endif
  const Target& target = Targets[itarget];
  TargetMatch& match = seed.MatchResult[itarget];
  if (match.empty()) return false;
  /*
  // CHIRALITY: FinalMatchCheck:
  if(Parameters.AtomCompareParameters.MatchChiralTag ||
  Parameters.FinalMatchChecker) {   // TEMP
          match.clear();
          return false;
  }
  */
  bool matched = false;
  for (unsigned newBondSeedIdx = match.MatchedBondSize;
       newBondSeedIdx < seed.getNumBonds(); newBondSeedIdx++) {
    matched = false;
    bool atomAdded = false;
    const Bond* newBond = seed.MoleculeFragment.Bonds[newBondSeedIdx];
    unsigned newBondQueryIdx = seed.MoleculeFragment.BondsIdx[newBondSeedIdx];

    unsigned newBondSourceAtomSeedIdx;   // seed's index of atom from which new
                                         // bond was added
    unsigned newBondAnotherAtomSeedIdx;  // seed's index of atom on another end
                                         // of the bond
    unsigned i =
        seed.MoleculeFragment.SeedAtomIdxMap[newBond->getBeginAtomIdx()];
    unsigned j = seed.MoleculeFragment.SeedAtomIdxMap[newBond->getEndAtomIdx()];
    if (i >= match.MatchedAtomSize) {  // this is new atom in the seed
      newBondSourceAtomSeedIdx = j;
      newBondAnotherAtomSeedIdx = i;
    } else {
      newBondSourceAtomSeedIdx = i;
      newBondAnotherAtomSeedIdx = j;
    }
    unsigned newBondAnotherAtomQueryIdx =
        seed.MoleculeFragment.AtomsIdx[newBondAnotherAtomSeedIdx];
    unsigned newBondSourceAtomQueryIdx =
        seed.MoleculeFragment.AtomsIdx[newBondSourceAtomSeedIdx];
    unsigned newBondSourceAtomTargetIdx =
        match.TargetAtomIdx
            [newBondSourceAtomQueryIdx];  // matched to newBondSourceAtomSeedIdx

    const Bond* tb = nullptr;
    unsigned newBondAnotherAtomTargetIdx = NotSet;

    if (newBondAnotherAtomSeedIdx <
        match.MatchedAtomSize) {  // new bond between old atoms - both are
                                  // matched to exact atoms in the target
      newBondAnotherAtomTargetIdx =
          match.TargetAtomIdx[newBondAnotherAtomQueryIdx];
      tb = target.Molecule->getBondBetweenAtoms(
          newBondSourceAtomTargetIdx,
          newBondAnotherAtomTargetIdx);  // target bond between Source and
                                         // Another atoms
      if (tb) {  // bond exists, check match with query molecule
        unsigned tbi = tb->getIdx();
        unsigned qbi = seed.MoleculeFragment.BondsIdx[newBondSeedIdx];
        if (!match.VisitedTargetBonds[tbi])  // false if target bond is already
                                             // matched
          matched = target.BondMatchTable.at(qbi, tbi);
      }
    } else {  // enumerate all bonds from source atom in the target
      const Atom* atom =
          target.Molecule->getAtomWithIdx(newBondSourceAtomTargetIdx);
      ROMol::OEDGE_ITER beg, end;
      for (boost::tie(beg, end) = target.Molecule->getAtomBonds(atom);
           beg != end; beg++) {
        tb = &*((*target.Molecule)[*beg]);
        if (!match.VisitedTargetBonds[tb->getIdx()]) {
          newBondAnotherAtomTargetIdx = tb->getBeginAtomIdx();
          if (newBondSourceAtomTargetIdx == newBondAnotherAtomTargetIdx)
            newBondAnotherAtomTargetIdx = tb->getEndAtomIdx();

          if (newBondAnotherAtomSeedIdx <
                  seed.LastAddedAtomsBeginIdx  // RING: old atom, new atom in
                                               // matched substructure must be
                                               // new in seed
              || std::find(seed.MoleculeFragment.AtomsIdx.begin() +
                               seed.LastAddedAtomsBeginIdx,
                           seed.MoleculeFragment.AtomsIdx.begin() +
                               newBondAnotherAtomSeedIdx,
                           newBondAnotherAtomQueryIdx) ==
                     seed.MoleculeFragment.AtomsIdx.end()) {
            if (!match.VisitedTargetAtoms[newBondAnotherAtomTargetIdx])
              continue;
          } else {
            if (match.VisitedTargetAtoms[newBondAnotherAtomTargetIdx]) continue;
          }

          // check AnotherAtom and bond
          matched =
              target.AtomMatchTable.at(newBondAnotherAtomQueryIdx,
                                       newBondAnotherAtomTargetIdx) &&
              target.BondMatchTable.at(
                  seed.MoleculeFragment.BondsIdx[newBondSeedIdx], tb->getIdx());

          if (matched) {
            atomAdded = true;
            break;
          }
        }
      }
    }

    if (matched) {      // update match history
      if (atomAdded) {  // new atom has been added
        match.MatchedAtomSize++;
        match.TargetAtomIdx[newBondAnotherAtomQueryIdx] =
            newBondAnotherAtomTargetIdx;
        match.VisitedTargetAtoms[newBondAnotherAtomTargetIdx] = true;
      }
      match.MatchedBondSize++;
      match.TargetBondIdx[newBondQueryIdx] = tb->getIdx();
      match.VisitedTargetBonds[tb->getIdx()] = true;
    } else {
      match.clear();
      return false;
    }
  }

  if (match.MatchedAtomSize != seed.getNumAtoms() ||
      match.MatchedBondSize !=
          seed.getNumBonds()) {  // number of unique items !!!
    match.clear();
    return false;
  }
  // CHIRALITY: FinalMatchCheck
  if (matched && Parameters.FinalMatchChecker) {
    short unsigned c1[4096];  // seed.getNumAtoms()
    short unsigned c2[4096];  // seed.getNumAtoms()
    for (unsigned si = 0; si < seed.getNumAtoms();
         si++) {  // index in the seed topology
      c1[si] = si;
      c2[si] = match.TargetAtomIdx[seed.Topology[si]];
    }
    matched = Parameters.FinalMatchChecker(
        c1, c2, *QueryMolecule, seed.Topology, *target.Molecule,
        target.Topology, &Parameters);  // check CHIRALITY
    if (!matched) match.clear();
  }
#ifdef VERBOSE_STATISTICS_ON
  if (matched) {
#ifdef MULTI_THREAD
    Guard statlock(StatisticsMutex);
#endif
    ++VerboseStatistics.FastMatchCallTrue;
  }
#endif
  return matched;
}
}  // namespace FMCS
}  // namespace RDKit