File: Seed.cpp

package info (click to toggle)
rdkit 201809.1%2Bdfsg-6
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 123,688 kB
  • sloc: cpp: 230,509; python: 70,501; java: 6,329; ansic: 5,427; sql: 1,899; yacc: 1,739; lex: 1,243; makefile: 445; xml: 229; fortran: 183; sh: 123; cs: 93
file content (363 lines) | stat: -rw-r--r-- 13,069 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
//
//  Copyright (C) 2014 Novartis Institutes for BioMedical Research
//
//   @@ All Rights Reserved @@
//  This file is part of the RDKit.
//  The contents are covered by the terms of the BSD license
//  which is included in the file license.txt, found at the root
//  of the RDKit source tree.
//
#include "MaximumCommonSubgraph.h"
#include "Composition2N.h"
#include "Seed.h"

#include "DebugTrace.h"
#include "../SmilesParse/SmilesWrite.h"

#include <set>

namespace RDKit {
namespace FMCS {

unsigned Seed::addAtom(const Atom* atom) {
  unsigned i = MoleculeFragment.AtomsIdx.size();
  unsigned aqi = atom->getIdx();
  MoleculeFragment.Atoms.push_back(atom);
  MoleculeFragment.AtomsIdx.push_back(aqi);
  MoleculeFragment.SeedAtomIdxMap[aqi] = i;
  Topology.addAtom(aqi);
#ifdef DUP_SUBSTRUCT_CACHE
  DupCacheKey.addAtom(aqi);
#endif
  return i;
}

unsigned Seed::addBond(const Bond* bond) {
  unsigned b = bond->getIdx();
  if (ExcludedBonds[b]) throw - 1;  // never, check the implementation
  ExcludedBonds[b] = true;
  MoleculeFragment.BondsIdx.push_back(b);
  MoleculeFragment.Bonds.push_back(bond);
  // remap idx to seed's indeces:
  unsigned i = MoleculeFragment.SeedAtomIdxMap[bond->getBeginAtomIdx()];
  unsigned j = MoleculeFragment.SeedAtomIdxMap[bond->getEndAtomIdx()];
  Topology.addBond(b, i, j);
#ifdef DUP_SUBSTRUCT_CACHE
  DupCacheKey.addBond(b);
#endif
  return getNumBonds();
}

void Seed::fillNewBonds(const ROMol& qmol) {
  std::vector<bool> excludedBonds = ExcludedBonds;
  for (unsigned srcAtomIdx = LastAddedAtomsBeginIdx; srcAtomIdx < getNumAtoms();
       srcAtomIdx++) {  // all atoms added on previous growing only
    const Atom* atom = MoleculeFragment.Atoms[srcAtomIdx];
    ROMol::OEDGE_ITER beg, end;
    for (boost::tie(beg, end) = qmol.getAtomBonds(atom); beg != end;
         beg++) {  // all bonds from MoleculeFragment.Atoms[srcAtomIdx]
      const Bond* bond = &*(qmol[*beg]);
      if (!excludedBonds[bond->getIdx()]) {
        // already in the seed or NewBonds list from another atom in a RING
        excludedBonds[bond->getIdx()] = true;
        unsigned ai = (atom == bond->getBeginAtom()) ? bond->getEndAtomIdx()
                                                     : bond->getBeginAtomIdx();
        const Atom* end_atom = qmol.getAtomWithIdx(ai);
        unsigned end_atom_idx = NotSet;
        for (unsigned i = 0; i < getNumAtoms(); i++)
          if (end_atom ==
              MoleculeFragment.Atoms[i]) {  // already exists in this seed
            end_atom_idx = i;
            break;
          }
        NewBonds.push_back(
            NewBond(srcAtomIdx, bond->getIdx(), ai, end_atom_idx,
                    NotSet == end_atom_idx ? end_atom : nullptr));
      }
    }
  }
}

void Seed::grow(MaximumCommonSubgraph& mcs) const {
  const ROMol& qmol = mcs.getQueryMolecule();
  std::set<unsigned> newAtomsSet;  // keep track of newly added atoms

  if (!canGrowBiggerThan(mcs.getMaxNumberBonds(),
                         mcs.getMaxNumberAtoms())) {  // prune() parent
    GrowingStage = NotSet;                            // finished
#ifdef VERBOSE_STATISTICS_ON
    ++mcs.VerboseStatistics.RemainingSizeRejected;
#endif
    return;
  }

  if (0 == GrowingStage) {
    // 0. Fill out list of all directly connected outgoing bonds
    ((Seed*)this)
        ->fillNewBonds(
            qmol);  // non const method, multistage growing optimisation

    if (NewBonds.empty()) {
      GrowingStage = NotSet;  // finished
      return;
    }

    // 1. Check and add the biggest child seed with all outgoing bonds added:
    // Add all bonds at first (build the biggest child seed). All new atoms are
    // already in the seed
    Seed seed;
    seed.createFromParent(this);

    for (std::vector<NewBond>::const_iterator nbi = NewBonds.begin();
         nbi != NewBonds.end(); nbi++) {
      unsigned aIdx = nbi->EndAtomIdx;
      if (NotSet == aIdx) {  // new atom
        // check if new bonds simultaneously close a ring
        if (newAtomsSet.find(nbi->NewAtomIdx) == newAtomsSet.end()) {
          const Atom* end_atom = nbi->NewAtom;
          aIdx = seed.addAtom(end_atom);
          newAtomsSet.insert(nbi->NewAtomIdx);
        }
      }
      const Bond* src_bond = qmol.getBondWithIdx(nbi->BondIdx);
      seed.addBond(src_bond);
    }
#ifdef VERBOSE_STATISTICS_ON
    { ++mcs.VerboseStatistics.Seed; }
#endif
    seed.RemainingBonds = RemainingBonds - NewBonds.size();  // Added ALL !!!
    seed.RemainingAtoms =
        RemainingAtoms - newAtomsSet.size();  // new atoms added to seed

    // prune() Best Sizes
    if (!seed.canGrowBiggerThan(mcs.getMaxNumberBonds(),
                                mcs.getMaxNumberAtoms())) {
      GrowingStage = NotSet;
#ifdef VERBOSE_STATISTICS_ON
      ++mcs.VerboseStatistics.RemainingSizeRejected;
#endif
      return;  // the biggest possible subrgaph from this seed is too small for
               // future growing. So, skip ALL children !
    }
    seed.MatchResult = MatchResult;
    bool allMatched = mcs.checkIfMatchAndAppend(
        seed);  // this seed + all extern bonds is a part of MCS

    GrowingStage = 1;
    if (allMatched && NewBonds.size() > 1)
      return;  // grow deep first. postpone next growing steps
  }
  // 2. Check and add all 2^N-1-1 other possible seeds:
  if (1 == NewBonds.size()) {
    GrowingStage = NotSet;
    return;  // everything has been done
  }
  // OPTIMISATION:
  // check each single bond first: if (this seed + single bond) does not exist
  // in MCS, exclude this new bond from growing this seed.
  unsigned numErasedNewBonds = 0;
  for (auto& nbi : NewBonds) {
#ifdef VERBOSE_STATISTICS_ON
    { ++mcs.VerboseStatistics.Seed; }
#endif
    Seed seed;
    seed.createFromParent(this);

    // existed in this parent seed (ring) or -1
    unsigned aIdx = nbi.EndAtomIdx;
    if (NotSet == aIdx) {  // new atom
      const Atom* end_atom = nbi.NewAtom;
      aIdx = seed.addAtom(end_atom);
    }
    const Bond* src_bond = qmol.getBondWithIdx(nbi.BondIdx);
    seed.addBond(src_bond);
    seed.computeRemainingSize(qmol);

    if (seed.canGrowBiggerThan(mcs.getMaxNumberBonds(),
                               mcs.getMaxNumberAtoms())) {  // prune()
      if (!MatchResult.empty()) seed.MatchResult = MatchResult;
      if (!mcs.checkIfMatchAndAppend(seed)) {
        nbi.BondIdx = NotSet;  // exclude this new bond from growing this seed
                               // - decrease 2^^N-1 to 2^^k-1, k<N.
        ++numErasedNewBonds;
#ifdef VERBOSE_STATISTICS_ON
        ++mcs.VerboseStatistics.SingleBondExcluded;
#endif
      }
    } else {  // seed too small
#ifdef VERBOSE_STATISTICS_ON
      ++mcs.VerboseStatistics.RemainingSizeRejected;
#endif
    }
  }

  if (numErasedNewBonds > 0) {
    std::vector<NewBond> dirtyNewBonds;
    dirtyNewBonds.reserve(NewBonds.size());
    dirtyNewBonds.swap(NewBonds);
    for (std::vector<NewBond>::const_iterator nbi = dirtyNewBonds.begin();
         nbi != dirtyNewBonds.end(); nbi++)
      if (NotSet != nbi->BondIdx) NewBonds.push_back(*nbi);
  }

  // add all other from 2^k-1 possible seeds, where k=newBonds.size()
  // if just one new bond, then seed has already been created
  if (NewBonds.size() > 1) {
    if (sizeof(unsigned long long) * 8 < NewBonds.size())
      throw std::runtime_error(
          "Max number of new external bonds of a seed more than 64");
    BitSet maxCompositionValue;
    Composition2N::compute2N(NewBonds.size(), maxCompositionValue);
    maxCompositionValue -= 1;  // 2^N-1
    Composition2N composition(maxCompositionValue, maxCompositionValue);

#ifdef EXCLUDE_WRONG_COMPOSITION
    std::vector<BitSet> failedCombinations;
    BitSet failedCombinationsMask = 0uLL;
#endif
    while (composition.generateNext()) {
      // exclude already processed single external bond combinations
      if (composition.is2Power()) 
        continue;
      if (0 == numErasedNewBonds &&
          composition.getBitSet() == maxCompositionValue)
        continue;  // exclude already processed all external bonds combination
                   // 2N-1
#ifdef EXCLUDE_WRONG_COMPOSITION
      // OPTIMISATION. reduce amount of generated seeds and match calls
      // 2120 instead of 2208 match calls on small test. 43 wrongComp-s, 83
      // rejected
      if (failedCombinationsMask & composition.getBitSet()) {
        // possibly exists in the list
        bool compositionWrong = false;
        for (std::vector<BitSet>::const_iterator failed =
                 failedCombinations.begin();
             failed != failedCombinations.end(); failed++)
          if (*failed == (*failed & composition.getBitSet())) {
            // combination includes failed combination
            compositionWrong = true;
            break;
          }
        if (compositionWrong) {
#ifdef VERBOSE_STATISTICS_ON
          ++mcs.VerboseStatistics.WrongCompositionRejected;
#endif
          continue;
        }
      }
#endif
#ifdef VERBOSE_STATISTICS_ON
      { ++mcs.VerboseStatistics.Seed; }
#endif
      Seed seed;
      seed.createFromParent(this);
      newAtomsSet.clear();

      for (unsigned i = 0; i < NewBonds.size(); i++)
        if (composition.isSet(i)) {
          const NewBond* nbi = &NewBonds[i];
          unsigned aIdx =
              nbi->EndAtomIdx;   // existed in this parent seed (ring) or -1
          if (NotSet == aIdx) {  // new atom
            if (newAtomsSet.find(nbi->NewAtomIdx) == newAtomsSet.end()) {
              const Atom* end_atom = nbi->NewAtom;
              aIdx = seed.addAtom(end_atom);
              newAtomsSet.insert(nbi->NewAtomIdx);
            }
          }
          const Bond* src_bond = qmol.getBondWithIdx(nbi->BondIdx);
          seed.addBond(src_bond);
        }
      seed.computeRemainingSize(qmol);
      if (!seed.canGrowBiggerThan(
              mcs.getMaxNumberBonds(),
              mcs.getMaxNumberAtoms())) {  // prune(). // seed too small
#ifdef VERBOSE_STATISTICS_ON
        ++mcs.VerboseStatistics.RemainingSizeRejected;
#endif
      } else {
        seed.MatchResult = MatchResult;
        bool found = mcs.checkIfMatchAndAppend(seed);

        if (!found) {
#ifdef EXCLUDE_WRONG_COMPOSITION  // if seed does not matched it is possible to
                                  // exclude this mismatched combination for
                                  // performance improvement
          failedCombinations.push_back(composition.getBitSet());
          failedCombinationsMask &= composition.getBitSet();
#ifdef VERBOSE_STATISTICS_ON
          ++mcs.VerboseStatistics.WrongCompositionDetected;
#endif
#endif
        }
      }
    }
  }
  GrowingStage = NotSet;  // finished
}

void Seed::computeRemainingSize(const ROMol& qmol) {
  RemainingBonds = RemainingAtoms = 0;

  std::vector<unsigned> end_atom_stack;
  std::vector<bool> visitedBonds = ExcludedBonds;
  std::vector<bool> visitedAtoms(qmol.getNumAtoms());

  for (auto&& visitedAtom : visitedAtoms) visitedAtom = false;
  for (std::vector<unsigned>::const_iterator it =
           MoleculeFragment.AtomsIdx.begin();
       it != MoleculeFragment.AtomsIdx.end(); it++)
    visitedAtoms[*it] = true;

  // SDF all paths
  // 1. direct neighbours
  for (unsigned seedAtomIdx = LastAddedAtomsBeginIdx;
       seedAtomIdx < getNumAtoms();
       seedAtomIdx++) {  // just now added new border vertices (candidates for
                         // future growing)
    const Atom* atom = MoleculeFragment.Atoms[seedAtomIdx];
    ROMol::OEDGE_ITER beg, end;
    for (boost::tie(beg, end) = qmol.getAtomBonds(atom); beg != end;
         beg++) {  // all bonds from MoleculeFragment.Atoms[srcAtomIdx]
      const Bond& bond = *(qmol[*beg]);
      if (!visitedBonds[bond.getIdx()]) {
        ++RemainingBonds;
        visitedBonds[bond.getIdx()] = true;
        unsigned end_atom_idx =
            (MoleculeFragment.AtomsIdx[seedAtomIdx] == bond.getBeginAtomIdx())
                ? bond.getEndAtomIdx()
                : bond.getBeginAtomIdx();
        if (!visitedAtoms[end_atom_idx]) {  // check RING/CYCLE
          ++RemainingAtoms;
          visitedAtoms[end_atom_idx] = true;
          end_atom_stack.push_back(end_atom_idx);
        }
      }
    }
  }
  // 2. go deep
  while (!end_atom_stack.empty()) {
    unsigned ai = end_atom_stack.back();
    end_atom_stack.pop_back();
    const Atom* atom = qmol.getAtomWithIdx(ai);
    ROMol::OEDGE_ITER beg, end;
    for (boost::tie(beg, end) = qmol.getAtomBonds(atom); beg != end;
         beg++) {  // all bonds from end_atom
      const Bond& bond = *(qmol[*beg]);
      if (!visitedBonds[bond.getIdx()]) {
        ++RemainingBonds;
        visitedBonds[bond.getIdx()] = true;
        unsigned end_atom_idx = (ai == bond.getBeginAtomIdx())
                                    ? bond.getEndAtomIdx()
                                    : bond.getBeginAtomIdx();
        if (!visitedAtoms[end_atom_idx]) {  // check RING/CYCLE
          ++RemainingAtoms;
          visitedAtoms[end_atom_idx] = true;
          end_atom_stack.push_back(end_atom_idx);
        }
      }
    }
  }
}
}
}