1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292
|
//
// Copyright (C) 2003-2018 Greg Landrum and Rational Discovery LLC
//
// @@ All Rights Reserved @@
// This file is part of the RDKit.
// The contents are covered by the terms of the BSD license
// which is included in the file license.txt, found at the root
// of the RDKit source tree.
//
#include "RDKitBase.h"
#include <GraphMol/Rings.h>
#include <RDGeneral/RDLog.h>
#include <RDGeneral/Exceptions.h>
#include <RDGeneral/utils.h>
#include <vector>
#include <set>
#include <algorithm>
#include <boost/dynamic_bitset.hpp>
#include <boost/cstdint.hpp>
#include <RDGeneral/hash/hash.hpp>
typedef std::set<boost::uint32_t> RINGINVAR_SET;
typedef RINGINVAR_SET::const_iterator RINGINVAR_SET_CI;
typedef std::vector<boost::uint32_t> RINGINVAR_VECT;
namespace RingUtils {
const size_t MAX_BFSQ_SIZE = 200000; // arbitrary huge value
using namespace RDKit;
boost::uint32_t computeRingInvariant(INT_VECT ring, unsigned int nAtoms) {
RDUNUSED_PARAM(nAtoms);
std::sort(ring.begin(), ring.end());
boost::uint32_t res = gboost::hash_range(ring.begin(), ring.end());
return res;
}
void convertToBonds(const VECT_INT_VECT &res, VECT_INT_VECT &brings,
const ROMol &mol) {
for (const auto &ring : res) {
unsigned int rsiz = rdcast<unsigned int>(ring.size());
INT_VECT bring(rsiz);
for (unsigned int i = 0; i < (rsiz - 1); i++) {
const Bond *bnd = mol.getBondBetweenAtoms(ring[i], ring[i + 1]);
if (!bnd) throw ValueErrorException("expected bond not found");
bring[i] = bnd->getIdx();
}
// bond from last to first atom
const Bond *bnd = mol.getBondBetweenAtoms(ring[rsiz - 1], ring[0]);
if (!bnd) throw ValueErrorException("expected bond not found");
bring[rsiz - 1] = bnd->getIdx();
brings.push_back(bring);
}
}
} // end of namespace RingUtils
namespace FindRings {
using namespace RDKit;
int smallestRingsBfs(const ROMol &mol, int root, VECT_INT_VECT &rings,
boost::dynamic_bitset<> &activeBonds,
INT_VECT *forbidden = nullptr);
void trimBonds(unsigned int cand, const ROMol &tMol, INT_SET &changed,
INT_VECT &atomDegrees, boost::dynamic_bitset<> &activeBonds);
void storeRingInfo(const ROMol &mol, const INT_VECT &ring) {
INT_VECT bondIndices;
INT_VECT_CI lastRai;
for (auto rai = ring.begin(); rai != ring.end(); rai++) {
if (rai != ring.begin()) {
const Bond *bnd = mol.getBondBetweenAtoms(*rai, *lastRai);
if (!bnd) throw ValueErrorException("expected bond not found");
bondIndices.push_back(bnd->getIdx());
}
lastRai = rai;
}
const Bond *bnd = mol.getBondBetweenAtoms(*lastRai, *(ring.begin()));
if (!bnd) throw ValueErrorException("expected bond not found");
bondIndices.push_back(bnd->getIdx());
mol.getRingInfo()->addRing(ring, bondIndices);
}
void storeRingsInfo(const ROMol &mol, const VECT_INT_VECT &rings) {
for (const auto &ring : rings) {
storeRingInfo(mol, ring);
}
}
void markUselessD2s(unsigned int root, const ROMol &tMol,
boost::dynamic_bitset<> &forb, const INT_VECT &atomDegrees,
const boost::dynamic_bitset<> &activeBonds) {
// recursive function to mark any degree 2 nodes that are already represnted
// by root for the purpose of finding smallest rings.
ROMol::OEDGE_ITER beg, end;
boost::tie(beg, end) = tMol.getAtomBonds(tMol.getAtomWithIdx(root));
while (beg != end) {
const Bond* bond = tMol[*beg];
++beg;
if (!activeBonds[bond->getIdx()]) continue;
unsigned int oIdx = bond->getOtherAtomIdx(root);
if (!forb[oIdx] && atomDegrees[oIdx] == 2) {
forb[oIdx] = 1;
markUselessD2s(oIdx, tMol, forb, atomDegrees, activeBonds);
}
}
}
void pickD2Nodes(const ROMol &tMol, INT_VECT &d2nodes, const INT_VECT &currFrag,
const INT_VECT &atomDegrees,
const boost::dynamic_bitset<> &activeBonds) {
d2nodes.resize(0);
// forb contains all d2 nodes, not just the ones we want to keep
boost::dynamic_bitset<> forb(tMol.getNumAtoms());
while (1) {
int root = -1;
for (int axci : currFrag) {
if (atomDegrees[axci] == 2 && !forb[axci]) {
root = axci;
d2nodes.push_back(axci);
forb[axci] = 1;
break;
}
}
if (root == -1) {
break;
} else {
markUselessD2s(root, tMol, forb, atomDegrees, activeBonds);
}
}
}
#if 0
typedef std::map<double, INT_VECT> DOUBLE_INT_VECT_MAP;
typedef DOUBLE_INT_VECT_MAP::iterator DOUBLE_INT_VECT_MAP_I;
typedef DOUBLE_INT_VECT_MAP::const_iterator DOUBLE_INT_VECT_MAP_CI;
#else
typedef std::map<boost::uint32_t, INT_VECT> RINGINVAR_INT_VECT_MAP;
typedef RINGINVAR_INT_VECT_MAP::iterator RINGINVAR_INT_VECT_MAP_I;
typedef RINGINVAR_INT_VECT_MAP::const_iterator RINGINVAR_INT_VECT_MAP_CI;
#endif
void findSSSRforDupCands(const ROMol &mol, VECT_INT_VECT &res,
RINGINVAR_SET &invars, const INT_INT_VECT_MAP dupMap,
const RINGINVAR_INT_VECT_MAP &dupD2Cands,
INT_VECT &atomDegrees,
boost::dynamic_bitset<> activeBonds) {
for (const auto &dupD2Cand : dupD2Cands) {
const INT_VECT &dupCands = dupD2Cand.second;
if (dupCands.size() > 1) {
// we have duplicate candidates.
VECT_INT_VECT nrings;
unsigned int minSiz = static_cast<unsigned int>(MAX_INT);
for (int dupCand : dupCands) {
// now break bonds for all the d2 nodes for that give the same rings as
// with (*dupi) and recompute smallest ring with (*dupi)
INT_VECT atomDegreesCopy = atomDegrees;
boost::dynamic_bitset<> activeBondsCopy = activeBonds;
INT_SET changed;
auto dmci = dupMap.find(dupCand);
for (int dni : dmci->second) {
trimBonds(dni, mol, changed, atomDegreesCopy, activeBondsCopy);
}
// now find the smallest ring/s around (*dupi)
VECT_INT_VECT srings;
smallestRingsBfs(mol, dupCand, srings, activeBondsCopy);
for (VECT_INT_VECT_CI sri = srings.begin(); sri != srings.end();
++sri) {
if (sri->size() < minSiz) {
minSiz = rdcast<unsigned int>(sri->size());
}
nrings.push_back((*sri));
}
}
for (VECT_INT_VECT_CI nri = nrings.begin(); nri != nrings.end(); ++nri) {
if (nri->size() == minSiz) {
boost::uint32_t invr =
RingUtils::computeRingInvariant(*nri, mol.getNumAtoms());
if (invars.find(invr) == invars.end()) {
res.push_back((*nri));
invars.insert(invr);
}
}
} // end of loop over new rings found
} // end if (dupCand.size() > 1)
} // end of loop over all set of duplicate candidates
}
struct compRingSize : public std::binary_function<INT_VECT, INT_VECT, bool> {
bool operator()(const INT_VECT &v1, const INT_VECT &v2) const {
return v1.size() < v2.size();
}
};
void removeExtraRings(VECT_INT_VECT &res, unsigned int nexpt,
const ROMol &mol) {
RDUNUSED_PARAM(nexpt);
// sort on size
std::sort(res.begin(), res.end(), compRingSize());
#if 0
std::cerr<<"\n\nSORTED\n";
for(VECT_INT_VECT::const_iterator iter=res.begin();
iter!=res.end();++iter){
std::cerr<<iter-res.begin()<<": ";
std::copy(iter->begin(),iter->end(),std::ostream_iterator<int>(std::cerr," "));
std::cerr<<std::endl;
}
#endif
// change the rings from atom IDs to bondIds
VECT_INT_VECT brings;
RingUtils::convertToBonds(res, brings, mol);
std::vector<boost::dynamic_bitset<>> bitBrings;
bitBrings.reserve(brings.size());
for (VECT_INT_VECT_CI vivi = brings.begin(); vivi != brings.end(); ++vivi) {
boost::dynamic_bitset<> lring(mol.getNumBonds());
for (int ivi : *vivi) {
lring.set(ivi);
}
bitBrings.push_back(lring);
}
boost::dynamic_bitset<> availRings(res.size());
availRings.set();
boost::dynamic_bitset<> keepRings(res.size());
boost::dynamic_bitset<> munion(mol.getNumBonds());
for (unsigned int i = 0; i < res.size(); ++i) {
// skip this ring if we've already seen all of its bonds
if (bitBrings[i].is_subset_of(munion)) availRings.set(i, 0);
if (!availRings[i]) continue;
munion |= bitBrings[i];
keepRings.set(i);
// from this ring we consider all others that are still available and the
// same size
boost::dynamic_bitset<> consider(res.size());
for (unsigned int j = i + 1; j < res.size(); ++j) {
// std::cerr<<" "<<j<<" "<<brings[j].size()<<" -
// "<<brings[i].size()<<" >"<<availRings[j]<<std::endl;
if (availRings[j] && (brings[j].size() == brings[i].size())) {
consider.set(j);
}
}
// std::cerr<<">>> "<<i<<" "<<consider.count()<<std::endl;
while (consider.count()) {
unsigned int bestJ = i + 1;
int bestOverlap = -1;
// loop over the available other rings in consideration and pick the one
// that has the most overlapping bonds with what we've done so far.
// this is the fix to github #526
for (unsigned int j = i + 1;
j < res.size() && bitBrings[j].count() == bitBrings[i].count();
++j) {
if (!consider[j] || !availRings[j]) continue;
int overlap = rdcast<int>((bitBrings[j] & munion).count());
if (overlap > bestOverlap) {
bestOverlap = overlap;
bestJ = j;
}
}
consider.set(bestJ, 0);
if (bitBrings[bestJ].is_subset_of(munion)) {
availRings.set(bestJ, 0);
} else {
keepRings.set(bestJ);
availRings.set(bestJ, 0);
munion |= bitBrings[bestJ];
}
}
}
// remove the extra rings from res and store them on the molecule in case we
// wish
// symmetrize the SSSRs later
VECT_INT_VECT extras;
VECT_INT_VECT temp = res;
res.resize(0);
for (unsigned int i = 0; i < temp.size(); i++) {
if (keepRings[i]) {
res.push_back(temp[i]);
} else {
extras.push_back(temp[i]);
}
}
mol.setProp(common_properties::extraRings, extras, true);
}
void findRingsD2nodes(const ROMol &tMol, VECT_INT_VECT &res,
RINGINVAR_SET &invars, const INT_VECT &d2nodes,
INT_VECT &atomDegrees,
boost::dynamic_bitset<> &activeBonds,
boost::dynamic_bitset<> &ringBonds,
boost::dynamic_bitset<> &ringAtoms) {
// place to record any duplicate rings discovered from the current d2 nodes
RINGINVAR_INT_VECT_MAP dupD2Cands;
int cand;
INT_VECT_CI d2i;
INT_INT_VECT_MAP dupMap;
// here is an example of molecule where the this scheme of finding other node
// that
// result in duplicates is necessary : C12=CON=C1C(C4)CC3CC2CC4C3
// It would help to draw this molecule, and number the atoms but here is what
// happen
// - there are 6 d2 node - 1, 6, 7, 9, 11, 13
// - both 6 and 7 find the same ring (5,6,12,13,8,7) but we do not find the 7
// membered ring
// (5,7,8,9,10,0,4)
// - similarly 9 and 11 find a duplicate ring (9,10,11,12,13)
// - when we move to 13 both the above duplicate rings are found
// - so we will keep track for each d2 all the other node that resulted in
// duplicate rings
// - the bonds to these nodes will be broken and we attempt to find a new
// ring, for e.g. by breaking
// bonds to 7 and 13, we will find a 7 membered ring with 6 (this is done
// in findSSSRforDupCands)
std::map<int, RINGINVAR_VECT> nodeInvars;
std::map<int, RINGINVAR_VECT>::const_iterator nici;
DOUBLE_VECT_CI ici;
for (d2i = d2nodes.begin(); d2i != d2nodes.end(); ++d2i) {
cand = (*d2i);
// std::cerr<<" smallest rings bfs: "<<cand<<std::endl;
VECT_INT_VECT srings;
// we have to find all non duplicate possible smallest rings for each node
smallestRingsBfs(tMol, cand, srings, activeBonds);
for (VECT_INT_VECT_CI sri = srings.begin(); sri != srings.end(); ++sri) {
const INT_VECT &nring = (*sri);
boost::uint32_t invr =
RingUtils::computeRingInvariant(nring, tMol.getNumAtoms());
if (invars.find(invr) == invars.end()) {
res.push_back(nring);
invars.insert(invr);
for (unsigned int i = 0; i < nring.size() - 1; ++i) {
unsigned int bIdx =
tMol.getBondBetweenAtoms(nring[i], nring[i + 1])->getIdx();
ringBonds.set(bIdx);
ringAtoms.set(nring[i]);
}
ringBonds.set(
tMol.getBondBetweenAtoms(nring[0], nring[nring.size() - 1])
->getIdx());
ringAtoms.set(nring[nring.size() - 1]);
#if 0
std::cerr<<" res: "<<invr<<" | ";
std::copy(nring.begin(),nring.end(),std::ostream_iterator<int>(std::cerr," "));
std::cerr<<std::endl;
#endif
}
nodeInvars[cand].push_back(invr);
// check if this ring is duplicate with something else
for (nici = nodeInvars.begin(); nici != nodeInvars.end(); nici++) {
if (nici->first != cand) {
if (std::find(nici->second.begin(), nici->second.end(), invr) !=
nici->second.end()) {
// ok we discovered this ring via another node before
// add that node as duplicate to this node and and vice versa
dupMap[cand].push_back(nici->first);
dupMap[nici->first].push_back(cand);
}
}
}
dupD2Cands[invr].push_back(cand);
}
// We don't want to trim the bonds connecting cand here - this can disrupt
// a second small ring. Here is an example SC(C3C1CC(C3)CC(C2S)(O)C1)2S
// by trimming the bond connecting to atom #4 , we loose the smallest ring
// that
// contains atom #7. Issue 134
// MolOps::trimBonds(cand, tMol, changed);
}
// now deal with any d2 nodes that resulted in duplicate rings before trimming
// their bonds.
// it is possible that one of these nodes is involved a different small ring,
// that is not found
// because the first nodes has not be trimmed. Here is an example molecule:
// CC1=CC=C(C=C1)S(=O)(=O)O[CH]2[CH]3CO[CH](O3)[CH]4OC(C)(C)O[CH]24
findSSSRforDupCands(tMol, res, invars, dupMap, dupD2Cands, atomDegrees,
activeBonds);
}
void findRingsD3Node(const ROMol &tMol, VECT_INT_VECT &res,
RINGINVAR_SET &invars, int cand, INT_VECT &atomDegrees,
boost::dynamic_bitset<> activeBonds) {
RDUNUSED_PARAM(atomDegrees);
// this is brutal - we have no degree 2 nodes - find the first possible degree
// 3 node
int nsmall;
// We've got a degree three node. The goal of what follows is to find the
// three rings in which it's involved, push those onto our results, and
// then remove the node from consideration. This will create a bunch of
// degree
// 2 nodes, which we can then chew off the next time around the loop.
// this part is a bit different from the Figueras algorithm
// here we try to find all the rings the rings that have a potential for
// contributing to
// SSSR - i.e. we try to find 3 rings for this node.
// - each bond (that contributes to the degree 3 ) is allowed to participate
// in exactly
// two of these rings.
// - also any rings that are included in already found rings are ignored
// ASSUME: every connection from a degree three node at this point is a
// ring bond
// REVIEW: Is this valid?
// first find all smallest possible rings
VECT_INT_VECT srings;
nsmall = smallestRingsBfs(tMol, cand, srings, activeBonds);
for (VECT_INT_VECT_CI sri = srings.begin(); sri != srings.end(); ++sri) {
const INT_VECT &nring = (*sri);
boost::uint32_t invr =
RingUtils::computeRingInvariant(nring, tMol.getNumAtoms());
if (invars.find(invr) == invars.end()) {
res.push_back(nring);
invars.insert(invr);
}
}
// if already found >3 rings we are done with this degree 3 node
// if we found less than 3 we have to find other potential ring/s
if (nsmall < 3) {
int n1 = -1, n2 = -1, n3 = -1;
ROMol::OEDGE_ITER beg, end;
boost::tie(beg, end) = tMol.getAtomBonds(tMol.getAtomWithIdx(cand));
while (beg != end && !activeBonds[tMol[*beg]->getIdx()]) ++beg;
CHECK_INVARIANT(beg != end, "neighbor not found");
n1 = tMol[*beg]->getOtherAtomIdx(cand);
++beg;
while (beg != end && !activeBonds[tMol[*beg]->getIdx()]) ++beg;
CHECK_INVARIANT(beg != end, "neighbor not found");
n2 = tMol[*beg]->getOtherAtomIdx(cand);
++beg;
while (beg != end && !activeBonds[tMol[*beg]->getIdx()]) ++beg;
CHECK_INVARIANT(beg != end, "neighbor not found");
n3 = tMol[*beg]->getOtherAtomIdx(cand);
if (nsmall == 2) {
// we found two rings find the third one
// first find the neighbor that is common to the two ring we found so far
int f;
if ((std::find(srings[0].begin(), srings[0].end(), n1) !=
srings[0].end()) &&
(std::find(srings[1].begin(), srings[1].end(), n1) !=
srings[1].end())) {
f = n1;
} else if ((std::find(srings[0].begin(), srings[0].end(), n2) !=
srings[0].end()) &&
(std::find(srings[1].begin(), srings[1].end(), n2) !=
srings[1].end())) {
f = n2;
} else if ((std::find(srings[0].begin(), srings[0].end(), n3) !=
srings[0].end()) &&
(std::find(srings[1].begin(), srings[1].end(), n3) !=
srings[1].end())) {
f = n3;
}
// now find the smallest possible ring that does not contain f
VECT_INT_VECT trings;
INT_VECT forb;
forb.push_back(f);
smallestRingsBfs(tMol, cand, trings, activeBonds, &forb);
for (VECT_INT_VECT_CI sri = trings.begin(); sri != trings.end(); ++sri) {
const INT_VECT &nring = (*sri);
boost::uint32_t invr =
RingUtils::computeRingInvariant(nring, tMol.getNumAtoms());
if (invars.find(invr) == invars.end()) {
res.push_back(nring);
invars.insert(invr);
}
}
} // doing degree 3 node - end of 2 smallest rings found for cand
if (nsmall == 1) {
// we found 1 ring - we need to find two more that involve the 3rd
// neighbor
int f1, f2;
// Which of our three neighbors are in the small ring?
// these are f1 and f2
if (std::find(srings[0].begin(), srings[0].end(), n1) ==
srings[0].end()) {
f1 = n2, f2 = n3;
} else if (std::find(srings[0].begin(), srings[0].end(), n2) ==
srings[0].end()) {
f1 = n1;
f2 = n3;
} else if (std::find(srings[0].begin(), srings[0].end(), n3) ==
srings[0].end()) {
f1 = n1;
f2 = n2;
}
// now find two rings that include cand, one of these rings should include
// f1
// and the other should include f2
// first ring with f1 and no f2
VECT_INT_VECT trings;
INT_VECT forb;
forb.push_back(f2);
smallestRingsBfs(tMol, cand, trings, activeBonds, &forb);
for (VECT_INT_VECT_CI sri = trings.begin(); sri != trings.end(); ++sri) {
const INT_VECT &nring = (*sri);
boost::uint32_t invr =
RingUtils::computeRingInvariant(nring, tMol.getNumAtoms());
if (invars.find(invr) == invars.end()) {
res.push_back(nring);
invars.insert(invr);
}
}
// next the ring with f2 and no f1
trings.clear();
forb.clear();
forb.push_back(f1);
smallestRingsBfs(tMol, cand, trings, activeBonds, &forb);
for (VECT_INT_VECT_CI sri = trings.begin(); sri != trings.end(); ++sri) {
const INT_VECT &nring = (*sri);
boost::uint32_t invr =
RingUtils::computeRingInvariant(nring, tMol.getNumAtoms());
if (invars.find(invr) == invars.end()) {
res.push_back(nring);
invars.insert(invr);
}
}
} // doing node of degree 3 - end of found only 1 smallest ring
} // end of found less than 3 smallest ring for the degree 3 node
}
int greatestComFac(long curfac, long nfac) {
long small;
long large;
long rem;
// Determine which of the numbers is the larger, and which is the smaller
large = (curfac > nfac) ? curfac : nfac;
small = (curfac < nfac) ? curfac : nfac;
// Keep looping until no remainder, as this means it is a factor of both
while (small != 0) {
// Set the larger var to the smaller, and set the smaller to the remainder
// of (large / small)
rem = (large % small);
large = small;
small = rem;
}
// By here nLarge will hold the largest common factor, so just return it
return large;
}
/******************************************************************************
* SUMMARY:
* remove the bond in the molecule that connect to the spcified atom
*
* ARGUMENTS:
* cand - the node(atom) of interest
* tMol - molecule of interest
* changed - list of the atoms that are effected the bond removal
* this may be accumulated over multiple calls to trimBonds
* it basically forms a list of atom that need to be searched for
* the next round of pruning
*
******************************************************************************/
void trimBonds(unsigned int cand, const ROMol &tMol, INT_SET &changed,
INT_VECT &atomDegrees, boost::dynamic_bitset<> &activeBonds) {
ROMol::OEDGE_ITER beg, end;
boost::tie(beg, end) = tMol.getAtomBonds(tMol.getAtomWithIdx(cand));
while (beg != end) {
const Bond* bond = tMol[*beg];
++beg;
if (!activeBonds[bond->getIdx()]) continue;
unsigned int oIdx = bond->getOtherAtomIdx(cand);
if (atomDegrees[oIdx] <= 2) changed.insert(oIdx);
activeBonds[bond->getIdx()] = 0;
atomDegrees[oIdx] -= 1;
atomDegrees[cand] -= 1;
}
}
/*******************************************************************************
* SUMMARY:
* this again is a modified version of the BFS algorihtm in Figueras paper to
*find
* the smallest ring with a specified root atom.
* JCICS, Vol. 30, No. 5, 1996, 986-991
* The follwing are changes from the original algorithm
* - find all smallest rings around a node not just one
* - once can provided a list of node IDs that should not be include in the
*discovered rings
*
* ARGUMENTS:
* mol - molecule of interest
* root - Atom ID of the node of interest
* rings - list of rings into which the results are entered
* forbidden - list of atoms ID that should be avoided
*
* RETURNS:
* number of smallest rings found
***********************************************************************************/
int smallestRingsBfs(const ROMol &mol, int root, VECT_INT_VECT &rings,
boost::dynamic_bitset<> &activeBonds,
INT_VECT *forbidden) {
// this function finds the smallest ring with the given root atom.
// if multiple smallest rings are found all of them are return
// if any atoms are specified in the forbidden list, those atoms are avoided.
// FIX: this should be number of atoms in the fragment (if it's required at
// all, see below)
const int WHITE = 0, GRAY = 1, BLACK = 2;
INT_VECT done(mol.getNumAtoms(), WHITE);
if (forbidden) {
for (INT_VECT_CI dci = forbidden->begin(); dci != forbidden->end(); dci++) {
done[*dci] = BLACK;
}
}
// it would be "nicer" to use a map for this, but that ends up being too slow:
VECT_INT_VECT atPaths(mol.getNumAtoms());
INT_VECT rpath(1, root);
atPaths[root] = rpath;
std::deque<int> bfsq;
bfsq.push_back(root);
int curr = -1;
unsigned int curSize = UINT_MAX;
while (bfsq.size() > 0) {
if (bfsq.size() >= RingUtils::MAX_BFSQ_SIZE) {
std::string msg =
"Maximum BFS search size exceeded.\nThis is likely due to a highly "
"symmetric fused ring system.";
BOOST_LOG(rdErrorLog) << msg << std::endl;
throw ValueErrorException(msg);
}
curr = bfsq.front();
bfsq.pop_front();
done[curr] = BLACK;
INT_VECT &cpath = atPaths[curr];
ROMol::OEDGE_ITER beg, end;
boost::tie(beg, end) = mol.getAtomBonds(mol.getAtomWithIdx(curr));
while (beg != end) {
const Bond* bond = mol[*beg];
++beg;
if (!activeBonds[bond->getIdx()]) continue;
int nbrIdx = bond->getOtherAtomIdx(curr);
if ((std::find(cpath.begin(), cpath.end(), nbrIdx) == cpath.end()) &&
done[nbrIdx] != BLACK) {
// i.e. we are not at a node that is making up the current path
// and we are not a node that has been completely explored before
// (it has been a curr node before)
// FIX: can we avoid this find by coloring atoms gray when they go into
// the queue and just looking up the colors?
if (done[nbrIdx] == WHITE) {
// we have never been to this node before through via any path
atPaths[nbrIdx] = cpath;
atPaths[nbrIdx].push_back(nbrIdx);
done[nbrIdx] = GRAY;
bfsq.push_back(nbrIdx);
} // end of found a untouched node
else {
// we have been here via a different path
// there is a potential for ring closure here
INT_VECT npath = atPaths[nbrIdx];
// make sure that the intersections of cpath and npath give exactl one
// element and that should be the root element for correct ring
// closure
int id = -1;
unsigned int com = 0;
for (INT_VECT_CI ci = cpath.begin(); ci != cpath.end(); ++ci) {
if (std::find(npath.begin(), npath.end(), (*ci)) != npath.end()) {
com++;
id = (*ci);
if (id != root) break;
}
} // end of found stuff in common with neighbor
if (id == root) { // we found a ring
// make the ring
INT_VECT ring = cpath;
// remove the root node and attach the other half of the ring from
// npath
// reverse this piece so that the ring is traversed correctly
// FIX: we're probably assured that root is the first node, so we
// can
// just pop it from the front
npath.erase(std::remove(npath.begin(), npath.end(), root));
#ifndef WIN32
ring.insert(ring.end(), npath.rbegin(), npath.rend());
#else // I <heart> MSVC++ v6
std::reverse(npath.begin(), npath.end());
ring.insert(ring.end(), npath.begin(), npath.end());
#endif
if (ring.size() <= curSize) {
curSize = rdcast<unsigned int>(ring.size());
rings.push_back(ring);
} else {
// we are done with the smallest rings
return rdcast<unsigned int>(rings.size());
}
} // end of found a ring
} // end of we have seen this neighbor before
} // end of nbrIdx not part of current path and not a done atom
} // end of loop over neighbors of current atom
} // moving to the next node
return rdcast<unsigned int>(
rings.size()); // if we are here we should have found everything around
// the node
}
bool _atomSearchBFS(const ROMol &tMol, unsigned int startAtomIdx,
unsigned int endAtomIdx, boost::dynamic_bitset<> &ringAtoms,
INT_VECT &res, RINGINVAR_SET &invars) {
res.clear();
std::deque<INT_VECT> bfsq;
INT_VECT tv;
tv.push_back(startAtomIdx);
bfsq.push_back(tv);
while (!bfsq.empty()) {
if (bfsq.size() >= RingUtils::MAX_BFSQ_SIZE) {
std::string msg =
"Maximum BFS search size exceeded.\nThis is likely due to a highly "
"symmetric fused ring system.";
BOOST_LOG(rdErrorLog) << msg << std::endl;
throw ValueErrorException(msg);
}
tv = bfsq.front();
bfsq.pop_front();
unsigned int currAtomIdx = tv.back();
ROMol::ADJ_ITER nbrIdx, endNbrs;
boost::tie(nbrIdx, endNbrs) =
tMol.getAtomNeighbors(tMol.getAtomWithIdx(currAtomIdx));
while (nbrIdx != endNbrs) {
if (*nbrIdx == endAtomIdx) {
if (currAtomIdx != startAtomIdx) {
INT_VECT nv(tv);
nv.push_back(rdcast<unsigned int>(*nbrIdx));
// make sure the ring we just found isn't already in our set
// of rings (this was an extension of sf.net issue 249)
boost::uint32_t invr =
RingUtils::computeRingInvariant(nv, tMol.getNumAtoms());
if (invars.find(invr) == invars.end()) {
// we're done!
res.resize(nv.size());
std::copy(nv.begin(), nv.end(), res.begin());
return true;
}
} else {
// ignore this one
}
} else if (ringAtoms[*nbrIdx] &&
std::find(tv.begin(), tv.end(), *nbrIdx) == tv.end()) {
//} else if(ringAtoms[*nbrIdx]){
INT_VECT nv(tv);
nv.push_back(rdcast<unsigned int>(*nbrIdx));
bfsq.push_back(nv);
}
++nbrIdx;
}
}
return false;
}
bool findRingConnectingAtoms(const ROMol &tMol, const Bond *bond,
VECT_INT_VECT &res, RINGINVAR_SET &invars,
boost::dynamic_bitset<> &ringBonds,
boost::dynamic_bitset<> &ringAtoms) {
PRECONDITION(bond, "bad bond");
PRECONDITION(!ringBonds[bond->getIdx()], "not a ring bond");
PRECONDITION(ringAtoms[bond->getBeginAtomIdx()], "not a ring atom");
PRECONDITION(ringAtoms[bond->getEndAtomIdx()], "not a ring atom");
INT_VECT nring;
if (_atomSearchBFS(tMol, bond->getBeginAtomIdx(), bond->getEndAtomIdx(),
ringAtoms, nring, invars)) {
boost::uint32_t invr =
RingUtils::computeRingInvariant(nring, tMol.getNumAtoms());
if (invars.find(invr) == invars.end()) {
res.push_back(nring);
invars.insert(invr);
#if 0
std::cerr<<" local: "<<invr<<" | ";
std::copy(nring.begin(),nring.end(),std::ostream_iterator<int>(std::cerr," "));
std::cerr<<std::endl;
#endif
for (unsigned int i = 0; i < nring.size() - 1; ++i) {
unsigned int bIdx =
tMol.getBondBetweenAtoms(nring[i], nring[i + 1])->getIdx();
ringBonds.set(bIdx);
ringAtoms.set(nring[i]);
}
ringBonds.set(tMol.getBondBetweenAtoms(nring[0], nring[nring.size() - 1])
->getIdx());
ringAtoms.set(nring[nring.size() - 1]);
}
} else {
return false;
}
return true;
}
} // end of FindRings namespace
namespace RDKit {
namespace MolOps {
int findSSSR(const ROMol &mol, VECT_INT_VECT *res) {
if (!res) {
VECT_INT_VECT rings;
return findSSSR(mol, rings);
} else {
return findSSSR(mol, (*res));
}
}
int findSSSR(const ROMol &mol, VECT_INT_VECT &res) {
res.resize(0);
// check if SSSR's are already on the molecule
if (mol.getRingInfo()->isInitialized()) {
res = mol.getRingInfo()->atomRings();
return rdcast<int>(res.size());
} else {
mol.getRingInfo()->initialize();
}
RINGINVAR_SET invars;
unsigned int nats = mol.getNumAtoms();
boost::dynamic_bitset<> activeAtoms(nats);
activeAtoms.set();
int nbnds = mol.getNumBonds();
boost::dynamic_bitset<> activeBonds(nbnds);
activeBonds.set();
// Zero-order bonds are not candidates for rings
ROMol::EDGE_ITER firstB, lastB;
boost::tie(firstB, lastB) = mol.getEdges();
while (firstB != lastB) {
const Bond* bond = mol[*firstB];
if (bond->getBondType() == Bond::ZERO) activeBonds[bond->getIdx()] = 0;
++firstB;
}
boost::dynamic_bitset<> ringBonds(nbnds);
boost::dynamic_bitset<> ringAtoms(nats);
INT_VECT atomDegrees(nats);
INT_VECT atomDegreesWithZeroOrderBonds(nats);
for (unsigned int i = 0; i < nats; ++i) {
const Atom *atom = mol.getAtomWithIdx(i);
int deg = atom->getDegree();
atomDegrees[i] = deg;
atomDegreesWithZeroOrderBonds[i] = deg;
ROMol::OEDGE_ITER beg, end;
boost::tie(beg, end) = mol.getAtomBonds(atom);
while (beg != end) {
const Bond* bond = mol[*beg];
if (bond->getBondType() == Bond::ZERO) atomDegrees[i]--;
++beg;
}
}
// find the number of fragments in the molecule - we will loop over them
VECT_INT_VECT frags;
INT_VECT curFrag;
unsigned int nfrags = getMolFrags(mol, frags);
for (unsigned int fi = 0; fi < nfrags;
fi++) { // loop over the fragments in a molecule
VECT_INT_VECT fragRes;
curFrag = frags[fi];
if (curFrag.size() < 3) continue;
// the following is the list of atoms that are useful in the next round of
// trimming
// basically atoms that become degree 0 or 1 because of bond removals
// initialized with atoms of degrees 0 and 1
INT_SET changed;
int bndcnt_with_zero_order_bonds = 0;
unsigned int nbnds = 0;
for (INT_VECT_CI aidi = curFrag.begin(); aidi != curFrag.end(); aidi++) {
int atom_idx = *aidi;
bndcnt_with_zero_order_bonds += atomDegreesWithZeroOrderBonds[atom_idx];
int deg = atomDegrees[atom_idx];
nbnds += deg;
if (deg < 2) {
changed.insert((*aidi));
}
}
// check to see if this fragment can even have a possible ring
CHECK_INVARIANT(bndcnt_with_zero_order_bonds % 2 == 0,
"fragment graph has a dangling degree");
bndcnt_with_zero_order_bonds = bndcnt_with_zero_order_bonds / 2;
int num_possible_rings = bndcnt_with_zero_order_bonds - curFrag.size() + 1;
if (num_possible_rings < 1) continue;
CHECK_INVARIANT(nbnds % 2 == 0,
"fragment graph problem when including zero-order bonds");
nbnds = nbnds / 2;
boost::dynamic_bitset<> doneAts(nats);
unsigned int nAtomsDone = 0;
while (nAtomsDone < curFrag.size()) {
// std::cerr<<" ndone: "<<nAtomsDone<<std::endl;
// std::cerr<<" activeBonds: "<<activeBonds<<std::endl;
// std::cerr<<" done: ";
// trim all bonds that connect to degree 0 and 1 atoms
while (changed.size() > 0) {
int cand = *(changed.begin());
changed.erase(changed.begin());
if (!doneAts[cand]) {
// std::cerr<<cand<<" ";
doneAts.set(cand);
++nAtomsDone;
FindRings::trimBonds(cand, mol, changed, atomDegrees, activeBonds);
}
}
// std::cerr<<std::endl;
// std::cerr<<"activeBonds2: "<<activeBonds<<std::endl;
// all atoms left in the fragment should atleast have a degree >= 2
// collect all the degree two nodes;
INT_VECT d2nodes;
FindRings::pickD2Nodes(mol, d2nodes, curFrag, atomDegrees, activeBonds);
#if 0
std::cerr<<"d2nodes: ";
std::copy(d2nodes.begin(),d2nodes.end(),std::ostream_iterator<int>(std::cerr," "));
std::cerr<<std::endl;
#endif
if (d2nodes.size() > 0) { // deal with the current degree two nodes
// place to record any duplicate rings discovered from the current d2
// nodes
FindRings::findRingsD2nodes(mol, fragRes, invars, d2nodes, atomDegrees,
activeBonds, ringBonds, ringAtoms);
#if 0
std::cerr<<" d2nodes post: ";
std::copy(d2nodes.begin(),d2nodes.end(),std::ostream_iterator<int>(std::cerr," "));
std::cerr<<std::endl;
std::cerr<<" ring bonds: "<<ringBonds<<std::endl;
#endif
INT_VECT_CI d2i;
// trim after we have dealt with all the current d2 nodes,
for (d2i = d2nodes.begin(); d2i != d2nodes.end(); d2i++) {
doneAts.set(*d2i);
++nAtomsDone;
FindRings::trimBonds((*d2i), mol, changed, atomDegrees, activeBonds);
}
} // end of degree two nodes
else if (nAtomsDone <
curFrag.size()) { // now deal with higher degree nodes
// this is brutal - we have no degree 2 nodes - find the first possible
// degree 3 node
int cand = -1;
for (INT_VECT_CI aidi = curFrag.begin(); aidi != curFrag.end();
aidi++) {
unsigned int deg = atomDegrees[*aidi];
if (deg == 3) {
cand = (*aidi);
break;
}
}
// if we did not find a degree 3 node we are done
// REVIEW:
if (cand == -1) {
break;
}
FindRings::findRingsD3Node(mol, fragRes, invars, cand, atomDegrees,
activeBonds);
doneAts.set(cand);
++nAtomsDone;
FindRings::trimBonds(cand, mol, changed, atomDegrees, activeBonds);
} // done with degree 3 node
} // done finding rings in this fragement
#if 0
std::cerr<<"\n\nFOUND:\n";
for(VECT_INT_VECT::const_iterator iter=fragRes.begin();
iter!=fragRes.end();++iter){
std::cerr<<iter-fragRes.begin()<<": ";
std::copy(iter->begin(),iter->end(),std::ostream_iterator<int>(std::cerr," "));
std::cerr<<std::endl;
}
#endif
// calculate the cyclomatic number for the fragment:
int nexpt = rdcast<int>((nbnds - curFrag.size() + 1));
int ssiz = rdcast<int>(fragRes.size());
// first check that we got at least the number of expected rings
// std::cerr<<"EXPT: "<<ssiz<<" "<<nexpt<<std::endl;
if (ssiz < nexpt) {
// Issue 3514824: in certain highly fused ring systems, the algorithm
// above would miss rings.
// for this fix to apply we have to have at least one non-ring bond
// that terminates in ring atoms. Find those bonds:
std::vector<const Bond *> possibleBonds;
for (unsigned int i = 0; i < nbnds; ++i) {
if (!ringBonds[i]) {
const Bond *bnd = mol.getBondWithIdx(i);
if (ringAtoms[bnd->getBeginAtomIdx()] &&
ringAtoms[bnd->getEndAtomIdx()]) {
possibleBonds.push_back(bnd);
break;
}
}
}
boost::dynamic_bitset<> deadBonds(mol.getNumBonds());
while (possibleBonds.size()) {
bool ringFound = FindRings::findRingConnectingAtoms(
mol, possibleBonds[0], fragRes, invars, ringBonds, ringAtoms);
if (!ringFound) deadBonds.set(possibleBonds[0]->getIdx(), 1);
possibleBonds.clear();
// check if we need to repeat the process:
for (unsigned int i = 0; i < nbnds; ++i) {
if (!ringBonds[i]) {
const Bond *bnd = mol.getBondWithIdx(i);
if (!deadBonds[bnd->getIdx()] &&
ringAtoms[bnd->getBeginAtomIdx()] &&
ringAtoms[bnd->getEndAtomIdx()]) {
possibleBonds.push_back(bnd);
break;
}
}
}
}
ssiz = rdcast<int>(fragRes.size());
if (ssiz < nexpt) {
BOOST_LOG(rdWarningLog)<<"WARNING: could not find number of expected rings. Switching to an approximate ring finding algorithm."<<std::endl;
fastFindRings(mol);
res.clear();
res = mol.getRingInfo()->atomRings();
}
}
// if we have more than expected we need to do some cleanup
// otherwise do som clean up work
// std::cerr<<" check: "<<ssiz<<" "<<nexpt<<std::endl;
if (ssiz > nexpt) {
FindRings::removeExtraRings(fragRes, nexpt, mol);
}
#if 0
std::cerr<<"\n\nKEEPING:\n";
for(VECT_INT_VECT::const_iterator iter=fragRes.begin();
iter!=fragRes.end();++iter){
std::copy(iter->begin(),iter->end(),std::ostream_iterator<int>(std::cerr," "));
std::cerr<<std::endl;
}
#endif
res.reserve(res.size() + fragRes.size());
for (VECT_INT_VECT::const_iterator iter = fragRes.begin();
iter != fragRes.end(); ++iter) {
res.push_back(*iter);
}
} // done with all fragments
FindRings::storeRingsInfo(mol, res);
// update the ring memberships of atoms and bonds in the molecule:
// store the SSSR rings on the the molecule as a property
// we will ignore any existing SSSRs ont eh molecule - simply overwrite
return rdcast<int>(res.size());
}
int symmetrizeSSSR(ROMol &mol) {
VECT_INT_VECT tmp;
return symmetrizeSSSR(mol, tmp);
};
int symmetrizeSSSR(ROMol &mol, VECT_INT_VECT &res) {
res.clear();
res.resize(0);
unsigned int nsssr;
VECT_INT_VECT sssrs;
// FIX: need to set flag here the symmetrization has been done in order to
// avoid
// repeating this work
if (!mol.getRingInfo()->isInitialized()) {
nsssr = findSSSR(mol, sssrs);
} else {
sssrs = mol.getRingInfo()->atomRings();
nsssr = rdcast<unsigned int>(sssrs.size());
}
VECT_INT_VECT_CI srci;
INT_VECT copr;
for (srci = sssrs.begin(); srci != sssrs.end(); srci++) {
copr = (*srci);
res.push_back(copr);
}
// now check if there are any extra rings on the molecule
if (!mol.hasProp(common_properties::extraRings)) {
// no extra rings nothign to be done
return rdcast<int>(res.size());
}
const VECT_INT_VECT &extras =
mol.getProp<VECT_INT_VECT>(common_properties::extraRings);
// std::cerr<<" extras "<<extras.size()<<std::endl;
// convert the rings to bond ids
VECT_INT_VECT bsrs, bextra;
RingUtils::convertToBonds(sssrs, bsrs, mol);
RingUtils::convertToBonds(extras, bextra, mol);
INT_VECT munion, nunion, symids;
Union(bsrs, munion);
INT_VECT sr, exr;
INT_VECT_CI eri;
unsigned int eid, srid, ssiz;
unsigned int next = rdcast<unsigned int>(bextra.size());
// now the trick is the following
// we will replace each ring of size ssiz from the SSSR with
// one of the same size rings in the extras. Compute the union of of the new
// set
// if all the union elements of the new set if same as munion we found a
// symmetric ring
for (srid = 0; srid < nsssr; srid++) {
sr = bsrs[srid];
#if 0
std::cerr<<" consider: "<<srid<<std::endl;
std::copy(sssrs[srid].begin(),sssrs[srid].end(),std::ostream_iterator<int>(std::cerr," "));
std::cerr<<" | ";
std::copy(sr.begin(),sr.end(),std::ostream_iterator<int>(std::cerr," "));
std::cerr<<std::endl;
std::cerr<<"------"<<std::endl;
#endif
ssiz = rdcast<unsigned int>(sr.size());
INT_VECT exrid;
exrid.push_back(srid);
Union(bsrs, nunion, &exrid);
for (eid = 0; eid < next; eid++) {
// if we already added this ring continue
// FIX: if the ring has already been added,it probably shouldn't be
// in the list at all? Is this perhaps the most efficient way?
if (std::find(symids.begin(), symids.end(), static_cast<int>(eid)) !=
symids.end()) {
continue;
}
exr = bextra[eid];
#if 0
std::cerr<<" "<<eid<<": ";
std::copy(extras[eid].begin(),extras[eid].end(),std::ostream_iterator<int>(std::cerr," "));
std::cerr<<" | ";
std::copy(exr.begin(),exr.end(),std::ostream_iterator<int>(std::cerr," "));
std::cerr<<std::endl;
#endif
if (ssiz == exr.size()) {
// std::cerr<<" possible"<<std::endl;
INT_VECT eunion;
Union(nunion, exr, eunion);
#if 0
std::cerr<<" munion: ";
std::copy(munion.begin(),munion.end(),std::ostream_iterator<int>(std::cerr," "));
std::cerr<<std::endl;
std::cerr<<" eunion: ";
std::copy(eunion.begin(),eunion.end(),std::ostream_iterator<int>(std::cerr," "));
std::cerr<<std::endl;
#endif
// now check if the eunion is same as the original union from the SSSRs
if (eunion.size() == munion.size()) {
// we found a symmetric ring
symids.push_back(eid);
// std::cerr<<" keep!"<<std::endl;
}
}
}
}
// add the symmetric rings
for (eri = symids.begin(); eri != symids.end(); eri++) {
exr = extras[*eri];
res.push_back(exr);
FindRings::storeRingInfo(mol, exr);
}
if (mol.hasProp(common_properties::extraRings)) {
mol.clearProp(common_properties::extraRings);
}
return rdcast<int>(res.size());
}
namespace {
void _DFS(const ROMol &mol, const Atom *atom, INT_VECT &atomColors,
std::vector<const Atom *> &traversalOrder, VECT_INT_VECT &res,
const Atom *fromAtom = nullptr) {
// std::cerr<<" dfs: "<<atom->getIdx()<<" from
// "<<(fromAtom?fromAtom->getIdx():-1)<<std::endl;
PRECONDITION(atom, "bad atom");
PRECONDITION(atomColors[atom->getIdx()] == 0, "bad color");
atomColors[atom->getIdx()] = 1;
traversalOrder.push_back(atom);
ROMol::ADJ_ITER nbrIter, endNbrs;
boost::tie(nbrIter, endNbrs) = mol.getAtomNeighbors(atom);
while (nbrIter != endNbrs) {
const Atom *nbr = mol[*nbrIter];
unsigned int nbrIdx = nbr->getIdx();
// std::cerr<<" "<<atom->getIdx()<<" consider: "<<nbrIdx<<"
// "<<atomColors[nbrIdx]<<std::endl;
if (atomColors[nbrIdx] == 0) {
if (nbr->getDegree() < 2) {
atomColors[nbr->getIdx()] = 2;
} else {
_DFS(mol, nbr, atomColors, traversalOrder, res, atom);
}
} else if (atomColors[nbrIdx] == 1) {
if (fromAtom && nbrIdx != fromAtom->getIdx()) {
INT_VECT cycle;
auto lastElem =
std::find(traversalOrder.rbegin(), traversalOrder.rend(), atom);
for (auto rIt = lastElem; // traversalOrder.rbegin();
rIt != traversalOrder.rend() && (*rIt)->getIdx() != nbrIdx;
++rIt) {
cycle.push_back((*rIt)->getIdx());
}
cycle.push_back(nbrIdx);
res.push_back(cycle);
// std::cerr<<" cycle from "<<atom->getIdx()<<" :";
// std::copy(cycle.begin(),cycle.end(),std::ostream_iterator<int>(std::cerr,"
// "));
// std::cerr<<std::endl;
}
}
++nbrIter;
}
atomColors[atom->getIdx()] = 2;
traversalOrder.pop_back();
// std::cerr<<" done "<<atom->getIdx()<<std::endl;
}
} // end of anonymous namespace
void fastFindRings(const ROMol &mol) {
// std::cerr<<"ffr"<<std::endl;
VECT_INT_VECT res;
res.resize(0);
// check if SSSR's are already on the molecule
if (mol.getRingInfo()->isInitialized()) {
return;
} else {
mol.getRingInfo()->initialize();
}
unsigned int nats = mol.getNumAtoms();
INT_VECT atomColors(nats, 0);
for (unsigned int i = 0; i < nats; ++i) {
if (atomColors[i]) continue;
if (mol.getAtomWithIdx(i)->getDegree() < 2) {
atomColors[i] = 2;
continue;
}
std::vector<const Atom *> traversalOrder;
_DFS(mol, mol.getAtomWithIdx(i), atomColors, traversalOrder, res);
}
FindRings::storeRingsInfo(mol, res);
}
} // end of MolOps namespace
} // end of RDKit namespace
|