1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237
|
//
// Copyright (C) 2018 Boran Adas, Google Summer of Code
//
// @@ All Rights Reserved @@
// This file is part of the RDKit.
// The contents are covered by the terms of the BSD license
// which is included in the file license.txt, found at the root
// of the RDKit source tree.
//
#include <GraphMol/RDKitBase.h>
#include <GraphMol/Fingerprints/FingerprintGenerator.h>
#include <GraphMol/Fingerprints/AtomPairGenerator.h>
#include <GraphMol/Fingerprints/FingerprintUtil.h>
#include <RDGeneral/hash/hash.hpp>
namespace RDKit {
namespace AtomPair {
using namespace AtomPairs;
AtomPairAtomInvGenerator::AtomPairAtomInvGenerator(
bool includeChirality, bool topologicalTorsionCorrection)
: df_includeChirality(includeChirality),
df_topologicalTorsionCorrection(topologicalTorsionCorrection) {}
std::vector<std::uint32_t> *AtomPairAtomInvGenerator::getAtomInvariants(
const ROMol &mol) const {
std::vector<std::uint32_t> *atomInvariants =
new std::vector<std::uint32_t>(mol.getNumAtoms());
for (ROMol::ConstAtomIterator atomItI = mol.beginAtoms();
atomItI != mol.endAtoms(); ++atomItI) {
(*atomInvariants)[(*atomItI)->getIdx()] =
getAtomCode(*atomItI, 0, df_includeChirality) -
(df_topologicalTorsionCorrection ? 2 : 0);
}
return atomInvariants;
}
std::string AtomPairAtomInvGenerator::infoString() const {
return "AtomPairInvariantGenerator includeChirality=" +
std::to_string(df_includeChirality) +
" topologicalTorsionCorrection=" +
std::to_string(df_topologicalTorsionCorrection);
}
AtomPairAtomInvGenerator *AtomPairAtomInvGenerator::clone() const {
return new AtomPairAtomInvGenerator(df_includeChirality,
df_topologicalTorsionCorrection);
}
template <typename OutputType>
OutputType AtomPairArguments<OutputType>::getResultSize() const {
OutputType result = 1;
return (result << (numAtomPairFingerprintBits +
2 * (df_includeChirality ? numChiralBits : 0)));
}
template <typename OutputType>
AtomPairArguments<OutputType>::AtomPairArguments(
const bool countSimulation, const bool includeChirality, const bool use2D,
const unsigned int minDistance, const unsigned int maxDistance,
const std::vector<std::uint32_t> countBounds, const std::uint32_t fpSize)
: FingerprintArguments<OutputType>(countSimulation, countBounds, fpSize),
df_includeChirality(includeChirality),
df_use2D(use2D),
d_minDistance(minDistance),
d_maxDistance(maxDistance) {
PRECONDITION(minDistance <= maxDistance, "bad distances provided");
}
template <typename OutputType>
std::string AtomPairArguments<OutputType>::infoString() const {
return "AtomPairArguments includeChirality=" +
std::to_string(df_includeChirality) +
" use2D=" + std::to_string(df_use2D) +
" minDistance=" + std::to_string(d_minDistance) +
" maxDistance=" + std::to_string(d_maxDistance);
}
template <typename OutputType>
OutputType AtomPairAtomEnv<OutputType>::getBitId(
FingerprintArguments<OutputType> *arguments,
const std::vector<std::uint32_t> *atomInvariants,
const std::vector<std::uint32_t> *bondInvariants,
const AdditionalOutput *additionalOutput, const bool hashResults) const {
PRECONDITION((atomInvariants->size() >= d_atomIdFirst) &&
(atomInvariants->size() >= d_atomIdSecond),
"bad atom invariants size");
AtomPairArguments<OutputType> *atomPairArguments =
dynamic_cast<AtomPairArguments<OutputType> *>(arguments);
std::uint32_t codeSizeLimit =
(1 << (codeSize +
(atomPairArguments->df_includeChirality ? numChiralBits : 0))) -
1;
std::uint32_t atomCodeFirst =
(*atomInvariants)[d_atomIdFirst] % codeSizeLimit;
std::uint32_t atomCodeSecond =
(*atomInvariants)[d_atomIdSecond] % codeSizeLimit;
std::uint32_t bitId = 0;
if (hashResults) {
gboost::hash_combine(bitId, std::min(atomCodeFirst, atomCodeSecond));
gboost::hash_combine(bitId, d_distance);
gboost::hash_combine(bitId, std::max(atomCodeFirst, atomCodeSecond));
} else {
bitId = getAtomPairCode(atomCodeFirst, atomCodeSecond, d_distance,
atomPairArguments->df_includeChirality);
}
if (additionalOutput && additionalOutput->atomToBits) {
additionalOutput->atomToBits->at(d_atomIdFirst).push_back(bitId);
additionalOutput->atomToBits->at(d_atomIdSecond).push_back(bitId);
}
return bitId;
}
template <typename OutputType>
AtomPairAtomEnv<OutputType>::AtomPairAtomEnv(const unsigned int atomIdFirst,
const unsigned int atomIdSecond,
const unsigned int distance)
: d_atomIdFirst(atomIdFirst),
d_atomIdSecond(atomIdSecond),
d_distance(distance) {}
template <typename OutputType>
std::vector<AtomEnvironment<OutputType> *>
AtomPairEnvGenerator<OutputType>::getEnvironments(
const ROMol &mol, FingerprintArguments<OutputType> *arguments,
const std::vector<std::uint32_t> *fromAtoms,
const std::vector<std::uint32_t> *ignoreAtoms, const int confId,
const AdditionalOutput *additionalOutput,
const std::vector<std::uint32_t> *atomInvariants,
const std::vector<std::uint32_t> *bondInvariants,
const bool hashResults) const {
const unsigned int atomCount = mol.getNumAtoms();
PRECONDITION(!additionalOutput || !additionalOutput->atomToBits ||
additionalOutput->atomToBits->size() == atomCount,
"bad atomToBits size in AdditionalOutput");
AtomPairArguments<OutputType> *atomPairArguments =
dynamic_cast<AtomPairArguments<OutputType> *>(arguments);
std::vector<AtomEnvironment<OutputType> *> result =
std::vector<AtomEnvironment<OutputType> *>();
const double *distanceMatrix;
if (atomPairArguments->df_use2D) {
distanceMatrix = MolOps::getDistanceMat(mol);
} else {
distanceMatrix = MolOps::get3DDistanceMat(mol, confId);
}
for (ROMol::ConstAtomIterator atomItI = mol.beginAtoms();
atomItI != mol.endAtoms(); ++atomItI) {
unsigned int i = (*atomItI)->getIdx();
if (ignoreAtoms && std::find(ignoreAtoms->begin(), ignoreAtoms->end(), i) !=
ignoreAtoms->end()) {
continue;
}
for (ROMol::ConstAtomIterator atomItJ = atomItI + 1;
atomItJ != mol.endAtoms(); ++atomItJ) {
unsigned int j = (*atomItJ)->getIdx();
if (ignoreAtoms && std::find(ignoreAtoms->begin(), ignoreAtoms->end(),
j) != ignoreAtoms->end()) {
continue;
}
if (fromAtoms &&
(std::find(fromAtoms->begin(), fromAtoms->end(), i) ==
fromAtoms->end()) &&
(std::find(fromAtoms->begin(), fromAtoms->end(), j) ==
fromAtoms->end())) {
continue;
}
unsigned int distance =
static_cast<unsigned int>(floor(distanceMatrix[i * atomCount + j]));
if (distance >= atomPairArguments->d_minDistance &&
distance <= atomPairArguments->d_maxDistance) {
result.push_back(new AtomPairAtomEnv<OutputType>(i, j, distance));
}
}
}
return result;
}
template <typename OutputType>
std::string AtomPairEnvGenerator<OutputType>::infoString() const {
return "AtomPairEnvironmentGenerator";
}
template <typename OutputType>
FingerprintGenerator<OutputType> *getAtomPairGenerator(
const unsigned int minDistance, const unsigned int maxDistance,
const bool includeChirality, const bool use2D,
AtomInvariantsGenerator *atomInvariantsGenerator,
const bool useCountSimulation, const std::uint32_t fpSize,
const std::vector<std::uint32_t> countBounds, const bool ownsAtomInvGen) {
AtomEnvironmentGenerator<OutputType> *atomPairEnvGenerator =
new AtomPair::AtomPairEnvGenerator<OutputType>();
FingerprintArguments<OutputType> *atomPairArguments =
new AtomPair::AtomPairArguments<OutputType>(
useCountSimulation, includeChirality, use2D, minDistance, maxDistance,
countBounds, fpSize);
bool ownsAtomInvGenerator = ownsAtomInvGen;
if (!atomInvariantsGenerator) {
atomInvariantsGenerator = new AtomPairAtomInvGenerator(includeChirality);
ownsAtomInvGenerator = true;
}
return new FingerprintGenerator<OutputType>(
atomPairEnvGenerator, atomPairArguments, atomInvariantsGenerator, nullptr,
ownsAtomInvGenerator, false);
}
template RDKIT_FINGERPRINTS_EXPORT FingerprintGenerator<std::uint32_t> *getAtomPairGenerator(
const unsigned int minDistance, const unsigned int maxDistance,
const bool includeChirality, const bool use2D,
AtomInvariantsGenerator *atomInvariantsGenerator,
const bool useCountSimulation, const std::uint32_t fpSize,
const std::vector<std::uint32_t> countBounds, const bool ownsAtomInvGen);
template RDKIT_FINGERPRINTS_EXPORT FingerprintGenerator<std::uint64_t> *getAtomPairGenerator(
const unsigned int minDistance, const unsigned int maxDistance,
const bool includeChirality, const bool use2D,
AtomInvariantsGenerator *atomInvariantsGenerator,
const bool useCountSimulation, const std::uint32_t fpSize,
const std::vector<std::uint32_t> countBounds, const bool ownsAtomInvGen);
} // namespace AtomPair
} // namespace RDKit
|