File: AtomPairs.cpp

package info (click to toggle)
rdkit 201809.1%2Bdfsg-6
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 123,688 kB
  • sloc: cpp: 230,509; python: 70,501; java: 6,329; ansic: 5,427; sql: 1,899; yacc: 1,739; lex: 1,243; makefile: 445; xml: 229; fortran: 183; sh: 123; cs: 93
file content (492 lines) | stat: -rw-r--r-- 18,470 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
//
//  Copyright (C) 2007-2013 Greg Landrum
//
//   @@ All Rights Reserved @@
//  This file is part of the RDKit.
//  The contents are covered by the terms of the BSD license
//  which is included in the file license.txt, found at the root
//  of the RDKit source tree.
//

#include <GraphMol/RDKitBase.h>
#include <GraphMol/Fingerprints/AtomPairs.h>
#include <GraphMol/Subgraphs/Subgraphs.h>
#include <DataStructs/SparseIntVect.h>
#include <RDGeneral/hash/hash.hpp>
#include <boost/cstdint.hpp>
#include <boost/dynamic_bitset.hpp>
#include <boost/foreach.hpp>
#include <GraphMol/Fingerprints/FingerprintUtil.h>

namespace RDKit {
namespace AtomPairs {

template <typename T1, typename T2>
void updateElement(SparseIntVect<T1> &v, T2 elem) {
  v.setVal(elem, v.getVal(elem) + 1);
}

template <typename T1>
void updateElement(ExplicitBitVect &v, T1 elem) {
  v.setBit(elem % v.getNumBits());
}

template <typename T>
void setAtomPairBit(boost::uint32_t i, boost::uint32_t j,
                    boost::uint32_t nAtoms,
                    const std::vector<boost::uint32_t> &atomCodes,
                    const double *dm, T *bv, unsigned int minLength,
                    unsigned int maxLength, bool includeChirality) {
  unsigned int dist = static_cast<unsigned int>(floor(dm[i * nAtoms + j]));
  if (dist >= minLength && dist <= maxLength) {
    boost::uint32_t bitId =
        getAtomPairCode(atomCodes[i], atomCodes[j], dist, includeChirality);
    updateElement(*bv, static_cast<boost::uint32_t>(bitId));
  }
}

SparseIntVect<boost::int32_t> *getAtomPairFingerprint(
    const ROMol &mol, const std::vector<boost::uint32_t> *fromAtoms,
    const std::vector<boost::uint32_t> *ignoreAtoms,
    const std::vector<boost::uint32_t> *atomInvariants, bool includeChirality,
    bool use2D, int confId) {
  return getAtomPairFingerprint(mol, 1, maxPathLen - 1, fromAtoms, ignoreAtoms,
                                atomInvariants, includeChirality, use2D,
                                confId);
};

SparseIntVect<boost::int32_t> *getAtomPairFingerprint(
    const ROMol &mol, unsigned int minLength, unsigned int maxLength,
    const std::vector<boost::uint32_t> *fromAtoms,
    const std::vector<boost::uint32_t> *ignoreAtoms,
    const std::vector<boost::uint32_t> *atomInvariants, bool includeChirality,
    bool use2D, int confId) {
  PRECONDITION(minLength <= maxLength, "bad lengths provided");
  PRECONDITION(!atomInvariants || atomInvariants->size() >= mol.getNumAtoms(),
               "bad atomInvariants size");

  const ROMol *lmol = &mol;
  std::unique_ptr<ROMol> tmol;
  if (includeChirality && !mol.hasProp(common_properties::_StereochemDone)) {
    tmol = std::unique_ptr<ROMol>(new ROMol(mol));
    MolOps::assignStereochemistry(*tmol);
    lmol = tmol.get();
  }

  auto *res = new SparseIntVect<boost::int32_t>(
      1 << (numAtomPairFingerprintBits + 2 * (includeChirality ? 2 : 0)));
  const double *dm;
  if (use2D) {
    dm = MolOps::getDistanceMat(*lmol);
  } else {
    dm = MolOps::get3DDistanceMat(*lmol, confId);
  }
  const unsigned int nAtoms = lmol->getNumAtoms();

  std::vector<boost::uint32_t> atomCodes;
  for (ROMol::ConstAtomIterator atomItI = lmol->beginAtoms();
       atomItI != lmol->endAtoms(); ++atomItI) {
    if (!atomInvariants) {
      atomCodes.push_back(getAtomCode(*atomItI, 0, includeChirality));
    } else {
      atomCodes.push_back((*atomInvariants)[(*atomItI)->getIdx()] %
                          ((1 << codeSize) - 1));
    }
  }

  for (ROMol::ConstAtomIterator atomItI = lmol->beginAtoms();
       atomItI != lmol->endAtoms(); ++atomItI) {
    unsigned int i = (*atomItI)->getIdx();
    if (ignoreAtoms && std::find(ignoreAtoms->begin(), ignoreAtoms->end(), i) !=
                           ignoreAtoms->end()) {
      continue;
    }
    if (!fromAtoms) {
      for (ROMol::ConstAtomIterator atomItJ = atomItI + 1;
           atomItJ != lmol->endAtoms(); ++atomItJ) {
        unsigned int j = (*atomItJ)->getIdx();
        if (ignoreAtoms && std::find(ignoreAtoms->begin(), ignoreAtoms->end(),
                                     j) != ignoreAtoms->end()) {
          continue;
        }
        setAtomPairBit(i, j, nAtoms, atomCodes, dm, res, minLength, maxLength,
                       includeChirality);
      }
    } else {
      BOOST_FOREACH (boost::uint32_t j, *fromAtoms) {
        if (j != i) {
          if (ignoreAtoms && std::find(ignoreAtoms->begin(), ignoreAtoms->end(),
                                       j) != ignoreAtoms->end()) {
            continue;
          }
          setAtomPairBit(i, j, nAtoms, atomCodes, dm, res, minLength, maxLength,
                         includeChirality);
        }
      }
    }
  }
  return res;
}

SparseIntVect<boost::int32_t> *getHashedAtomPairFingerprint(
    const ROMol &mol, unsigned int nBits, unsigned int minLength,
    unsigned int maxLength, const std::vector<boost::uint32_t> *fromAtoms,
    const std::vector<boost::uint32_t> *ignoreAtoms,
    const std::vector<boost::uint32_t> *atomInvariants, bool includeChirality,
    bool use2D, int confId) {
  PRECONDITION(minLength <= maxLength, "bad lengths provided");
  PRECONDITION(!atomInvariants || atomInvariants->size() >= mol.getNumAtoms(),
               "bad atomInvariants size");
  const ROMol *lmol = &mol;
  std::unique_ptr<ROMol> tmol;
  if (includeChirality && !mol.hasProp(common_properties::_StereochemDone)) {
    tmol = std::unique_ptr<ROMol>(new ROMol(mol));
    MolOps::assignStereochemistry(*tmol);
    lmol = tmol.get();
  }
  auto *res = new SparseIntVect<boost::int32_t>(nBits);
  const double *dm;
  if (use2D) {
    dm = MolOps::getDistanceMat(*lmol);
  } else {
    dm = MolOps::get3DDistanceMat(*lmol, confId);
  }

  const unsigned int nAtoms = lmol->getNumAtoms();

  std::vector<boost::uint32_t> atomCodes;
  atomCodes.reserve(nAtoms);
  for (ROMol::ConstAtomIterator atomItI = lmol->beginAtoms();
       atomItI != lmol->endAtoms(); ++atomItI) {
    if (!atomInvariants) {
      atomCodes.push_back(getAtomCode(*atomItI, 0, includeChirality));
    } else {
      atomCodes.push_back((*atomInvariants)[(*atomItI)->getIdx()]);
    }
  }

  for (ROMol::ConstAtomIterator atomItI = lmol->beginAtoms();
       atomItI != lmol->endAtoms(); ++atomItI) {
    unsigned int i = (*atomItI)->getIdx();
    if (ignoreAtoms && std::find(ignoreAtoms->begin(), ignoreAtoms->end(), i) !=
                           ignoreAtoms->end()) {
      continue;
    }
    if (!fromAtoms) {
      for (ROMol::ConstAtomIterator atomItJ = atomItI + 1;
           atomItJ != lmol->endAtoms(); ++atomItJ) {
        unsigned int j = (*atomItJ)->getIdx();
        if (ignoreAtoms && std::find(ignoreAtoms->begin(), ignoreAtoms->end(),
                                     j) != ignoreAtoms->end()) {
          continue;
        }
        unsigned int dist =
            static_cast<unsigned int>(floor(dm[i * nAtoms + j]));
        if (dist >= minLength && dist <= maxLength) {
          boost::uint32_t bit = 0;
          gboost::hash_combine(bit, std::min(atomCodes[i], atomCodes[j]));
          gboost::hash_combine(bit, dist);
          gboost::hash_combine(bit, std::max(atomCodes[i], atomCodes[j]));
          updateElement(*res, static_cast<boost::int32_t>(bit % nBits));
        }
      }
    } else {
      BOOST_FOREACH (boost::uint32_t j, *fromAtoms) {
        if (j != i) {
          if (ignoreAtoms && std::find(ignoreAtoms->begin(), ignoreAtoms->end(),
                                       j) != ignoreAtoms->end()) {
            continue;
          }
          unsigned int dist =
              static_cast<unsigned int>(floor(dm[i * nAtoms + j]));
          if (dist >= minLength && dist <= maxLength) {
            boost::uint32_t bit = 0;
            gboost::hash_combine(bit, std::min(atomCodes[i], atomCodes[j]));
            gboost::hash_combine(bit, dist);
            gboost::hash_combine(bit, std::max(atomCodes[i], atomCodes[j]));
            updateElement(*res, static_cast<boost::int32_t>(bit % nBits));
          }
        }
      }
    }
  }
  return res;
}

ExplicitBitVect *getHashedAtomPairFingerprintAsBitVect(
    const ROMol &mol, unsigned int nBits, unsigned int minLength,
    unsigned int maxLength, const std::vector<boost::uint32_t> *fromAtoms,
    const std::vector<boost::uint32_t> *ignoreAtoms,
    const std::vector<boost::uint32_t> *atomInvariants,
    unsigned int nBitsPerEntry, bool includeChirality, bool use2D, int confId) {
  PRECONDITION(minLength <= maxLength, "bad lengths provided");
  PRECONDITION(!atomInvariants || atomInvariants->size() >= mol.getNumAtoms(),
               "bad atomInvariants size");
  static int bounds[4] = {1, 2, 4, 8};

  unsigned int blockLength = nBits / nBitsPerEntry;
  SparseIntVect<boost::int32_t> *sres = getHashedAtomPairFingerprint(
      mol, blockLength, minLength, maxLength, fromAtoms, ignoreAtoms,
      atomInvariants, includeChirality, use2D, confId);
  auto *res = new ExplicitBitVect(nBits);
  if (nBitsPerEntry != 4) {
    BOOST_FOREACH (SparseIntVect<boost::int64_t>::StorageType::value_type val,
                   sres->getNonzeroElements()) {
      for (unsigned int i = 0; i < nBitsPerEntry; ++i) {
        if (val.second > static_cast<int>(i))
          res->setBit(val.first * nBitsPerEntry + i);
      }
    }
  } else {
    BOOST_FOREACH (SparseIntVect<boost::int64_t>::StorageType::value_type val,
                   sres->getNonzeroElements()) {
      for (unsigned int i = 0; i < nBitsPerEntry; ++i) {
        if (val.second >= bounds[i]) {
          res->setBit(val.first * nBitsPerEntry + i);
        }
      }
    }
  }
  delete sres;
  return res;
}

SparseIntVect<boost::int64_t> *getTopologicalTorsionFingerprint(
    const ROMol &mol, unsigned int targetSize,
    const std::vector<boost::uint32_t> *fromAtoms,
    const std::vector<boost::uint32_t> *ignoreAtoms,
    const std::vector<boost::uint32_t> *atomInvariants, bool includeChirality) {
  PRECONDITION(!atomInvariants || atomInvariants->size() >= mol.getNumAtoms(),
               "bad atomInvariants size");
  const ROMol *lmol = &mol;
  std::unique_ptr<ROMol> tmol;
  if (includeChirality && !mol.hasProp(common_properties::_StereochemDone)) {
    tmol = std::unique_ptr<ROMol>(new ROMol(mol));
    MolOps::assignStereochemistry(*tmol);
    lmol = tmol.get();
  }
  boost::uint64_t sz = 1;
  sz = (sz << (targetSize *
               (codeSize + (includeChirality ? numChiralBits : 0))));
  // NOTE: this -1 is incorrect but it's needed for backwards compatibility.
  //  hopefully we'll never have a case with a torsion that hits this.
  //
  //  mmm, bug compatible.
  sz -= 1;
  auto *res = new SparseIntVect<boost::int64_t>(sz);

  std::vector<boost::uint32_t> atomCodes;
  atomCodes.reserve(lmol->getNumAtoms());
  for (ROMol::ConstAtomIterator atomItI = lmol->beginAtoms();
       atomItI != lmol->endAtoms(); ++atomItI) {
    if (!atomInvariants) {
      atomCodes.push_back(getAtomCode(*atomItI, 0, includeChirality));
    } else {
      // need to add to the atomCode here because we subtract off up to 2 below
      // as part of the branch correction
      atomCodes.push_back(
          (*atomInvariants)[(*atomItI)->getIdx()] % ((1 << codeSize) - 1) + 2);
    }
  }

  boost::dynamic_bitset<> *fromAtomsBV = nullptr;
  if (fromAtoms) {
    fromAtomsBV = new boost::dynamic_bitset<>(lmol->getNumAtoms());
    BOOST_FOREACH (boost::uint32_t fAt, *fromAtoms) { fromAtomsBV->set(fAt); }
  }
  boost::dynamic_bitset<> *ignoreAtomsBV = nullptr;
  if (ignoreAtoms) {
    ignoreAtomsBV = new boost::dynamic_bitset<>(mol.getNumAtoms());
    BOOST_FOREACH (boost::uint32_t fAt, *ignoreAtoms) {
      ignoreAtomsBV->set(fAt);
    }
  }
  boost::dynamic_bitset<> pAtoms(lmol->getNumAtoms());
  PATH_LIST paths = findAllPathsOfLengthN(*lmol, targetSize, false);
  for (PATH_LIST::const_iterator pathIt = paths.begin(); pathIt != paths.end();
       ++pathIt) {
    bool keepIt = true;
    if (fromAtomsBV) {
      keepIt = false;
    }
    std::vector<boost::uint32_t> pathCodes;
    const PATH_TYPE &path = *pathIt;
    if (fromAtomsBV) {
      if (fromAtomsBV->test(static_cast<boost::uint32_t>(path.front())) ||
          fromAtomsBV->test(static_cast<boost::uint32_t>(path.back()))) {
        keepIt = true;
      }
    }
    if (keepIt && ignoreAtomsBV) {
      BOOST_FOREACH (int pElem, path) {
        if (ignoreAtomsBV->test(pElem)) {
          keepIt = false;
          break;
        }
      }
    }
    if (keepIt) {
      pAtoms.reset();
      for (auto pIt = path.begin(); pIt < path.end(); ++pIt) {
        // look for a cycle that doesn't start at the first atom
        // we can't effectively canonicalize these at the moment
        // (was github #811)
        if (pIt != path.begin() && *pIt != *(path.begin()) && pAtoms[*pIt]) {
          pathCodes.clear();
          break;
        }
        pAtoms.set(*pIt);
        unsigned int code = atomCodes[*pIt] - 1;
        // subtract off the branching number:
        if (pIt != path.begin() && pIt + 1 != path.end()) {
          --code;
        }
        pathCodes.push_back(code);
      }
      if (pathCodes.size()) {
        boost::int64_t code =
            getTopologicalTorsionCode(pathCodes, includeChirality);
        updateElement(*res, code);
      }
    }
  }
  delete fromAtomsBV;
  delete ignoreAtomsBV;

  return res;
}

namespace {
template <typename T>
void TorsionFpCalc(T *res, const ROMol &mol, unsigned int nBits,
                   unsigned int targetSize,
                   const std::vector<boost::uint32_t> *fromAtoms,
                   const std::vector<boost::uint32_t> *ignoreAtoms,
                   const std::vector<boost::uint32_t> *atomInvariants,
                   bool includeChirality) {
  PRECONDITION(!atomInvariants || atomInvariants->size() >= mol.getNumAtoms(),
               "bad atomInvariants size");
  const ROMol *lmol = &mol;
  std::unique_ptr<ROMol> tmol;
  if (includeChirality && !mol.hasProp(common_properties::_StereochemDone)) {
    tmol = std::unique_ptr<ROMol>(new ROMol(mol));
    MolOps::assignStereochemistry(*tmol);
    lmol = tmol.get();
  }
  std::vector<boost::uint32_t> atomCodes;
  atomCodes.reserve(lmol->getNumAtoms());
  for (ROMol::ConstAtomIterator atomItI = lmol->beginAtoms();
       atomItI != lmol->endAtoms(); ++atomItI) {
    if (!atomInvariants) {
      atomCodes.push_back(getAtomCode(*atomItI, 0, includeChirality));
    } else {
      // need to add to the atomCode here because we subtract off up to 2 below
      // as part of the branch correction
      atomCodes.push_back(((*atomInvariants)[(*atomItI)->getIdx()] << 1) + 1);
    }
  }

  boost::dynamic_bitset<> *fromAtomsBV = nullptr;
  if (fromAtoms) {
    fromAtomsBV = new boost::dynamic_bitset<>(lmol->getNumAtoms());
    BOOST_FOREACH (boost::uint32_t fAt, *fromAtoms) { fromAtomsBV->set(fAt); }
  }
  boost::dynamic_bitset<> *ignoreAtomsBV = nullptr;
  if (ignoreAtoms) {
    ignoreAtomsBV = new boost::dynamic_bitset<>(lmol->getNumAtoms());
    BOOST_FOREACH (boost::uint32_t fAt, *ignoreAtoms) {
      ignoreAtomsBV->set(fAt);
    }
  }

  PATH_LIST paths = findAllPathsOfLengthN(*lmol, targetSize, false);
  for (PATH_LIST::const_iterator pathIt = paths.begin(); pathIt != paths.end();
       ++pathIt) {
    bool keepIt = true;
    if (fromAtomsBV) {
      keepIt = false;
    }
    const PATH_TYPE &path = *pathIt;
    if (fromAtomsBV) {
      if (fromAtomsBV->test(static_cast<boost::uint32_t>(path.front())) ||
          fromAtomsBV->test(static_cast<boost::uint32_t>(path.back()))) {
        keepIt = true;
      }
    }
    if (keepIt && ignoreAtomsBV) {
      BOOST_FOREACH (int pElem, path) {
        if (ignoreAtomsBV->test(pElem)) {
          keepIt = false;
          break;
        }
      }
    }
    if (keepIt) {
      std::vector<boost::uint32_t> pathCodes(targetSize);
      for (unsigned int i = 0; i < targetSize; ++i) {
        unsigned int code = atomCodes[path[i]] - 1;
        // subtract off the branching number:
        if (i > 0 && i < targetSize - 1) {
          --code;
        }
        pathCodes[i] = code;
      }
      size_t bit = getTopologicalTorsionHash(pathCodes);
      updateElement(*res, bit % nBits);
    }
  }
  delete fromAtomsBV;
  delete ignoreAtomsBV;
}
}  // namespace
SparseIntVect<boost::int64_t> *getHashedTopologicalTorsionFingerprint(
    const ROMol &mol, unsigned int nBits, unsigned int targetSize,
    const std::vector<boost::uint32_t> *fromAtoms,
    const std::vector<boost::uint32_t> *ignoreAtoms,
    const std::vector<boost::uint32_t> *atomInvariants, bool includeChirality) {
  PRECONDITION(!atomInvariants || atomInvariants->size() >= mol.getNumAtoms(),
               "bad atomInvariants size");
  auto *res = new SparseIntVect<boost::int64_t>(nBits);
  TorsionFpCalc(res, mol, nBits, targetSize, fromAtoms, ignoreAtoms,
                atomInvariants, includeChirality);
  return res;
}

ExplicitBitVect *getHashedTopologicalTorsionFingerprintAsBitVect(
    const ROMol &mol, unsigned int nBits, unsigned int targetSize,
    const std::vector<boost::uint32_t> *fromAtoms,
    const std::vector<boost::uint32_t> *ignoreAtoms,
    const std::vector<boost::uint32_t> *atomInvariants,
    unsigned int nBitsPerEntry, bool includeChirality) {
  PRECONDITION(!atomInvariants || atomInvariants->size() >= mol.getNumAtoms(),
               "bad atomInvariants size");
  static int bounds[4] = {1, 2, 4, 8};
  unsigned int blockLength = nBits / nBitsPerEntry;
  auto *sres = new SparseIntVect<boost::int64_t>(blockLength);
  TorsionFpCalc(sres, mol, blockLength, targetSize, fromAtoms, ignoreAtoms,
                atomInvariants, includeChirality);
  auto *res = new ExplicitBitVect(nBits);

  if (nBitsPerEntry != 4) {
    BOOST_FOREACH (SparseIntVect<boost::int64_t>::StorageType::value_type val,
                   sres->getNonzeroElements()) {
      for (unsigned int i = 0; i < nBitsPerEntry; ++i) {
        if (val.second > static_cast<int>(i))
          res->setBit(val.first * nBitsPerEntry + i);
      }
    }
  } else {
    BOOST_FOREACH (SparseIntVect<boost::int64_t>::StorageType::value_type val,
                   sres->getNonzeroElements()) {
      for (unsigned int i = 0; i < nBitsPerEntry; ++i) {
        if (val.second >= bounds[i]) {
          res->setBit(val.first * nBitsPerEntry + i);
        }
      }
    }
  }
  delete sres;
  return res;
}
}  // end of namespace AtomPairs
}  // end of namespace RDKit