File: Fingerprints.cpp

package info (click to toggle)
rdkit 201809.1%2Bdfsg-6
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 123,688 kB
  • sloc: cpp: 230,509; python: 70,501; java: 6,329; ansic: 5,427; sql: 1,899; yacc: 1,739; lex: 1,243; makefile: 445; xml: 229; fortran: 183; sh: 123; cs: 93
file content (813 lines) | stat: -rw-r--r-- 28,358 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
//
//  Copyright (C) 2003-2018 Greg Landrum and Rational Discovery LLC
//
//   @@ All Rights Reserved @@
//  This file is part of the RDKit.
//  The contents are covered by the terms of the BSD license
//  which is included in the file license.txt, found at the root
//  of the RDKit source tree.
//

#include <GraphMol/RDKitBase.h>
#include <GraphMol/QueryOps.h>
#include <DataStructs/ExplicitBitVect.h>
#include <DataStructs/BitOps.h>
#include "Fingerprints.h"
#include <GraphMol/Subgraphs/Subgraphs.h>
#include <GraphMol/Subgraphs/SubgraphUtils.h>
#include <GraphMol/Substruct/SubstructMatch.h>
#include <GraphMol/SmilesParse/SmilesParse.h>
#include <RDGeneral/Invariant.h>
#include <RDGeneral/BoostStartInclude.h>
#include <boost/random.hpp>
#include <boost/cstdint.hpp>
#include <RDGeneral/BoostEndInclude.h>
#include <limits.h>
#include <RDGeneral/hash/hash.hpp>
#include <RDGeneral/types.h>
#include <algorithm>
#include <boost/dynamic_bitset.hpp>
#include <GraphMol/Fingerprints/FingerprintUtil.h>

//#define VERBOSE_FINGERPRINTING 1
//#define REPORT_FP_STATS 1
#ifdef REPORT_FP_STATS
#include <GraphMol/SmilesParse/SmilesWrite.h>
#endif

namespace RDKit {
namespace Fingerprints {
namespace detail {}  // namespace detail
}  // namespace Fingerprints
namespace {
/*
boost::uint32_t hashBond(const Bond *bnd,const std::vector<boost::uint32_t>
&atomInvariants,
              const std::vector<boost::uint32_t> &atomDegrees,boost::uint32_t
bondDegree,
              bool useBondOrder){
PRECONDITION(bnd,"bad bond");
boost::uint32_t res;
if(useBondOrder) {
if(bnd->getIsAromatic()){
  res = Bond::AROMATIC;
} else {
  res=bnd->getBondType();
}
} else {
res = 1;
}
boost::uint32_t iv1=atomInvariants[bnd->getBeginAtomIdx()];
boost::uint32_t iv2=atomInvariants[bnd->getEndAtomIdx()];
boost::uint32_t deg1=atomDegrees[bnd->getBeginAtomIdx()];
boost::uint32_t deg2=atomDegrees[bnd->getEndAtomIdx()];

if(iv1>iv2){
std::swap(iv1,iv2);
std::swap(deg1,deg2);
} else if(iv1==iv2){
if(deg1>deg2){
  std::swap(deg1,deg2);
}
}

res = (res%8) | (iv1%128)<<3 | (iv2%128)<<10 | (deg1%8)<<17 | (deg2%8)<<20 |
(bondDegree%8)<<23 ;
//std::cerr<<"---->("<<bnd->getIdx()<<")
"<<bnd->getBeginAtomIdx()<<"-"<<bnd->getEndAtomIdx()<<" "<<res<<"
"<<iv1<<"-"<<iv2<<":"<<deg1<<"-"<<deg2<<std::endl;
return res;
}

boost::uint32_t canonicalPathHash(const PATH_TYPE &path,
                       const ROMol &mol,
                       const std::vector<const Bond *> &bondCache,
                       const std::vector<boost::uint32_t> &bondHashes){
std::deque< std::pair<unsigned int,boost::dynamic_bitset<> > > stack;
boost::uint32_t best;
//std::cerr<<" hash: ";
//std::copy(path.begin(),path.end(),std::ostream_iterator<int>(std::cerr,", "));

for(unsigned int i=0;i<path.size();++i){
//std::cerr<<"
"<<bondCache[path[i]]->getBeginAtomIdx()<<"-"<<bondCache[path[i]]->getEndAtomIdx()<<"
"<<bondHashes[i];
if(i==0){
  boost::dynamic_bitset<> bs(mol.getNumBonds());
  bs.set(path[i]);
  stack.push_back(std::make_pair(i,bs));
  best=bondHashes[i];
} else {
  if(bondHashes[i]<=best){
    if(bondHashes[i]<best){
      stack.clear();
      best = bondHashes[i];
    }
    boost::dynamic_bitset<> bs(mol.getNumBonds());
    bs.set(path[i]);
    stack.push_back(std::make_pair(i,bs));
  }
}
}
//std::cerr<<std::endl;

boost::uint32_t res=best;
//std::cerr<<"  best: "<<best<<std::endl;
if(path.size()==1) return res;
best = std::numeric_limits<boost::uint32_t>::max();
std::deque< std::pair<unsigned int,boost::dynamic_bitset<> > > newStack;
while(!stack.empty()){
// assumption: each element of the stack corresponds to
// the last point of a traversal of the path
// res has been updated with all elements already traversed

unsigned int i;
boost::dynamic_bitset<> bondsThere;
boost::tie(i,bondsThere)=stack.front();

//std::cerr<<" "<<path[i]<<"("<<bondsThere<<")";

const Bond *bnd=bondCache[path[i]];
for(unsigned int j=0;j<path.size();++j){
  //std::cerr<<" c:"<<path[j];
  if(bondsThere[path[j]]) {
    //std::cerr<<"x";
    continue;
  }
  const Bond *obnd=bondCache[path[j]];
  if(bondHashes[j]>best) continue;
  if(obnd->getBeginAtomIdx()==bnd->getBeginAtomIdx() ||
     obnd->getBeginAtomIdx()==bnd->getEndAtomIdx() ||
     obnd->getEndAtomIdx()==bnd->getBeginAtomIdx() ||
     obnd->getEndAtomIdx()==bnd->getEndAtomIdx() ){
    // it's a neighbor and the hash is at least as good as what we've seen so
far
    if(bondHashes[j]<best){
      newStack.clear();
      best=bondHashes[j];
    }
    boost::dynamic_bitset<> bs(bondsThere);
    bs.set(path[j]);
    newStack.push_back(std::make_pair(j,bs));
    //std::cerr<<"  "<<path[j];
  }
}

stack.pop_front();
if(stack.empty()){
  //std::cerr<<"\n     new round "<<" best: "<<best<<" res: "<<res<<" sz:
"<<newStack.size();
  // at the end of this round, start the next one
  gboost::hash_combine(res,best);
  //std::cerr<<" nres: "<<res<<std::endl;
  //stack=newStack;
  std::swap(stack,newStack);
  best = std::numeric_limits<boost::uint32_t>::max();
  newStack.clear();
}
}
gboost::hash_combine(res,path.size());
return res;
}
*/

}  // end of anonymous namespace

// caller owns the result, it must be deleted
ExplicitBitVect *RDKFingerprintMol(
    const ROMol &mol, unsigned int minPath, unsigned int maxPath,
    unsigned int fpSize, unsigned int nBitsPerHash, bool useHs,
    double tgtDensity, unsigned int minSize, bool branchedPaths,
    bool useBondOrder, std::vector<boost::uint32_t> *atomInvariants,
    const std::vector<boost::uint32_t> *fromAtoms,
    std::vector<std::vector<boost::uint32_t>> *atomBits,
    std::map<boost::uint32_t, std::vector<std::vector<int>>> *bitInfo) {
  PRECONDITION(minPath != 0, "minPath==0");
  PRECONDITION(maxPath >= minPath, "maxPath<minPath");
  PRECONDITION(fpSize != 0, "fpSize==0");
  PRECONDITION(nBitsPerHash != 0, "nBitsPerHash==0");
  PRECONDITION(!atomInvariants || atomInvariants->size() >= mol.getNumAtoms(),
               "bad atomInvariants size");
  PRECONDITION(!atomBits || atomBits->size() >= mol.getNumAtoms(),
               "bad atomBits size");

  // create a mersenne twister with customized parameters.
  // The standard parameters (used to create boost::mt19937)
  // result in an RNG that's much too computationally intensive
  // to seed.
  typedef boost::random::mersenne_twister<boost::uint32_t, 32, 4, 2, 31,
                                          0x9908b0df, 11, 7, 0x9d2c5680, 15,
                                          0xefc60000, 18, 3346425566U>
      rng_type;
  typedef boost::uniform_int<> distrib_type;
  typedef boost::variate_generator<rng_type &, distrib_type> source_type;
  rng_type generator(42u);

  //
  // if we generate arbitrarily sized ints then mod them down to the
  // appropriate size, we can guarantee that a fingerprint of
  // size x has the same bits set as one of size 2x that's been folded
  // in half.  This is a nice guarantee to have.
  //
  distrib_type dist(0, INT_MAX);
  source_type randomSource(generator, dist);

  // build default atom invariants if need be:
  std::vector<boost::uint32_t> lAtomInvariants;
  if (!atomInvariants) {
    RDKitFPUtils::buildDefaultRDKitFingerprintAtomInvariants(mol,
                                                             lAtomInvariants);
    atomInvariants = &lAtomInvariants;
  }

  auto *res = new ExplicitBitVect(fpSize);

  // get all paths
  INT_PATH_LIST_MAP allPaths;
  RDKitFPUtils::enumerateAllPaths(mol, allPaths, fromAtoms, branchedPaths,
                                  useHs, minPath, maxPath);

  // identify query bonds
  std::vector<short> isQueryBond(mol.getNumBonds(), 0);
  std::vector<const Bond *> bondCache;
  RDKitFPUtils::identifyQueryBonds(mol, bondCache, isQueryBond);

  if (atomBits) {
    for (unsigned int i = 0; i < mol.getNumAtoms(); ++i) {
      (*atomBits)[i].clear();
    }
  }
#ifdef VERBOSE_FINGERPRINTING
  std::cerr << " n path sets: " << allPaths.size() << std::endl;
  for (INT_PATH_LIST_MAP_CI paths = allPaths.begin(); paths != allPaths.end();
       paths++) {
    std::cerr << "  " << paths->first << " " << paths->second.size()
              << std::endl;
  }
#endif

#ifdef REPORT_FP_STATS
  std::map<boost::uint32_t, std::set<std::string>> bitSmiles;
#endif
  boost::dynamic_bitset<> atomsInPath(mol.getNumAtoms());
  for (INT_PATH_LIST_MAP_CI paths = allPaths.begin(); paths != allPaths.end();
       paths++) {
    BOOST_FOREACH (const PATH_TYPE &path, paths->second) {
#ifdef REPORT_FP_STATS
      std::vector<int> atomsToUse;
#endif
#ifdef VERBOSE_FINGERPRINTING
      std::cerr << "Path: ";
      std::copy(path.begin(), path.end(),
                std::ostream_iterator<int>(std::cerr, ", "));
      std::cerr << std::endl;
#endif
#if 1
      // the bond hashes of the path
      std::vector<unsigned int> bondHashes = RDKitFPUtils::generateBondHashes(
          mol, atomsInPath, bondCache, isQueryBond, path, useBondOrder,
          atomInvariants);
      if (!bondHashes.size()) {
        continue;
      }

      // hash the path to generate a seed:
      unsigned long seed;
      if (path.size() > 1) {
        std::sort(bondHashes.begin(), bondHashes.end());

        // finally, we will add the number of distinct atoms in the path at the
        // end
        // of the vect. This allows us to distinguish C1CC1 from CC(C)C
        bondHashes.push_back(static_cast<unsigned int>(atomsInPath.count()));
        seed = gboost::hash_range(bondHashes.begin(), bondHashes.end());
      } else {
        seed = bondHashes[0];
      }
#else
      if (atomBits) {
        atomsInPath.reset();
        for (unsigned int i = 0; i < path.size(); ++i) {
          const Bond *bi = bondCache[path[i]];
          atomsInPath.set(bi->getBeginAtomIdx());
          atomsInPath.set(bi->getEndAtomIdx());
        }
      }

      std::vector<unsigned int> bondInvariants(path.size());
      std::vector<unsigned int> bondDegrees(path.size(), 0);
      std::vector<unsigned int> atomDegrees(mol.getNumAtoms(), 0);
      for (unsigned int i = 0; i < path.size(); ++i) {
        const Bond *bi = bondCache[path[i]];
        atomDegrees[bi->getBeginAtomIdx()]++;
        atomDegrees[bi->getEndAtomIdx()]++;
        for (unsigned int j = i; j < path.size(); ++j) {
          const Bond *bj = bondCache[path[j]];
          if (bi->getBeginAtomIdx() == bj->getBeginAtomIdx() ||
              bi->getBeginAtomIdx() == bj->getEndAtomIdx() ||
              bi->getEndAtomIdx() == bj->getBeginAtomIdx() ||
              bi->getEndAtomIdx() == bj->getEndAtomIdx()) {
            bondDegrees[i]++;
            bondDegrees[j]++;
          }
        }
#ifdef REPORT_FP_STATS
        if (std::find(atomsToUse.begin(), atomsToUse.end(),
                      bi->getBeginAtomIdx()) == atomsToUse.end()) {
          atomsToUse.push_back(bi->getBeginAtomIdx());
        }
        if (std::find(atomsToUse.begin(), atomsToUse.end(),
                      bi->getEndAtomIdx()) == atomsToUse.end()) {
          atomsToUse.push_back(bi->getEndAtomIdx());
        }
#endif
      }

      for (unsigned int i = 0; i < path.size(); ++i) {
        bondInvariants[i] = hashBond(bondCache[path[i]], *atomInvariants,
                                     atomDegrees, bondDegrees[i], useBondOrder);
      }

      unsigned long seed =
          canonicalPathHash(path, mol, bondCache, bondInvariants);
#endif
#ifdef VERBOSE_FINGERPRINTING
      std::cerr << " hash: " << seed << std::endl;
#endif

      unsigned int bit = seed % fpSize;
      // std::cerr<<"bit: "<<bit<<" hash: "<<seed<<std::endl;

#ifdef REPORT_FP_STATS
      std::string fsmi = MolFragmentToSmiles(mol, atomsToUse, &path);
      // if(bitSmiles[bit].size()==0){
      //   std::cerr<<"   SET: "<<bit<<" "<<fsmi<<" ";
      //   std::copy(path.begin(),path.end(),std::ostream_iterator<int>(std::cerr,",
      //   "));
      //   std::cerr<<" || ";
      //   std::copy(atomsToUse.begin(),atomsToUse.end(),std::ostream_iterator<int>(std::cerr,",
      //   "));
      //   std::cerr<<std::endl;
      // }
      bitSmiles[bit].insert(fsmi);
// if(bitSmiles[bit].size()>1){
//   std::cerr<<"  DUPE: "<<bit<<" "<<fsmi<<" ";
//   std::copy(path.begin(),path.end(),std::ostream_iterator<int>(std::cerr,",
//   "));
//   std::cerr<<" || ";
//   std::copy(atomsToUse.begin(),atomsToUse.end(),std::ostream_iterator<int>(std::cerr,",
//   "));
//   std::cerr<<std::endl;
// }
#endif

      res->setBit(bit);
      if (atomBits) {
        boost::dynamic_bitset<>::size_type aIdx = atomsInPath.find_first();
        while (aIdx != boost::dynamic_bitset<>::npos) {
          if (std::find((*atomBits)[aIdx].begin(), (*atomBits)[aIdx].end(),
                        bit) == (*atomBits)[aIdx].end()) {
            (*atomBits)[aIdx].push_back(bit);
          }
          aIdx = atomsInPath.find_next(aIdx);
        }
      }
#ifdef VERBOSE_FINGERPRINTING
      std::cerr << "   bit: " << 0 << " " << bit << " " << atomsInPath
                << std::endl;
#endif

      if (bitInfo) {
        (*bitInfo)[bit].push_back(path);
      }
      if (nBitsPerHash > 1) {
        generator.seed(static_cast<rng_type::result_type>(seed));
        for (unsigned int i = 1; i < nBitsPerHash; i++) {
          bit = randomSource();
          bit %= fpSize;
          res->setBit(bit);
          if (atomBits) {
            boost::dynamic_bitset<>::size_type aIdx = atomsInPath.find_first();
            while (aIdx != boost::dynamic_bitset<>::npos) {
              if (std::find((*atomBits)[aIdx].begin(), (*atomBits)[aIdx].end(),
                            bit) == (*atomBits)[aIdx].end()) {
                (*atomBits)[aIdx].push_back(bit);
              }
              aIdx = atomsInPath.find_next(aIdx);
            }
          }
          if (bitInfo) {
            (*bitInfo)[bit].push_back(path);
          }

#ifdef VERBOSE_FINGERPRINTING
          std::cerr << "   bit: " << i << " " << bit << " " << atomsInPath
                    << std::endl;
#endif
        }
      }
    }
  }

  // EFF: this could be faster by folding by more than a factor
  // of 2 each time, but we're not going to be spending much
  // time here anyway
  if (tgtDensity > 0.0) {
    while (static_cast<double>(res->getNumOnBits()) / res->getNumBits() <
               tgtDensity &&
           res->getNumBits() >= 2 * minSize) {
      ExplicitBitVect *tmpV = FoldFingerprint(*res, 2);
      delete res;
      res = tmpV;
    }
  }
#ifdef REPORT_FP_STATS
  std::cerr << "BIT STATS" << std::endl;
  if (fpSize == res->size()) {
    for (unsigned int i = 0; i < fpSize; ++i) {
      if ((*res)[i] && (bitSmiles[i].size() > 1)) {
        std::cerr << i << "\t" << bitSmiles[i].size() << std::endl;
        BOOST_FOREACH (std::string smi, bitSmiles[i]) {
          std::cerr << "   " << smi << std::endl;
        }
      }
    }
  }
#endif
  return res;
}

// caller owns the result, it must be deleted
ExplicitBitVect *LayeredFingerprintMol(
    const ROMol &mol, unsigned int layerFlags, unsigned int minPath,
    unsigned int maxPath, unsigned int fpSize,
    std::vector<unsigned int> *atomCounts, ExplicitBitVect *setOnlyBits,
    bool branchedPaths, const std::vector<boost::uint32_t> *fromAtoms) {
  PRECONDITION(minPath != 0, "minPath==0");
  PRECONDITION(maxPath >= minPath, "maxPath<minPath");
  PRECONDITION(fpSize != 0, "fpSize==0");
  PRECONDITION(!atomCounts || atomCounts->size() >= mol.getNumAtoms(),
               "bad atomCounts size");
  PRECONDITION(!setOnlyBits || setOnlyBits->getNumBits() == fpSize,
               "bad setOnlyBits size");

  if (!mol.getRingInfo()->isInitialized()) {
    MolOps::findSSSR(mol);
  }

  std::vector<const Bond *> bondCache;
  bondCache.resize(mol.getNumBonds());
  std::vector<short> isQueryBond(mol.getNumBonds(), 0);
  ROMol::EDGE_ITER firstB, lastB;
  boost::tie(firstB, lastB) = mol.getEdges();
  while (firstB != lastB) {
    const Bond *bond = mol[*firstB];
    isQueryBond[bond->getIdx()] = 0x0;
    bondCache[bond->getIdx()] = bond;
    if (isComplexQuery(bond)) {
      isQueryBond[bond->getIdx()] = 0x1;
    }
    if (isComplexQuery(bond->getBeginAtom())) {
      isQueryBond[bond->getIdx()] |= 0x2;
    }
    if (isComplexQuery(bond->getEndAtom())) {
      isQueryBond[bond->getIdx()] |= 0x4;
    }
    ++firstB;
  }

  std::vector<bool> aromaticAtoms(mol.getNumAtoms(), false);
  std::vector<int> anums(mol.getNumAtoms(), 0);
  ROMol::VERTEX_ITER firstA, lastA;
  boost::tie(firstA, lastA) = mol.getVertices();
  while (firstA != lastA) {
    const Atom *atom = mol[*firstA];
    if (isAtomAromatic(atom)) aromaticAtoms[atom->getIdx()] = true;
    anums[atom->getIdx()] = atom->getAtomicNum();
    ++firstA;
  }

  auto *res = new ExplicitBitVect(fpSize);

  INT_PATH_LIST_MAP allPaths;
  if (!fromAtoms) {
    if (branchedPaths) {
      allPaths = findAllSubgraphsOfLengthsMtoN(mol, minPath, maxPath, false);
    } else {
      allPaths = findAllPathsOfLengthsMtoN(mol, minPath, maxPath, false);
    }
  } else {
    BOOST_FOREACH (boost::uint32_t aidx, *fromAtoms) {
      INT_PATH_LIST_MAP tPaths;
      if (branchedPaths) {
        tPaths =
            findAllSubgraphsOfLengthsMtoN(mol, minPath, maxPath, false, aidx);
      } else {
        tPaths =
            findAllPathsOfLengthsMtoN(mol, minPath, maxPath, true, false, aidx);
      }
      for (INT_PATH_LIST_MAP::const_iterator tpit = tPaths.begin();
           tpit != tPaths.end(); ++tpit) {
        allPaths[tpit->first].insert(allPaths[tpit->first].begin(),
                                     tpit->second.begin(), tpit->second.end());
      }
    }
  }

  boost::dynamic_bitset<> atomsInPath(mol.getNumAtoms());
  boost::dynamic_bitset<> bondsInPath(mol.getNumBonds());
  for (INT_PATH_LIST_MAP_CI paths = allPaths.begin(); paths != allPaths.end();
       ++paths) {
    for (const auto &path : paths->second) {
#ifdef VERBOSE_FINGERPRINTING
      std::cerr << "Path: ";
      std::copy(path.begin(), path.end(),
                std::ostream_iterator<int>(std::cerr, ", "));
      std::cerr << std::endl;
#endif

      std::vector<std::vector<unsigned int>> hashLayers(maxFingerprintLayers);
      for (unsigned int i = 0; i < maxFingerprintLayers; ++i) {
        if (layerFlags & (0x1 << i)) hashLayers[i].reserve(maxPath);
      }

      // details about what kinds of query features appear on the path:
      unsigned int pathQueries = 0;
      // std::cerr<<" path: ";
      for (int pIt : path) {
        pathQueries |= isQueryBond[pIt];
        // std::cerr<< *pIt <<"("<<isQueryBond[*pIt]<<") ";
      }
      // std::cerr<<" : "<<pathQueries<<std::endl;

      // calculate the number of neighbors each bond has in the path:
      std::vector<unsigned int> bondNbrs(path.size(), 0);
      atomsInPath.reset();

      std::vector<unsigned int> atomDegrees(mol.getNumAtoms(), 0);
      for (int i : path) {
        const Bond *bi = bondCache[i];
        atomDegrees[bi->getBeginAtomIdx()]++;
        atomDegrees[bi->getEndAtomIdx()]++;
        atomsInPath.set(bi->getBeginAtomIdx());
        atomsInPath.set(bi->getEndAtomIdx());
      }

      for (unsigned int i = 0; i < path.size(); ++i) {
        const Bond *bi = bondCache[path[i]];
        for (unsigned int j = i + 1; j < path.size(); ++j) {
          const Bond *bj = bondCache[path[j]];
          if (bi->getBeginAtomIdx() == bj->getBeginAtomIdx() ||
              bi->getBeginAtomIdx() == bj->getEndAtomIdx() ||
              bi->getEndAtomIdx() == bj->getBeginAtomIdx() ||
              bi->getEndAtomIdx() == bj->getEndAtomIdx()) {
            ++bondNbrs[i];
            ++bondNbrs[j];
          }
        }
#ifdef VERBOSE_FINGERPRINTING
        std::cerr << "   bond(" << i << "):" << bondNbrs[i] << std::endl;
#endif
        // we have the count of neighbors for bond bi, compute its hash layers:
        unsigned int ourHash = 0;

        if (layerFlags & 0x1) {
          // layer 1: straight topology
          unsigned int a1Deg, a2Deg;
          a1Deg = atomDegrees[bi->getBeginAtomIdx()];
          a2Deg = atomDegrees[bi->getEndAtomIdx()];
          if (a1Deg < a2Deg) {
            std::swap(a1Deg, a2Deg);
          }
          ourHash = bondNbrs[i] % 8;  // 3 bits here
          ourHash |= (a1Deg % 8) << 3;
          ourHash |= (a2Deg % 8) << 6;
          hashLayers[0].push_back(ourHash);
        }
        if (layerFlags & 0x2 && !(pathQueries & 0x1)) {
          // layer 2: include bond orders:
          unsigned int bondHash;
          // makes sure aromatic bonds and single bonds  always hash the same:
          if (!bi->getIsAromatic() && bi->getBondType() != Bond::SINGLE &&
              bi->getBondType() != Bond::AROMATIC) {
            bondHash = bi->getBondType();
          } else {
            bondHash = Bond::SINGLE;
          }
          unsigned int a1Deg, a2Deg;
          a1Deg = atomDegrees[bi->getBeginAtomIdx()];
          a2Deg = atomDegrees[bi->getEndAtomIdx()];
          if (a1Deg < a2Deg) {
            std::swap(a1Deg, a2Deg);
          }
          ourHash = bondHash % 8;
          ourHash |= (bondNbrs[i] % 8) << 3;
          ourHash |= (a1Deg % 8) << 6;
          ourHash |= (a2Deg % 8) << 9;

          hashLayers[1].push_back(ourHash);
        }
        if (layerFlags & 0x4 && !(pathQueries & 0x6)) {
          // std::cerr<<" consider: "<<bi->getBeginAtomIdx()<<" - "
          // <<bi->getEndAtomIdx()<<std::endl;
          // layer 3: include atom types:
          unsigned int a1Hash, a2Hash;
          a1Hash = (anums[bi->getBeginAtomIdx()] % 128);
          a2Hash = (anums[bi->getEndAtomIdx()] % 128);
          unsigned int a1Deg, a2Deg;
          a1Deg = atomDegrees[bi->getBeginAtomIdx()];
          a2Deg = atomDegrees[bi->getEndAtomIdx()];
          if (a1Hash < a2Hash) {
            std::swap(a1Hash, a2Hash);
            std::swap(a1Deg, a2Deg);
          } else if (a1Hash == a2Hash && a1Deg < a2Deg) {
            std::swap(a1Deg, a2Deg);
          }
          ourHash = a1Hash;
          ourHash |= a2Hash << 7;
          ourHash |= (a1Deg % 8) << 14;
          ourHash |= (a2Deg % 8) << 17;
          ourHash |= (bondNbrs[i] % 8) << 20;
          hashLayers[2].push_back(ourHash);
        }
        if (layerFlags & 0x8 && !(pathQueries & 0x6)) {
          // layer 4: include ring information
          if (queryIsBondInRing(bi)) {
            hashLayers[3].push_back(1);
          }
        }
        if (layerFlags & 0x10 && !(pathQueries & 0x6)) {
          // layer 5: include ring size information
          ourHash = (queryBondMinRingSize(bi) % 8);
          hashLayers[4].push_back(ourHash);
        }
        if (layerFlags & 0x20 && !(pathQueries & 0x6)) {
          // std::cerr<<" consider: "<<bi->getBeginAtomIdx()<<" - "
          // <<bi->getEndAtomIdx()<<std::endl;
          // layer 6: aromaticity:
          bool a1Hash = aromaticAtoms[bi->getBeginAtomIdx()];
          bool a2Hash = aromaticAtoms[bi->getEndAtomIdx()];

          if ((!a1Hash) && a2Hash) std::swap(a1Hash, a2Hash);
          ourHash = a1Hash;
          ourHash |= a2Hash << 1;
          ourHash |= (bondNbrs[i] % 8) << 5;
          hashLayers[5].push_back(ourHash);
        }
      }
      unsigned int l = 0;
      bool flaggedPath = false;
      for (auto layerIt = hashLayers.begin(); layerIt != hashLayers.end();
           ++layerIt, ++l) {
        if (!layerIt->size()) continue;
        // ----
        std::sort(layerIt->begin(), layerIt->end());

        // finally, we will add the number of distinct atoms in the path at the
        // end
        // of the vect. This allows us to distinguish C1CC1 from CC(C)C
        layerIt->push_back(static_cast<unsigned int>(atomsInPath.count()));

        layerIt->push_back(l + 1);

        // hash the path to generate a seed:
        unsigned long seed =
            gboost::hash_range(layerIt->begin(), layerIt->end());

#ifdef VERBOSE_FINGERPRINTING
        std::cerr << " hash: " << seed << std::endl;
#endif
        unsigned int bitId = seed % fpSize;
#ifdef VERBOSE_FINGERPRINTING
        std::cerr << "   bit: " << bitId << std::endl;
#endif
        if (!setOnlyBits || (*setOnlyBits)[bitId]) {
          res->setBit(bitId);
          if (atomCounts && !flaggedPath) {
            for (unsigned int aIdx = 0; aIdx < atomsInPath.size(); ++aIdx) {
              if (atomsInPath[aIdx]) {
                (*atomCounts)[aIdx] += 1;
              }
            }
            flaggedPath = true;
          }
        }
      }
    }
  }
  return res;
}

///////////////////////////////////////////////////////////////////////////////
///////////////////////////////////////////////////////////////////////////////

// caller owns the result, it must be deleted
SparseIntVect<boost::uint64_t> *getUnfoldedRDKFingerprintMol(
    const ROMol &mol, unsigned int minPath, unsigned int maxPath, bool useHs,
    bool branchedPaths, bool useBondOrder,
    std::vector<boost::uint32_t> *atomInvariants,
    const std::vector<boost::uint32_t> *fromAtoms,
    std::vector<std::vector<boost::uint64_t>> *atomBits,
    std::map<boost::uint64_t, std::vector<std::vector<int>>> *bitInfo) {
  PRECONDITION(minPath != 0, "minPath==0");
  PRECONDITION(maxPath >= minPath, "maxPath<minPath");
  PRECONDITION(!atomInvariants || atomInvariants->size() >= mol.getNumAtoms(),
               "bad atomInvariants size");
  PRECONDITION(!atomBits || atomBits->size() >= mol.getNumAtoms(),
               "bad atomBits size");

  // build default atom invariants if need be:
  std::vector<boost::uint32_t> lAtomInvariants;
  if (!atomInvariants) {
    RDKitFPUtils::buildDefaultRDKitFingerprintAtomInvariants(mol,
                                                             lAtomInvariants);
    atomInvariants = &lAtomInvariants;
  }

  // get all paths
  INT_PATH_LIST_MAP allPaths;
  RDKitFPUtils::enumerateAllPaths(mol, allPaths, fromAtoms, branchedPaths,
                                  useHs, minPath, maxPath);

  // identify query bonds
  std::vector<short> isQueryBond(mol.getNumBonds(), 0);
  std::vector<const Bond *> bondCache;
  RDKitFPUtils::identifyQueryBonds(mol, bondCache, isQueryBond);

  if (atomBits) {
    for (unsigned int i = 0; i < mol.getNumAtoms(); ++i) {
      (*atomBits)[i].clear();
    }
  }

  std::map<unsigned int, unsigned int> bitMap;

  boost::dynamic_bitset<> atomsInPath(mol.getNumAtoms());
  for (INT_PATH_LIST_MAP_CI paths = allPaths.begin(); paths != allPaths.end();
       paths++) {
    BOOST_FOREACH (const PATH_TYPE &path, paths->second) {
      // the bond hashes of the path
      std::vector<unsigned int> bondHashes = RDKitFPUtils::generateBondHashes(
          mol, atomsInPath, bondCache, isQueryBond, path, useBondOrder,
          atomInvariants);
      if (!bondHashes.size()) {
        continue;
      }

      // hash the path to generate a seed:
      unsigned long seed;
      if (path.size() > 1) {
        std::sort(bondHashes.begin(), bondHashes.end());

        // finally, we will add the number of distinct atoms in the path at the
        // end
        // of the vect. This allows us to distinguish C1CC1 from CC(C)C
        bondHashes.push_back(static_cast<unsigned int>(atomsInPath.count()));
        seed = gboost::hash_range(bondHashes.begin(), bondHashes.end());
      } else {
        seed = bondHashes[0];
      }

      unsigned int bit = seed;

      // count-based FP
      if (bitMap.find(bit) != bitMap.end()) {
        bitMap[bit]++;
      } else {
        bitMap.insert(std::make_pair(bit, 1));
      }

      if (atomBits) {
        boost::dynamic_bitset<>::size_type aIdx = atomsInPath.find_first();
        while (aIdx != boost::dynamic_bitset<>::npos) {
          if (std::find((*atomBits)[aIdx].begin(), (*atomBits)[aIdx].end(),
                        bit) == (*atomBits)[aIdx].end()) {
            (*atomBits)[aIdx].push_back(bit);
          }
          aIdx = atomsInPath.find_next(aIdx);
        }
      }

      if (bitInfo) {
        std::vector<int> p;
        for (int i : path) {
          p.push_back(i);
        }
        (*bitInfo)[bit].push_back(p);
      }
    }
  }

  unsigned int len = 0;
  if (bitMap.size()) {
    len = bitMap.rbegin()->first + 1;
  }
  auto *res = new SparseIntVect<boost::uint64_t>(len);
  std::map<unsigned int, unsigned int>::iterator iter;
  for (iter = bitMap.begin(); iter != bitMap.end(); ++iter) {
    res->setVal(iter->first, iter->second);
  }

  return res;
}
}  // namespace RDKit