File: MorganFingerprints.cpp

package info (click to toggle)
rdkit 201809.1%2Bdfsg-6
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 123,688 kB
  • sloc: cpp: 230,509; python: 70,501; java: 6,329; ansic: 5,427; sql: 1,899; yacc: 1,739; lex: 1,243; makefile: 445; xml: 229; fortran: 183; sh: 123; cs: 93
file content (337 lines) | stat: -rw-r--r-- 13,422 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
//
//  Copyright (c) 2009-2010, Novartis Institutes for BioMedical Research Inc.
//  All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
//     * Redistributions of source code must retain the above copyright
//       notice, this list of conditions and the following disclaimer.
//     * Redistributions in binary form must reproduce the above
//       copyright notice, this list of conditions and the following
//       disclaimer in the documentation and/or other materials provided
//       with the distribution.
//     * Neither the name of Novartis Institutes for BioMedical Research Inc.
//       nor the names of its contributors may be used to endorse or promote
//       products derived from this software without specific prior written
//       permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
//  Created by Greg Landrum, July 2008
//
//

#include <GraphMol/RDKitBase.h>
#include <GraphMol/Fingerprints/MorganFingerprints.h>
#include <RDGeneral/hash/hash.hpp>
#include <GraphMol/SmilesParse/SmilesParse.h>
#include <GraphMol/Substruct/SubstructMatch.h>

#include <boost/dynamic_bitset.hpp>
#include <boost/tuple/tuple.hpp>
#include <boost/tuple/tuple_comparison.hpp>
#include <boost/foreach.hpp>
#include <algorithm>

#include <GraphMol/Fingerprints/FingerprintUtil.h>

namespace {
class ss_matcher {
 public:
  ss_matcher(){};
  ss_matcher(const std::string &pattern) {
    RDKit::RWMol *p = RDKit::SmartsToMol(pattern);
    TEST_ASSERT(p);
    m_matcher.reset(p);
  };

  // const RDKit::ROMOL_SPTR &getMatcher() const { return m_matcher; };
  const RDKit::ROMol *getMatcher() const { return m_matcher.get(); };

 private:
  RDKit::ROMOL_SPTR m_matcher;
};
}  // namespace

namespace RDKit {
namespace MorganFingerprints {

uint32_t updateElement(SparseIntVect<uint32_t> &v, unsigned int elem,
                       bool counting) {
  uint32_t bit = elem % v.getLength();
  if (counting) {
    v.setVal(bit, v.getVal(bit) + 1);
  } else {
    v.setVal(bit, 1);
  }
  return bit;
}
uint32_t updateElement(ExplicitBitVect &v, unsigned int elem,
                       bool counting = false) {
  RDUNUSED_PARAM(counting);
  uint32_t bit = elem % v.getNumBits();
  v.setBit(bit);
  return bit;
}

template <typename T>
void calcFingerprint(const ROMol &mol, unsigned int radius,
                     std::vector<uint32_t> *invariants,
                     const std::vector<uint32_t> *fromAtoms, bool useChirality,
                     bool useBondTypes, bool useCounts,
                     bool onlyNonzeroInvariants, BitInfoMap *atomsSettingBits,
                     T &res) {
  const ROMol *lmol = &mol;
  std::unique_ptr<ROMol> tmol;
  if (useChirality && !mol.hasProp(common_properties::_StereochemDone)) {
    tmol = std::unique_ptr<ROMol>(new ROMol(mol));
    MolOps::assignStereochemistry(*tmol);
    lmol = tmol.get();
  }
  unsigned int nAtoms = lmol->getNumAtoms();
  bool owner = false;
  if (!invariants) {
    invariants = new std::vector<uint32_t>(nAtoms);
    owner = true;
    getConnectivityInvariants(*lmol, *invariants);
  }
  // Make a copy of the invariants:
  std::vector<uint32_t> invariantCpy(nAtoms);
  std::copy(invariants->begin(), invariants->end(), invariantCpy.begin());

  // add the round 0 invariants to the result:
  for (unsigned int i = 0; i < nAtoms; ++i) {
    if (!fromAtoms || std::find(fromAtoms->begin(), fromAtoms->end(), i) !=
                          fromAtoms->end()) {
      if (!onlyNonzeroInvariants || (*invariants)[i]) {
        uint32_t bit = updateElement(res, (*invariants)[i], useCounts);
        if (atomsSettingBits)
          (*atomsSettingBits)[bit].push_back(std::make_pair(i, 0));
      }
    }
  }

  boost::dynamic_bitset<> chiralAtoms(nAtoms);

  // these are the neighborhoods that have already been added
  // to the fingerprint
  std::vector<boost::dynamic_bitset<>> neighborhoods;
  // these are the environments around each atom:
  std::vector<boost::dynamic_bitset<>> atomNeighborhoods(
      nAtoms, boost::dynamic_bitset<>(mol.getNumBonds()));
  boost::dynamic_bitset<> deadAtoms(nAtoms);

  boost::dynamic_bitset<> includeAtoms(nAtoms);
  if (fromAtoms) {
    BOOST_FOREACH (uint32_t idx, *fromAtoms) { includeAtoms.set(idx, 1); }
  } else {
    includeAtoms.set();
  }

  std::vector<unsigned int> atomOrder(nAtoms);
  if (onlyNonzeroInvariants) {
    std::vector<std::pair<int32_t, uint32_t>> ordering;
    for (unsigned int i = 0; i < nAtoms; ++i) {
      if (!(*invariants)[i])
        ordering.push_back(std::make_pair(1, i));
      else
        ordering.push_back(std::make_pair(0, i));
    }
    std::sort(ordering.begin(), ordering.end());
    for (unsigned int i = 0; i < nAtoms; ++i) {
      atomOrder[i] = ordering[i].second;
    }
  } else {
    for (unsigned int i = 0; i < nAtoms; ++i) {
      atomOrder[i] = i;
    }
  }
  // now do our subsequent rounds:
  for (unsigned int layer = 0; layer < radius; ++layer) {
    std::vector<uint32_t> roundInvariants(nAtoms);
    std::vector<boost::dynamic_bitset<>> roundAtomNeighborhoods =
        atomNeighborhoods;
    std::vector<AccumTuple> neighborhoodsThisRound;

    BOOST_FOREACH (unsigned int atomIdx, atomOrder) {
      if (!deadAtoms[atomIdx]) {
        const Atom *tAtom = lmol->getAtomWithIdx(atomIdx);
        if (!tAtom->getDegree()) {
          deadAtoms.set(atomIdx, 1);
          continue;
        }
        std::vector<std::pair<int32_t, uint32_t>> nbrs;
        ROMol::OEDGE_ITER beg, end;
        boost::tie(beg, end) = lmol->getAtomBonds(tAtom);
        while (beg != end) {
          const Bond *bond = mol[*beg];
          roundAtomNeighborhoods[atomIdx][bond->getIdx()] = 1;

          unsigned int oIdx = bond->getOtherAtomIdx(atomIdx);
          roundAtomNeighborhoods[atomIdx] |= atomNeighborhoods[oIdx];

          int32_t bt = 1;
          if (useBondTypes) {
            if (!useChirality || bond->getBondType() != Bond::DOUBLE ||
                bond->getStereo() == Bond::STEREONONE) {
              bt = static_cast<int32_t>(bond->getBondType());
            } else {
              const int32_t stereoOffset = 100;
              const int32_t bondTypeOffset = 10;
              bt = stereoOffset +
                   bondTypeOffset * static_cast<int32_t>(bond->getBondType()) +
                   static_cast<int32_t>(bond->getStereo());
            }
          }
          nbrs.push_back(std::make_pair(bt, (*invariants)[oIdx]));

          ++beg;
        }

        // sort the neighbor list:
        std::sort(nbrs.begin(), nbrs.end());
        // and now calculate the new invariant and test if the atom is newly
        // "chiral"
        boost::uint32_t invar = layer;
        gboost::hash_combine(invar, (*invariants)[atomIdx]);
        bool looksChiral = (tAtom->getChiralTag() != Atom::CHI_UNSPECIFIED);
        for (std::vector<std::pair<int32_t, uint32_t>>::const_iterator it =
                 nbrs.begin();
             it != nbrs.end(); ++it) {
          // add the contribution to the new invariant:
          gboost::hash_combine(invar, *it);

          // std::cerr<<"     "<<atomIdx<<": "<<it->first<<" "<<it->second<<" ->
          // "<<invar<<std::endl;

          // update our "chirality":
          if (useChirality && looksChiral && chiralAtoms[atomIdx]) {
            if (it->first != static_cast<int32_t>(Bond::SINGLE)) {
              looksChiral = false;
            } else if (it != nbrs.begin() && it->second == (it - 1)->second) {
              looksChiral = false;
            }
          }
        }
        if (useChirality && looksChiral) {
          chiralAtoms[atomIdx] = 1;
          // add an extra value to the invariant to reflect chirality:
          std::string cip = "";
          tAtom->getPropIfPresent(common_properties::_CIPCode, cip);
          if (cip == "R") {
            gboost::hash_combine(invar, 3);
          } else if (cip == "S") {
            gboost::hash_combine(invar, 2);
          } else {
            gboost::hash_combine(invar, 1);
          }
        }
        roundInvariants[atomIdx] = static_cast<uint32_t>(invar);
        neighborhoodsThisRound.push_back(
            boost::make_tuple(roundAtomNeighborhoods[atomIdx],
                              static_cast<uint32_t>(invar), atomIdx));
        if (std::find(neighborhoods.begin(), neighborhoods.end(),
                      roundAtomNeighborhoods[atomIdx]) != neighborhoods.end()) {
          // we have seen this exact environment before, this atom
          // is now out of consideration:
          deadAtoms[atomIdx] = 1;
          // std::cerr<<"   atom: "<< atomIdx <<" is dead."<<std::endl;
        }
      }
    }
    std::sort(neighborhoodsThisRound.begin(), neighborhoodsThisRound.end());
    for (std::vector<AccumTuple>::const_iterator iter =
             neighborhoodsThisRound.begin();
         iter != neighborhoodsThisRound.end(); ++iter) {
      // if we haven't seen this exact environment before, update the
      // fingerprint:
      if (std::find(neighborhoods.begin(), neighborhoods.end(),
                    iter->get<0>()) == neighborhoods.end()) {
        if (!onlyNonzeroInvariants || invariantCpy[iter->get<2>()]) {
          if (includeAtoms[iter->get<2>()]) {
            uint32_t bit = updateElement(res, iter->get<1>(), useCounts);
            if (atomsSettingBits)
              (*atomsSettingBits)[bit].push_back(
                  std::make_pair(iter->get<2>(), layer + 1));
          }
          if (!fromAtoms || std::find(fromAtoms->begin(), fromAtoms->end(),
                                      iter->get<2>()) != fromAtoms->end()) {
            neighborhoods.push_back(iter->get<0>());
          }
        }
        // std::cerr<<" layer: "<<layer<<" atom: "<<iter->get<2>()<<" "
        // <<iter->get<0>()<< " " << iter->get<1>() << " " <<
        // deadAtoms[iter->get<2>()]<<std::endl;
      } else {
        // we have seen this exact environment before, this atom
        // is now out of consideration:
        // std::cerr<<"   atom: "<< iter->get<2>()<<" is dead."<<std::endl;
        deadAtoms[iter->get<2>()] = 1;
      }
    }

    // the invariants from this round become the global invariants:
    std::copy(roundInvariants.begin(), roundInvariants.end(),
              invariants->begin());

    atomNeighborhoods = roundAtomNeighborhoods;
  }

  if (owner) delete invariants;
}

SparseIntVect<uint32_t> *getFingerprint(const ROMol &mol, unsigned int radius,
                                        std::vector<uint32_t> *invariants,
                                        const std::vector<uint32_t> *fromAtoms,
                                        bool useChirality, bool useBondTypes,
                                        bool useCounts,
                                        bool onlyNonzeroInvariants,
                                        BitInfoMap *atomsSettingBits) {
  SparseIntVect<uint32_t> *res;
  res = new SparseIntVect<uint32_t>(std::numeric_limits<uint32_t>::max());
  calcFingerprint(mol, radius, invariants, fromAtoms, useChirality,
                  useBondTypes, useCounts, onlyNonzeroInvariants,
                  atomsSettingBits, *res);
  return res;
}
SparseIntVect<uint32_t> *getHashedFingerprint(
    const ROMol &mol, unsigned int radius, unsigned int nBits,
    std::vector<uint32_t> *invariants, const std::vector<uint32_t> *fromAtoms,
    bool useChirality, bool useBondTypes, bool onlyNonzeroInvariants,
    BitInfoMap *atomsSettingBits) {
  SparseIntVect<uint32_t> *res;
  res = new SparseIntVect<uint32_t>(nBits);
  calcFingerprint(mol, radius, invariants, fromAtoms, useChirality,
                  useBondTypes, true, onlyNonzeroInvariants, atomsSettingBits,
                  *res);
  return res;
}

ExplicitBitVect *getFingerprintAsBitVect(const ROMol &mol, unsigned int radius,
                                         unsigned int nBits,
                                         std::vector<uint32_t> *invariants,
                                         const std::vector<uint32_t> *fromAtoms,
                                         bool useChirality, bool useBondTypes,
                                         bool onlyNonzeroInvariants,
                                         BitInfoMap *atomsSettingBits) {
  auto *res = new ExplicitBitVect(nBits);
  calcFingerprint(mol, radius, invariants, fromAtoms, useChirality,
                  useBondTypes, false, onlyNonzeroInvariants, atomsSettingBits,
                  *res);
  return res;
}

}  // end of namespace MorganFingerprints
}  // end of namespace RDKit