1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421
|
//
// Copyright (C) 2018 Boran Adas, Google Summer of Code
//
// @@ All Rights Reserved @@
// This file is part of the RDKit.
// The contents are covered by the terms of the BSD license
// which is included in the file license.txt, found at the root
// of the RDKit source tree.
//
#include <GraphMol/RDKitBase.h>
#include <GraphMol/Fingerprints/FingerprintGenerator.h>
#include <GraphMol/Fingerprints/MorganGenerator.h>
#include <RDGeneral/hash/hash.hpp>
#include <GraphMol/SmilesParse/SmilesParse.h>
#include <GraphMol/Substruct/SubstructMatch.h>
#include <boost/dynamic_bitset.hpp>
#include <boost/tuple/tuple.hpp>
#include <boost/tuple/tuple_comparison.hpp>
#include <boost/foreach.hpp>
#include <GraphMol/Fingerprints/FingerprintUtil.h>
namespace RDKit {
namespace MorganFingerprint {
using namespace MorganFingerprints;
MorganAtomInvGenerator::MorganAtomInvGenerator(const bool includeRingMembership)
: df_includeRingMembership(includeRingMembership) {}
std::vector<std::uint32_t> *MorganAtomInvGenerator::getAtomInvariants(
const ROMol &mol) const {
unsigned int nAtoms = mol.getNumAtoms();
std::vector<std::uint32_t> *atomInvariants =
new std::vector<std::uint32_t>(nAtoms);
getConnectivityInvariants(mol, *atomInvariants, df_includeRingMembership);
return atomInvariants;
}
std::string MorganAtomInvGenerator::infoString() const {
return "MorganInvariantGenerator includeRingMembership=" +
std::to_string(df_includeRingMembership);
}
MorganAtomInvGenerator *MorganAtomInvGenerator::clone() const {
return new MorganAtomInvGenerator(df_includeRingMembership);
}
MorganFeatureAtomInvGenerator::MorganFeatureAtomInvGenerator(
std::vector<const ROMol *> *patterns) {
dp_patterns = patterns;
}
std::string MorganFeatureAtomInvGenerator::infoString() const {
return "MorganFeatureInvariantGenerator";
}
MorganFeatureAtomInvGenerator *MorganFeatureAtomInvGenerator::clone() const {
return new MorganFeatureAtomInvGenerator(dp_patterns);
}
std::vector<std::uint32_t> *MorganFeatureAtomInvGenerator::getAtomInvariants(
const ROMol &mol) const {
unsigned int nAtoms = mol.getNumAtoms();
std::vector<std::uint32_t> *result = new std::vector<std::uint32_t>(nAtoms);
getFeatureInvariants(mol, *result, dp_patterns);
return result;
}
MorganBondInvGenerator::MorganBondInvGenerator(const bool useBondTypes,
const bool useChirality)
: df_useBondTypes(useBondTypes), df_useChirality(useChirality) {}
std::vector<std::uint32_t> *MorganBondInvGenerator::getBondInvariants(
const ROMol &mol) const {
std::vector<std::uint32_t> *result =
new std::vector<std::uint32_t>(mol.getNumBonds());
for (unsigned int i = 0; i < mol.getNumBonds(); ++i) {
Bond const *bond = mol.getBondWithIdx(i);
int32_t bondInvariant = 1;
if (df_useBondTypes) {
if (!df_useChirality || bond->getBondType() != Bond::DOUBLE ||
bond->getStereo() == Bond::STEREONONE) {
bondInvariant = static_cast<int32_t>(bond->getBondType());
} else {
const int32_t stereoOffset = 100;
const int32_t bondTypeOffset = 10;
bondInvariant =
stereoOffset +
bondTypeOffset * static_cast<int32_t>(bond->getBondType()) +
static_cast<int32_t>(bond->getStereo());
}
}
(*result)[bond->getIdx()] = static_cast<int32_t>(bondInvariant);
}
return result;
}
std::string MorganBondInvGenerator::infoString() const {
return "MorganInvariantGenerator useBondTypes=" +
std::to_string(df_useBondTypes) +
" useChirality=" + std::to_string(df_useChirality);
}
MorganBondInvGenerator *MorganBondInvGenerator::clone() const {
return new MorganBondInvGenerator(df_useBondTypes, df_useChirality);
}
template <typename OutputType>
OutputType MorganArguments<OutputType>::getResultSize() const {
return std::numeric_limits<OutputType>::max();
}
template <typename OutputType>
MorganArguments<OutputType>::MorganArguments(
const unsigned int radius, const bool countSimulation,
const bool includeChirality, const bool onlyNonzeroInvariants,
const std::vector<std::uint32_t> countBounds, const std::uint32_t fpSize)
: FingerprintArguments<OutputType>(countSimulation, countBounds, fpSize),
df_includeChirality(includeChirality),
df_onlyNonzeroInvariants(onlyNonzeroInvariants),
d_radius(radius) {}
template <typename OutputType>
std::string MorganArguments<OutputType>::infoString() const {
return "MorganArguments includeChirality=" +
std::to_string(df_includeChirality) +
" onlyNonzeroInvariants=" + std::to_string(df_onlyNonzeroInvariants) +
" radius=" + std::to_string(d_radius);
}
template <typename OutputType>
OutputType MorganAtomEnv<OutputType>::getBitId(
FingerprintArguments<OutputType> *arguments,
const std::vector<std::uint32_t> *atomInvariants,
const std::vector<std::uint32_t> *bondInvariants,
const AdditionalOutput *additionalOutput, const bool hashResults) const {
if (additionalOutput) {
// todo: set additional outputs
}
return d_code;
}
template <typename OutputType>
MorganAtomEnv<OutputType>::MorganAtomEnv(const std::uint32_t code,
const unsigned int atomId,
const unsigned int layer)
: d_code(code), d_atomId(atomId), d_layer(layer) {}
template <typename OutputType>
std::vector<AtomEnvironment<OutputType> *>
MorganEnvGenerator<OutputType>::getEnvironments(
const ROMol &mol, FingerprintArguments<OutputType> *arguments,
const std::vector<std::uint32_t> *fromAtoms,
const std::vector<std::uint32_t> *ignoreAtoms, const int confId,
const AdditionalOutput *additionalOutput,
const std::vector<std::uint32_t> *atomInvariants,
const std::vector<std::uint32_t> *bondInvariants,
const bool hashResults) const {
PRECONDITION(atomInvariants && (atomInvariants->size() >= mol.getNumAtoms()),
"bad atom invariants size");
PRECONDITION(bondInvariants && (bondInvariants->size() >= mol.getNumBonds()),
"bad bond invariants size");
unsigned int nAtoms = mol.getNumAtoms();
std::vector<AtomEnvironment<OutputType> *> result =
std::vector<AtomEnvironment<OutputType> *>();
MorganArguments<OutputType> *morganArguments =
dynamic_cast<MorganArguments<OutputType> *>(arguments);
std::vector<OutputType> currentInvariants(atomInvariants->size());
std::copy(atomInvariants->begin(), atomInvariants->end(),
currentInvariants.begin());
boost::dynamic_bitset<> includeAtoms(nAtoms);
if (fromAtoms) {
BOOST_FOREACH (uint32_t idx, *fromAtoms) { includeAtoms.set(idx, 1); }
} else {
includeAtoms.set();
}
boost::dynamic_bitset<> chiralAtoms(nAtoms);
// these are the neighborhoods that have already been added
// to the fingerprint
std::vector<boost::dynamic_bitset<>> neighborhoods;
// these are the environments around each atom:
std::vector<boost::dynamic_bitset<>> atomNeighborhoods(
nAtoms, boost::dynamic_bitset<>(mol.getNumBonds()));
boost::dynamic_bitset<> deadAtoms(nAtoms);
// if df_onlyNonzeroInvariants is set order the atoms to make sure atoms with
// zero invariants are processed last so that in case of duplicate
// environments atoms with non-zero invariants are used
std::vector<unsigned int> atomOrder(nAtoms);
if (morganArguments->df_onlyNonzeroInvariants) {
std::vector<std::pair<int32_t, uint32_t>> ordering;
for (unsigned int i = 0; i < nAtoms; ++i) {
if (!currentInvariants[i])
ordering.push_back(std::make_pair(1, i));
else
ordering.push_back(std::make_pair(0, i));
}
std::sort(ordering.begin(), ordering.end());
for (unsigned int i = 0; i < nAtoms; ++i) {
atomOrder[i] = ordering[i].second;
}
} else {
for (unsigned int i = 0; i < nAtoms; ++i) {
atomOrder[i] = i;
}
}
// add the round 0 invariants to the result
for (unsigned int i = 0; i < nAtoms; ++i) {
if (includeAtoms[i]) {
if (!morganArguments->df_onlyNonzeroInvariants || currentInvariants[i]) {
result.push_back(
new MorganAtomEnv<OutputType>(currentInvariants[i], i, 0));
}
}
}
// now do our subsequent rounds:
for (unsigned int layer = 0; layer < morganArguments->d_radius; ++layer) {
// will hold bit ids calculated this round to be used as invariants next
// round
std::vector<OutputType> nextLayerInvariants(nAtoms);
// holds atoms in the environment (neighborhood) for the current layer for
// each atom, starts with the immediate neighbors of atoms and expands with
// every iteration
std::vector<boost::dynamic_bitset<>> roundAtomNeighborhoods =
atomNeighborhoods;
std::vector<AccumTuple> allNeighborhoodsThisRound;
BOOST_FOREACH (unsigned int atomIdx, atomOrder) {
// skip atoms which will not generate unique environments (neighborhoods)
// anymore
if (!deadAtoms[atomIdx]) {
const Atom *tAtom = mol.getAtomWithIdx(atomIdx);
if (!tAtom->getDegree()) {
deadAtoms.set(atomIdx, 1);
continue;
}
ROMol::OEDGE_ITER beg, end;
boost::tie(beg, end) = mol.getAtomBonds(tAtom);
// will hold up to date invariants of neighboring atoms with bond types,
// these invariants hold information from atoms around radius as big as
// current layer around the current atom
std::vector<std::pair<int32_t, uint32_t>> neighborhoodInvariants;
// add up to date invariants of neighbors
while (beg != end) {
const Bond *bond = mol[*beg];
roundAtomNeighborhoods[atomIdx][bond->getIdx()] = 1;
unsigned int oIdx = bond->getOtherAtomIdx(atomIdx);
roundAtomNeighborhoods[atomIdx] |= atomNeighborhoods[oIdx];
int32_t bt = static_cast<int32_t>((*bondInvariants)[bond->getIdx()]);
neighborhoodInvariants.push_back(
std::make_pair(bt, currentInvariants[oIdx]));
++beg;
}
// sort the neighbor list:
std::sort(neighborhoodInvariants.begin(), neighborhoodInvariants.end());
// and now calculate the new invariant and test if the atom is newly
// "chiral"
std::uint32_t invar = layer;
gboost::hash_combine(invar, currentInvariants[atomIdx]);
bool looksChiral = (tAtom->getChiralTag() != Atom::CHI_UNSPECIFIED);
for (std::vector<std::pair<int32_t, uint32_t>>::const_iterator it =
neighborhoodInvariants.begin();
it != neighborhoodInvariants.end(); ++it) {
// add the contribution to the new invariant:
gboost::hash_combine(invar, *it);
// update our "chirality":
if (morganArguments->df_includeChirality && looksChiral &&
chiralAtoms[atomIdx]) {
if (it->first != static_cast<int32_t>(Bond::SINGLE)) {
looksChiral = false;
} else if (it != neighborhoodInvariants.begin() &&
it->second == (it - 1)->second) {
looksChiral = false;
}
}
}
if (morganArguments->df_includeChirality && looksChiral) {
chiralAtoms[atomIdx] = 1;
// add an extra value to the invariant to reflect chirality:
std::string cip = "";
tAtom->getPropIfPresent(common_properties::_CIPCode, cip);
if (cip == "R") {
gboost::hash_combine(invar, 3);
} else if (cip == "S") {
gboost::hash_combine(invar, 2);
} else {
gboost::hash_combine(invar, 1);
}
}
// this rounds bit id will be next rounds atom invariant, so we save it
// here
nextLayerInvariants[atomIdx] = static_cast<OutputType>(invar);
// store the environment that generated this bit id along with the bit
// id and the atom id
allNeighborhoodsThisRound.push_back(
boost::make_tuple(roundAtomNeighborhoods[atomIdx],
static_cast<OutputType>(invar), atomIdx));
if (std::find(neighborhoods.begin(), neighborhoods.end(),
roundAtomNeighborhoods[atomIdx]) != neighborhoods.end()) {
// we have seen this exact environment before, this atom
// is now out of consideration:
deadAtoms[atomIdx] = 1;
}
}
}
std::sort(allNeighborhoodsThisRound.begin(),
allNeighborhoodsThisRound.end());
for (std::vector<AccumTuple>::const_iterator iter =
allNeighborhoodsThisRound.begin();
iter != allNeighborhoodsThisRound.end(); ++iter) {
// if we haven't seen this exact environment before, add it to the result
if (std::find(neighborhoods.begin(), neighborhoods.end(),
iter->get<0>()) == neighborhoods.end()) {
if (!morganArguments->df_onlyNonzeroInvariants ||
(*atomInvariants)[iter->get<2>()]) {
if (includeAtoms[iter->get<2>()]) {
result.push_back(new MorganAtomEnv<OutputType>(
iter->get<1>(), iter->get<2>(), layer + 1));
neighborhoods.push_back(iter->get<0>());
}
}
} else {
// we have seen this exact environment before, this atom
// is now out of consideration:
deadAtoms[iter->get<2>()] = 1;
}
}
// the invariants from this round become the next round invariants:
std::copy(nextLayerInvariants.begin(), nextLayerInvariants.end(),
currentInvariants.begin());
// this rounds calculated neighbors will be next rounds initial neighbors,
// so the radius can grow every iteration
atomNeighborhoods = roundAtomNeighborhoods;
}
return result;
}
template <typename OutputType>
std::string MorganEnvGenerator<OutputType>::infoString() const {
return "MorganEnvironmentGenerator";
}
template <typename OutputType>
FingerprintGenerator<OutputType> *getMorganGenerator(
const unsigned int radius, const bool countSimulation,
const bool includeChirality, const bool useBondTypes,
const bool onlyNonzeroInvariants,
AtomInvariantsGenerator *atomInvariantsGenerator,
BondInvariantsGenerator *bondInvariantsGenerator,
const std::uint32_t fpSize, const std::vector<std::uint32_t> countBounds,
const bool ownsAtomInvGen, const bool ownsBondInvGen) {
AtomEnvironmentGenerator<OutputType> *morganEnvGenerator =
new MorganEnvGenerator<OutputType>();
FingerprintArguments<OutputType> *morganArguments =
new MorganArguments<OutputType>(radius, countSimulation, includeChirality,
onlyNonzeroInvariants, countBounds,
fpSize);
bool ownsAtomInvGenerator = ownsAtomInvGen;
if (!atomInvariantsGenerator) {
atomInvariantsGenerator = new MorganAtomInvGenerator();
ownsAtomInvGenerator = true;
}
bool ownsBondInvGenerator = false;
if (!bondInvariantsGenerator) {
bondInvariantsGenerator =
new MorganBondInvGenerator(useBondTypes, includeChirality);
ownsBondInvGenerator = true;
}
return new FingerprintGenerator<OutputType>(
morganEnvGenerator, morganArguments, atomInvariantsGenerator,
bondInvariantsGenerator, ownsAtomInvGenerator, ownsBondInvGenerator);
}
template RDKIT_FINGERPRINTS_EXPORT FingerprintGenerator<std::uint32_t> *getMorganGenerator(
const unsigned int radius, const bool countSimulation,
const bool includeChirality, const bool useBondTypes,
const bool onlyNonzeroInvariants,
AtomInvariantsGenerator *atomInvariantsGenerator,
BondInvariantsGenerator *bondInvariantsGenerator,
const std::uint32_t fpSize, const std::vector<std::uint32_t> countBounds,
const bool ownsAtomInvGen, const bool ownsBondInvGen);
template RDKIT_FINGERPRINTS_EXPORT FingerprintGenerator<std::uint64_t> *getMorganGenerator(
const unsigned int radius, const bool countSimulation,
const bool includeChirality, const bool useBondTypes,
const bool onlyNonzeroInvariants,
AtomInvariantsGenerator *atomInvariantsGenerator,
BondInvariantsGenerator *bondInvariantsGenerator,
const std::uint32_t fpSize, const std::vector<std::uint32_t> countBounds,
const bool ownsAtomInvGen, const bool ownsBondInvGen);
} // namespace MorganFingerprint
} // namespace RDKit
|