1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722
|
// Copyright (C) 2004-2018 Greg Landrum and Rational Discovery LLC
//
// @@ All Rights Reserved @@
// This file is part of the RDKit.
// The contents are covered by the terms of the BSD license
// which is included in the file license.txt, found at the root
// of the RDKit source tree.
//
#include <iostream>
#include <cmath>
#include <RDGeneral/Invariant.h>
#include <GraphMol/RDKitBase.h>
#include <GraphMol/SmilesParse/SmilesParse.h>
#include <GraphMol/Substruct/SubstructMatch.h>
#include <ForceField/ForceField.h>
#include <ForceField/UFF/Params.h>
#include <ForceField/UFF/Contribs.h>
#include "AtomTyper.h"
#include "Builder.h"
namespace RDKit {
namespace UFF {
using namespace ForceFields::UFF;
namespace Tools {
// ------------------------------------------------------------------------
//
//
//
// ------------------------------------------------------------------------
void addBonds(const ROMol &mol, const AtomicParamVect ¶ms,
ForceFields::ForceField *field) {
PRECONDITION(mol.getNumAtoms() == params.size(), "bad parameters");
PRECONDITION(field, "bad forcefield");
for (ROMol::ConstBondIterator bi = mol.beginBonds(); bi != mol.endBonds();
bi++) {
int idx1 = (*bi)->getBeginAtomIdx();
int idx2 = (*bi)->getEndAtomIdx();
// FIX: recognize amide bonds here.
if (params[idx1] && params[idx2]) {
BondStretchContrib *contrib;
contrib = new BondStretchContrib(field, idx1, idx2,
(*bi)->getBondTypeAsDouble(),
params[idx1], params[idx2]);
field->contribs().push_back(ForceFields::ContribPtr(contrib));
}
}
}
unsigned int twoBitCellPos(unsigned int nAtoms, int i, int j) {
if (j < i) std::swap(i, j);
return i * (nAtoms - 1) + i * (1 - i) / 2 + j;
}
void setTwoBitCell(boost::shared_array<boost::uint8_t> &res, unsigned int pos,
boost::uint8_t value) {
unsigned int twoBitPos = pos / 4;
unsigned int shift = 2 * (pos % 4);
boost::uint8_t twoBitMask = 3 << shift;
res[twoBitPos] = ((res[twoBitPos] & (~twoBitMask)) | (value << shift));
}
boost::uint8_t getTwoBitCell(boost::shared_array<boost::uint8_t> &res,
unsigned int pos) {
unsigned int twoBitPos = pos / 4;
unsigned int shift = 2 * (pos % 4);
boost::uint8_t twoBitMask = 3 << shift;
return ((res[twoBitPos] & twoBitMask) >> shift);
}
// ------------------------------------------------------------------------
//
// the two-bit matrix returned by this contains:
// 0: if atoms i and j are directly connected
// 1: if atoms i and j are connected via an atom
// 2: if atoms i and j are in a 1,4 relationship
// 3: otherwise
//
// NOTE: the caller is responsible for calling delete []
// on the result
//
// ------------------------------------------------------------------------
boost::shared_array<boost::uint8_t> buildNeighborMatrix(const ROMol &mol) {
const boost::uint8_t RELATION_1_X_INIT = RELATION_1_X | (RELATION_1_X << 2) |
(RELATION_1_X << 4) |
(RELATION_1_X << 6);
unsigned int nAtoms = mol.getNumAtoms();
unsigned nTwoBitCells = (nAtoms * (nAtoms + 1) - 1) / 8 + 1;
boost::shared_array<boost::uint8_t> res(new boost::uint8_t[nTwoBitCells]);
std::memset(res.get(), RELATION_1_X_INIT, nTwoBitCells);
for (ROMol::ConstBondIterator bondi = mol.beginBonds();
bondi != mol.endBonds(); ++bondi) {
setTwoBitCell(res, twoBitCellPos(nAtoms, (*bondi)->getBeginAtomIdx(),
(*bondi)->getEndAtomIdx()),
RELATION_1_2);
unsigned int bondiBeginAtomIdx = (*bondi)->getBeginAtomIdx();
unsigned int bondiEndAtomIdx = (*bondi)->getEndAtomIdx();
for (ROMol::ConstBondIterator bondj = bondi; ++bondj != mol.endBonds();) {
int idx1 = -1;
int idx3 = -1;
unsigned int bondjBeginAtomIdx = (*bondj)->getBeginAtomIdx();
unsigned int bondjEndAtomIdx = (*bondj)->getEndAtomIdx();
if (bondiBeginAtomIdx == bondjBeginAtomIdx) {
idx1 = bondiEndAtomIdx;
idx3 = bondjEndAtomIdx;
} else if (bondiBeginAtomIdx == bondjEndAtomIdx) {
idx1 = bondiEndAtomIdx;
idx3 = bondjBeginAtomIdx;
} else if (bondiEndAtomIdx == bondjBeginAtomIdx) {
idx1 = bondiBeginAtomIdx;
idx3 = bondjEndAtomIdx;
} else if (bondiEndAtomIdx == bondjEndAtomIdx) {
idx1 = bondiBeginAtomIdx;
idx3 = bondjBeginAtomIdx;
}
if (idx1 > -1) {
setTwoBitCell(res, twoBitCellPos(nAtoms, idx1, idx3), RELATION_1_3);
}
}
}
return res;
}
// ------------------------------------------------------------------------
//
//
//
// ------------------------------------------------------------------------
void addAngles(const ROMol &mol, const AtomicParamVect ¶ms,
ForceFields::ForceField *field) {
PRECONDITION(mol.getNumAtoms() == params.size(), "bad parameters");
PRECONDITION(field, "bad forcefield");
ROMol::ADJ_ITER nbr1Idx;
ROMol::ADJ_ITER end1Nbrs;
ROMol::ADJ_ITER nbr2Idx;
ROMol::ADJ_ITER end2Nbrs;
RingInfo *rings = mol.getRingInfo();
unsigned int nAtoms = mol.getNumAtoms();
for (unsigned int j = 0; j < nAtoms; j++) {
if (!params[j]) continue;
const Atom *atomJ = mol.getAtomWithIdx(j);
if (atomJ->getDegree() == 1) continue;
boost::tie(nbr1Idx, end1Nbrs) = mol.getAtomNeighbors(atomJ);
for (; nbr1Idx != end1Nbrs; nbr1Idx++) {
const Atom *atomI = mol[*nbr1Idx];
unsigned int i = atomI->getIdx();
if (!params[i]) continue;
boost::tie(nbr2Idx, end2Nbrs) = mol.getAtomNeighbors(atomJ);
for (; nbr2Idx != end2Nbrs; nbr2Idx++) {
if (nbr2Idx < (nbr1Idx + 1)) {
continue;
}
const Atom *atomK = mol[*nbr2Idx];
unsigned int k = atomK->getIdx();
if (!params[k]) continue;
// skip special cases:
if (!(atomJ->getHybridization() == Atom::SP3D &&
atomJ->getDegree() == 5)) {
const Bond *b1 = mol.getBondBetweenAtoms(i, j);
const Bond *b2 = mol.getBondBetweenAtoms(k, j);
// FIX: recognize amide bonds here.
AngleBendContrib *contrib;
int order = 0;
switch (atomJ->getHybridization()) {
case Atom::SP:
order = 1;
break;
case Atom::SP2:
order = 3;
// the following is a hack to get decent geometries
// with 3- and 4-membered rings incorporating sp2 atoms
// if the central atom is in a ring of size 3
if (rings->isAtomInRingOfSize(j, 3)) {
// if the central atom and one of the bonded atoms, but not the
// other one are inside a ring, then this angle is between a
// ring substituent and a ring edge
if ((rings->isAtomInRingOfSize(i, 3) &&
!rings->isAtomInRingOfSize(k, 3)) ||
(!rings->isAtomInRingOfSize(i, 3) &&
rings->isAtomInRingOfSize(k, 3))) {
order = 30;
}
// if all atoms are inside the ring, then this is one of ring
// angles
else if (rings->isAtomInRingOfSize(i, 3) &&
rings->isAtomInRingOfSize(k, 3)) {
order = 35;
}
}
// if the central atom is in a ring of size 4
else if (rings->isAtomInRingOfSize(j, 4)) {
// if the central atom and one of the bonded atoms, but not the
// other one are inside a ring, then this angle is between a
// ring substituent and a ring edge
if ((rings->isAtomInRingOfSize(i, 4) &&
!rings->isAtomInRingOfSize(k, 4)) ||
(!rings->isAtomInRingOfSize(i, 4) &&
rings->isAtomInRingOfSize(k, 4))) {
order = 40;
}
// if all atoms are inside the ring, then this is one of ring
// angles
else if (rings->isAtomInRingOfSize(i, 4) &&
rings->isAtomInRingOfSize(k, 4)) {
order = 45;
}
}
// end of the hack
break;
case Atom::SP3D2:
order = 4;
break;
default:
order = 0;
break;
}
contrib =
new AngleBendContrib(field, i, j, k, b1->getBondTypeAsDouble(),
b2->getBondTypeAsDouble(), params[i],
params[j], params[k], order);
field->contribs().push_back(ForceFields::ContribPtr(contrib));
}
}
}
}
}
// ------------------------------------------------------------------------
//
//
//
// ------------------------------------------------------------------------
void addTrigonalBipyramidAngles(const Atom *atom, const ROMol &mol, int confId,
const AtomicParamVect ¶ms,
ForceFields::ForceField *field) {
PRECONDITION(atom, "bad atom");
PRECONDITION(atom->getHybridization() == Atom::SP3D, "bad hybridization");
PRECONDITION(atom->getDegree() == 5, "bad degree");
PRECONDITION(mol.getNumAtoms() == params.size(), "bad parameters");
PRECONDITION(field, "bad forcefield");
const Bond *ax1 = nullptr, *ax2 = nullptr;
const Bond *eq1 = nullptr, *eq2 = nullptr, *eq3 = nullptr;
const Conformer &conf = mol.getConformer(confId);
//------------------------------------------------------------
// identify the axial and equatorial bonds:
double mostNeg = 100.0;
ROMol::OEDGE_ITER beg1, end1;
boost::tie(beg1, end1) = mol.getAtomBonds(atom);
unsigned int aid = atom->getIdx();
while (beg1 != end1) {
const Bond *bond1 = mol[*beg1];
unsigned int oaid = bond1->getOtherAtomIdx(aid);
RDGeom::Point3D v1 =
conf.getAtomPos(aid).directionVector(conf.getAtomPos(oaid));
ROMol::OEDGE_ITER beg2, end2;
boost::tie(beg2, end2) = mol.getAtomBonds(atom);
while (beg2 != end2) {
const Bond *bond2 = mol[*beg2];
if (bond2->getIdx() > bond1->getIdx()) {
unsigned int oaid2 = bond2->getOtherAtomIdx(aid);
RDGeom::Point3D v2 =
conf.getAtomPos(aid).directionVector(conf.getAtomPos(oaid2));
double dot = v1.dotProduct(v2);
if (dot < mostNeg) {
mostNeg = dot;
ax1 = bond1;
ax2 = bond2;
}
}
++beg2;
}
++beg1;
}
CHECK_INVARIANT(ax1, "axial bond not found");
CHECK_INVARIANT(ax2, "axial bond not found");
boost::tie(beg1, end1) = mol.getAtomBonds(atom);
while (beg1 != end1) {
const Bond *bond = mol[*beg1];
++beg1;
if (bond == ax1 || bond == ax2) continue;
if (!eq1)
eq1 = bond;
else if (!eq2)
eq2 = bond;
else if (!eq3)
eq3 = bond;
}
CHECK_INVARIANT(eq1, "equatorial bond not found");
CHECK_INVARIANT(eq2, "equatorial bond not found");
CHECK_INVARIANT(eq3, "equatorial bond not found");
//------------------------------------------------------------
// alright, add the angles:
AngleBendContrib *contrib;
int atomIdx = atom->getIdx();
int i, j;
// Axial-Axial
i = ax1->getOtherAtomIdx(atomIdx);
j = ax2->getOtherAtomIdx(atomIdx);
if (params[i] && params[j]) {
contrib = new AngleBendContrib(
field, i, atomIdx, j, ax1->getBondTypeAsDouble(),
ax2->getBondTypeAsDouble(), params[i], params[atomIdx], params[j], 2);
field->contribs().push_back(ForceFields::ContribPtr(contrib));
}
// Equatorial-Equatorial
i = eq1->getOtherAtomIdx(atomIdx);
j = eq2->getOtherAtomIdx(atomIdx);
if (params[i] && params[j]) {
contrib = new AngleBendContrib(
field, i, atomIdx, j, eq1->getBondTypeAsDouble(),
eq2->getBondTypeAsDouble(), params[i], params[atomIdx], params[j], 3);
field->contribs().push_back(ForceFields::ContribPtr(contrib));
}
i = eq1->getOtherAtomIdx(atomIdx);
j = eq3->getOtherAtomIdx(atomIdx);
if (params[i] && params[j]) {
contrib = new AngleBendContrib(
field, i, atomIdx, j, eq1->getBondTypeAsDouble(),
eq3->getBondTypeAsDouble(), params[i], params[atomIdx], params[j], 3);
field->contribs().push_back(ForceFields::ContribPtr(contrib));
}
i = eq2->getOtherAtomIdx(atomIdx);
j = eq3->getOtherAtomIdx(atomIdx);
if (params[i] && params[j]) {
contrib = new AngleBendContrib(
field, i, atomIdx, j, eq2->getBondTypeAsDouble(),
eq3->getBondTypeAsDouble(), params[i], params[atomIdx], params[j], 3);
field->contribs().push_back(ForceFields::ContribPtr(contrib));
}
// Axial-Equatorial
i = ax1->getOtherAtomIdx(atomIdx);
j = eq1->getOtherAtomIdx(atomIdx);
if (params[i] && params[j]) {
contrib = new AngleBendContrib(
field, i, atomIdx, j, ax1->getBondTypeAsDouble(),
eq1->getBondTypeAsDouble(), params[i], params[atomIdx], params[j]);
field->contribs().push_back(ForceFields::ContribPtr(contrib));
}
i = ax1->getOtherAtomIdx(atomIdx);
j = eq2->getOtherAtomIdx(atomIdx);
if (params[i] && params[j]) {
contrib = new AngleBendContrib(
field, i, atomIdx, j, ax1->getBondTypeAsDouble(),
eq2->getBondTypeAsDouble(), params[i], params[atomIdx], params[j]);
field->contribs().push_back(ForceFields::ContribPtr(contrib));
}
i = ax1->getOtherAtomIdx(atomIdx);
j = eq3->getOtherAtomIdx(atomIdx);
if (params[i] && params[j]) {
contrib = new AngleBendContrib(
field, i, atomIdx, j, ax1->getBondTypeAsDouble(),
eq3->getBondTypeAsDouble(), params[i], params[atomIdx], params[j]);
field->contribs().push_back(ForceFields::ContribPtr(contrib));
}
i = ax2->getOtherAtomIdx(atomIdx);
j = eq1->getOtherAtomIdx(atomIdx);
if (params[i] && params[j]) {
contrib = new AngleBendContrib(
field, i, atomIdx, j, ax2->getBondTypeAsDouble(),
eq1->getBondTypeAsDouble(), params[i], params[atomIdx], params[j]);
field->contribs().push_back(ForceFields::ContribPtr(contrib));
}
i = ax2->getOtherAtomIdx(atomIdx);
j = eq2->getOtherAtomIdx(atomIdx);
if (params[i] && params[j]) {
contrib = new AngleBendContrib(
field, i, atomIdx, j, ax2->getBondTypeAsDouble(),
eq2->getBondTypeAsDouble(), params[i], params[atomIdx], params[j]);
field->contribs().push_back(ForceFields::ContribPtr(contrib));
}
i = ax2->getOtherAtomIdx(atomIdx);
j = eq3->getOtherAtomIdx(atomIdx);
if (params[i] && params[j]) {
contrib = new AngleBendContrib(
field, i, atomIdx, j, ax2->getBondTypeAsDouble(),
eq3->getBondTypeAsDouble(), params[i], params[atomIdx], params[j]);
field->contribs().push_back(ForceFields::ContribPtr(contrib));
}
}
// ------------------------------------------------------------------------
//
//
//
// ------------------------------------------------------------------------
void addAngleSpecialCases(const ROMol &mol, int confId,
const AtomicParamVect ¶ms,
ForceFields::ForceField *field) {
PRECONDITION(mol.getNumAtoms() == params.size(), "bad parameters");
PRECONDITION(field, "bad forcefield");
unsigned int nAtoms = mol.getNumAtoms();
for (unsigned int i = 0; i < nAtoms; i++) {
const Atom *atom = mol.getAtomWithIdx(i);
// trigonal bipyramidal:
if ((atom->getHybridization() == Atom::SP3D && atom->getDegree() == 5)) {
addTrigonalBipyramidAngles(atom, mol, confId, params, field);
}
}
}
// ------------------------------------------------------------------------
//
//
//
// ------------------------------------------------------------------------
void addNonbonded(const ROMol &mol, int confId, const AtomicParamVect ¶ms,
ForceFields::ForceField *field,
boost::shared_array<boost::uint8_t> neighborMatrix,
double vdwThresh, bool ignoreInterfragInteractions) {
PRECONDITION(mol.getNumAtoms() == params.size(), "bad parameters");
PRECONDITION(field, "bad forcefield");
INT_VECT fragMapping;
if (ignoreInterfragInteractions) {
std::vector<ROMOL_SPTR> molFrags =
MolOps::getMolFrags(mol, true, &fragMapping);
}
unsigned int nAtoms = mol.getNumAtoms();
const Conformer &conf = mol.getConformer(confId);
for (unsigned int i = 0; i < nAtoms; i++) {
if (!params[i]) continue;
for (unsigned int j = i + 1; j < nAtoms; j++) {
if (!params[j] ||
(ignoreInterfragInteractions && fragMapping[i] != fragMapping[j])) {
continue;
}
if (getTwoBitCell(neighborMatrix, twoBitCellPos(nAtoms, i, j)) >=
RELATION_1_4) {
double dist = (conf.getAtomPos(i) - conf.getAtomPos(j)).length();
if (dist < vdwThresh *
UFF::Utils::calcNonbondedMinimum(params[i], params[j])) {
vdWContrib *contrib;
contrib = new vdWContrib(field, i, j, params[i], params[j]);
field->contribs().push_back(ForceFields::ContribPtr(contrib));
}
}
}
}
}
#if 0
// ------------------------------------------------------------------------
//
//
//
// ------------------------------------------------------------------------
bool okToIncludeTorsion(const ROMol &mol,const Bond *bond,
int idx1,int idx2,int idx3,int idx4){
bool res=true;
RingInfo *rings=mol.getRingInfo();
// having torsions in small rings makes the solver unstable
// and tends to yield poor-quality geometries, so filter those out:
if(rings->isBondInRingOfSize(bond->getIdx(),3)){
res = false;
}// else if(rings->isBondInRingOfSize(bond->getIdx(),4)){
// res = false;
//}
return res;
}
#endif
const std::string DefaultTorsionBondSmarts::ds_string =
"[!$(*#*)&!D1]~[!$(*#*)&!D1]";
boost::scoped_ptr<const ROMol> DefaultTorsionBondSmarts::ds_instance;
#ifdef RDK_THREADSAFE_SSS
std::once_flag DefaultTorsionBondSmarts::ds_flag;
#endif
void DefaultTorsionBondSmarts::create() {
ds_instance.reset(SmartsToMol(ds_string));
}
const ROMol *DefaultTorsionBondSmarts::query() {
#ifdef RDK_THREADSAFE_SSS
std::call_once(ds_flag, create);
#else
static bool created = false;
if (!created) {
created = true;
create();
}
#endif
return ds_instance.get();
}
// ------------------------------------------------------------------------
//
//
//
// ------------------------------------------------------------------------
void addTorsions(const ROMol &mol, const AtomicParamVect ¶ms,
ForceFields::ForceField *field,
const std::string &torsionBondSmarts) {
PRECONDITION(mol.getNumAtoms() == params.size(), "bad parameters");
PRECONDITION(field, "bad forcefield");
// find all of the torsion bonds:
std::vector<MatchVectType> matchVect;
const ROMol *defaultQuery = DefaultTorsionBondSmarts::query();
const ROMol *query = (torsionBondSmarts == DefaultTorsionBondSmarts::string())
? defaultQuery
: SmartsToMol(torsionBondSmarts);
TEST_ASSERT(query);
unsigned int nHits = SubstructMatch(mol, *query, matchVect);
if (query != defaultQuery) delete query;
for (unsigned int i = 0; i < nHits; i++) {
MatchVectType match = matchVect[i];
TEST_ASSERT(match.size() == 2);
int idx1 = match[0].second;
int idx2 = match[1].second;
if (!params[idx1] || !params[idx2]) continue;
const Bond *bond = mol.getBondBetweenAtoms(idx1, idx2);
std::vector<TorsionAngleContrib *> contribsHere;
TEST_ASSERT(bond);
const Atom *atom1 = mol.getAtomWithIdx(idx1);
const Atom *atom2 = mol.getAtomWithIdx(idx2);
if ((atom1->getHybridization() == Atom::SP2 ||
atom1->getHybridization() == Atom::SP3) &&
(atom2->getHybridization() == Atom::SP2 ||
atom2->getHybridization() == Atom::SP3)) {
ROMol::OEDGE_ITER beg1, end1;
boost::tie(beg1, end1) = mol.getAtomBonds(atom1);
while (beg1 != end1) {
const Bond *tBond1 = mol[*beg1];
if (tBond1 != bond) {
int bIdx = tBond1->getOtherAtomIdx(idx1);
ROMol::OEDGE_ITER beg2, end2;
boost::tie(beg2, end2) = mol.getAtomBonds(atom2);
while (beg2 != end2) {
const Bond *tBond2 = mol[*beg2];
if (tBond2 != bond && tBond2 != tBond1) {
int eIdx = tBond2->getOtherAtomIdx(idx2);
// make sure this isn't a three-membered ring:
if (eIdx != bIdx) {
// we now have a torsion involving atoms (bonds):
// bIdx - (tBond1) - idx1 - (bond) - idx2 - (tBond2) - eIdx
TorsionAngleContrib *contrib;
// if either of the end atoms is SP2 hybridized, set a flag
// here.
bool hasSP2 = false;
if (mol.getAtomWithIdx(bIdx)->getHybridization() == Atom::SP2 ||
mol.getAtomWithIdx(bIdx)->getHybridization() == Atom::SP2) {
hasSP2 = true;
}
// std::cout << "Torsion: " << bIdx << "-" << idx1 << "-" <<
// idx2 << "-" << eIdx << std::endl;
// if(okToIncludeTorsion(mol,bond,bIdx,idx1,idx2,eIdx)){
// std::cout << " INCLUDED" << std::endl;
contrib = new TorsionAngleContrib(
field, bIdx, idx1, idx2, eIdx, bond->getBondTypeAsDouble(),
atom1->getAtomicNum(), atom2->getAtomicNum(),
atom1->getHybridization(), atom2->getHybridization(),
params[idx1], params[idx2], hasSP2);
field->contribs().push_back(ForceFields::ContribPtr(contrib));
contribsHere.push_back(contrib);
//}
}
}
beg2++;
}
}
beg1++;
}
}
// now divide the force constant for each contribution to the torsion energy
// about this bond by the number of contribs about this bond:
for (auto chI = contribsHere.begin(); chI != contribsHere.end(); ++chI) {
(*chI)->scaleForceConstant(contribsHere.size());
}
}
}
// ------------------------------------------------------------------------
//
//
//
// ------------------------------------------------------------------------
void addInversions(const ROMol &mol, const AtomicParamVect ¶ms,
ForceFields::ForceField *field) {
PRECONDITION(mol.getNumAtoms() == params.size(), "bad parameters");
PRECONDITION(field, "bad forcefield");
unsigned int idx[4];
unsigned int n[4];
const Atom *atom[4];
ROMol::ADJ_ITER nbrIdx;
ROMol::ADJ_ITER endNbrs;
for (idx[1] = 0; idx[1] < mol.getNumAtoms(); ++idx[1]) {
atom[1] = mol.getAtomWithIdx(idx[1]);
int at2AtomicNum = atom[1]->getAtomicNum();
// if the central atom is not carbon, nitrogen, oxygen,
// phosphorous, arsenic, antimonium or bismuth, skip it
if (((at2AtomicNum != 6) && (at2AtomicNum != 7) && (at2AtomicNum != 8) &&
(at2AtomicNum != 15) && (at2AtomicNum != 33) && (at2AtomicNum != 51) &&
(at2AtomicNum != 83)) ||
(atom[1]->getDegree() != 3)) {
continue;
}
// if the central atom is carbon, nitrogen or oxygen
// but hybridization is not sp2, skip it
if (((at2AtomicNum == 6) || (at2AtomicNum == 7) || (at2AtomicNum == 8)) &&
(atom[1]->getHybridization() != Atom::SP2)) {
continue;
}
boost::tie(nbrIdx, endNbrs) = mol.getAtomNeighbors(atom[1]);
unsigned int i = 0;
bool isBoundToSP2O = false;
for (; nbrIdx != endNbrs; ++nbrIdx) {
atom[i] = mol[*nbrIdx];
idx[i] = atom[i]->getIdx();
// if the central atom is sp2 carbon and is
// bound to sp2 oxygen, set a flag
if (!isBoundToSP2O) {
isBoundToSP2O =
((at2AtomicNum == 6) && (atom[i]->getAtomicNum() == 8) &&
(atom[i]->getHybridization() == Atom::SP2));
}
if (!i) {
++i;
}
++i;
}
for (unsigned int i = 0; i < 3; ++i) {
n[1] = 1;
switch (i) {
case 0:
n[0] = 0;
n[2] = 2;
n[3] = 3;
break;
case 1:
n[0] = 0;
n[2] = 3;
n[3] = 2;
break;
case 2:
n[0] = 2;
n[2] = 3;
n[3] = 0;
break;
}
InversionContrib *contrib;
contrib = new InversionContrib(field, idx[n[0]], idx[n[1]], idx[n[2]],
idx[n[3]], at2AtomicNum, isBoundToSP2O);
field->contribs().push_back(ForceFields::ContribPtr(contrib));
}
}
}
} // end of namespace Tools
// ------------------------------------------------------------------------
//
//
//
// ------------------------------------------------------------------------
ForceFields::ForceField *constructForceField(ROMol &mol,
const AtomicParamVect ¶ms,
double vdwThresh, int confId,
bool ignoreInterfragInteractions) {
PRECONDITION(mol.getNumAtoms() == params.size(), "bad parameters");
auto *res = new ForceFields::ForceField();
// add the atomic positions:
Conformer &conf = mol.getConformer(confId);
for (unsigned int i = 0; i < mol.getNumAtoms(); i++) {
res->positions().push_back(&conf.getAtomPos(i));
}
Tools::addBonds(mol, params, res);
Tools::addAngles(mol, params, res);
Tools::addAngleSpecialCases(mol, confId, params, res);
boost::shared_array<boost::uint8_t> neighborMat =
Tools::buildNeighborMatrix(mol);
Tools::addNonbonded(mol, confId, params, res, neighborMat, vdwThresh,
ignoreInterfragInteractions);
Tools::addTorsions(mol, params, res);
Tools::addInversions(mol, params, res);
return res;
}
// ------------------------------------------------------------------------
//
//
//
// ------------------------------------------------------------------------
ForceFields::ForceField *constructForceField(ROMol &mol, double vdwThresh,
int confId,
bool ignoreInterfragInteractions) {
bool foundAll;
AtomicParamVect params;
boost::tie(params, foundAll) = getAtomTypes(mol);
return constructForceField(mol, params, vdwThresh, confId,
ignoreInterfragInteractions);
}
}
}
|