1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523
|
//
// Copyright (C) 2015 Novartis Institutes for BioMedical Research
//
// @@ All Rights Reserved @@
// This file is part of the RDKit.
// The contents are covered by the terms of the BSD license
// which is included in the file license.txt, found at the root
// of the RDKit source tree.
//
#include <map>
#include <vector>
#include <algorithm>
#include <math.h>
#include "../MolOps.h"
#include "../SmilesParse/SmilesParse.h"
#include "../SmilesParse/SmilesWrite.h"
#include "../Substruct/SubstructMatch.h"
#include <GraphMol/new_canon.h>
#include <GraphMol/MolOps.h>
#include "MMPA.h"
//#define _DEBUG // enable debug info output
namespace RDKit {
namespace MMPA {
typedef std::vector<std::pair<unsigned, unsigned>>
BondVector_t; // pair of BeginAtomIdx, EndAtomIdx
static inline unsigned long long computeMorganCodeHash(const ROMol& mol) {
size_t nv = mol.getNumAtoms();
size_t ne = mol.getNumBonds();
std::vector<unsigned long> currCodes(nv);
std::vector<unsigned long> prevCodes(nv);
size_t nIterations = mol.getNumBonds();
if (nIterations > 5) nIterations = 5;
for (unsigned ai = 0; ai < nv; ai++) {
const Atom& a = *mol.getAtomWithIdx(ai);
unsigned atomCode = a.getAtomicNum();
atomCode |= a.getIsotope() << 8;
atomCode |= a.getFormalCharge() << 16;
atomCode |= (a.getIsAromatic() ? 1 : 0) << 30;
currCodes[ai] = atomCode;
}
for (size_t iter = 0; iter < nIterations; iter++) {
for (size_t i = 0; i < nv; i++) prevCodes[i] = currCodes[i];
for (size_t bi = 0; bi < ne; bi++) {
const Bond* bond = mol.getBondWithIdx(bi);
unsigned order = bond->getBondType();
unsigned atom1 = bond->getBeginAtomIdx();
unsigned atom2 = bond->getEndAtomIdx();
unsigned v1 = prevCodes[atom1];
unsigned v2 = prevCodes[atom2];
currCodes[atom1] += v2 * v2 + (v2 + 23) * (order + 1721);
currCodes[atom2] += v1 * v1 + (v1 + 23) * (order + 1721);
}
}
unsigned long long result = 0;
for (unsigned ai = 0; ai < nv; ai++) {
unsigned long code = currCodes[ai];
result += code * (code + 6849) + 29;
}
return result;
}
static inline void convertMatchingToBondVect(
std::vector<BondVector_t>& matching_bonds,
const std::vector<MatchVectType>& matching_atoms, const ROMol& mol) {
RDUNUSED_PARAM(mol);
for (const auto& matching_atom : matching_atoms) {
matching_bonds.push_back(BondVector_t());
BondVector_t& mb = matching_bonds.back(); // current match
// assume patern is only one bond pattern
unsigned a1 = (unsigned)matching_atom[0].second; // mol atom 1 index
unsigned a2 = (unsigned)matching_atom[1].second; // mol atom 2 index
mb.push_back(std::pair<unsigned, unsigned>(a1, a2));
}
}
static void addResult(std::vector<std::pair<ROMOL_SPTR, ROMOL_SPTR>>&
res, // const SignatureVector& resSignature,
const ROMol& mol,
const BondVector_t& bonds_selected, size_t maxCuts) {
#ifdef _DEBUG
std::cout << res.size() + 1 << ": ";
#endif
RWMol em(mol);
// loop through the bonds to delete. == deleteBonds()
unsigned isotope = 0;
std::map<unsigned, unsigned> isotope_track;
for (const auto& bi : bonds_selected) {
#ifdef _DEBUG
{
std::string symbol =
em.getAtomWithIdx(bonds_selected[bi].first)->getSymbol();
int label = 0;
em.getAtomWithIdx(bonds_selected[bi].first)
->getPropIfPresent(common_properties::molAtomMapNumber, label);
char a1[32];
if (0 == label)
sprintf(a1, "\'%s\'", symbol.c_str(), label);
else
sprintf(a1, "\'%s:%u\'", symbol.c_str(), label);
symbol = em.getAtomWithIdx(bonds_selected[bi].second)->getSymbol();
label = 0;
em.getAtomWithIdx(bonds_selected[bi].second)
->getPropIfPresent(common_properties::molAtomMapNumber, label);
char a2[32];
if (0 == label)
sprintf(a2, "\'%s\'", symbol.c_str(), label);
else
sprintf(a2, "\'%s:%u\'", symbol.c_str(), label);
std::cout << "(" << bonds_selected[bi].first << a1 << ","
<< bonds_selected[bi].second << a2 << ") ";
}
#endif
isotope += 1;
// remove the bond
em.removeBond(bi.first, bi.second);
// now add attachement points and set attachment point lables
auto* a = new Atom(0);
a->setProp(common_properties::molAtomMapNumber, (int)isotope);
unsigned newAtomA = em.addAtom(a, true, true);
em.addBond(bi.first, newAtomA, Bond::SINGLE);
a = new Atom(0);
a->setProp(common_properties::molAtomMapNumber, (int)isotope);
unsigned newAtomB = em.addAtom(a, true, true);
em.addBond(bi.second, newAtomB, Bond::SINGLE);
// keep track of where to put isotopes
isotope_track[newAtomA] = isotope;
isotope_track[newAtomB] = isotope;
}
#ifdef _DEBUG
std::cout << "\n";
#endif
RWMOL_SPTR core, side_chains; // core & side_chains output molecules
if (isotope == 1) {
side_chains = RWMOL_SPTR(new RWMol(em)); // output = '%s,%s,,%s.%s'
// DEBUG PRINT
#ifdef _DEBUG
// OK: std::cout<<res.size()+1<<" isotope="<< isotope <<","<<
// MolToSmiles(*side_chains, true) <<"\n";
#endif
} else if (isotope >= 2) {
std::vector<std::vector<int>> frags;
unsigned int nFrags = MolOps::getMolFrags(em, frags);
//#check if its a valid triple or bigger cut. matchObj = re.search(
//'\*.*\*.*\*', f)
// check if exists a fragment with maxCut connection points (*.. *.. *)
if (isotope >= 3) {
bool valid = false;
for (size_t i = 0; i < nFrags; i++) {
unsigned nLabels = 0;
for (int ai : frags[i]) {
if (isotope_track.end() != isotope_track.find(ai)) // new added atom
++nLabels; // found connection point
}
if (nLabels >=
maxCuts) { // looks like it should be selected as core ! ??????
valid = true;
break;
}
}
if (!valid) {
#ifdef _DEBUG
std::cout << "isotope>=3: invalid fragments. fragment with maxCut "
"connection points not found"
<< "\n";
#endif
return;
}
}
size_t iCore = std::numeric_limits<size_t>::max();
side_chains = RWMOL_SPTR(new RWMol);
std::map<unsigned, unsigned>
visitedBonds; // key is bond index in source molecule
unsigned maxAttachments = 0;
for (size_t i = 0; i < frags.size(); i++) {
unsigned nAttachments = 0;
for (int ai : frags[i]) {
if (isotope_track.end() !=
isotope_track.find(ai)) // == if(a->hasProp("molAtomMapNumber"))
++nAttachments;
}
if (maxAttachments < nAttachments) maxAttachments = nAttachments;
if (1 == nAttachments) { // build side-chain set of molecules from
// selected fragment
std::map<unsigned, unsigned>
newAtomMap; // key is atom index in source molecule
for (int ai : frags[i]) {
Atom* a = em.getAtomWithIdx(ai);
newAtomMap[ai] = side_chains->addAtom(a->copy(), true, true);
}
// add all bonds from this fragment
for (int ai : frags[i]) {
Atom* a = em.getAtomWithIdx(ai);
ROMol::OEDGE_ITER beg, end;
for (boost::tie(beg, end) = em.getAtomBonds(a); beg != end; ++beg) {
const Bond* bond = em[*beg];
if (newAtomMap.end() == newAtomMap.find(bond->getBeginAtomIdx()) ||
newAtomMap.end() == newAtomMap.find(bond->getEndAtomIdx()) ||
visitedBonds.end() != visitedBonds.find(bond->getIdx()))
continue;
unsigned ai1 = newAtomMap[bond->getBeginAtomIdx()];
unsigned ai2 = newAtomMap[bond->getEndAtomIdx()];
unsigned bi = side_chains->addBond(ai1, ai2, bond->getBondType());
visitedBonds[bond->getIdx()] = bi;
}
}
} else { // select the core fragment
// DEBUG PRINT
#ifdef _DEBUG
if (iCore != -1)
std::cout << "Next CORE found. iCore=" << iCore << " New i=" << i
<< " nAttachments=" << nAttachments << "\n";
#endif
if (nAttachments >= maxAttachments) // Choose a fragment with maximal
// number of connection points as a
// core
iCore = i;
}
}
// build core molecule from selected fragment
if (iCore != std::numeric_limits<size_t>::max()) {
core = RWMOL_SPTR(new RWMol);
visitedBonds.clear();
std::map<unsigned, unsigned>
newAtomMap; // key is atom index in source molecule
for (int ai : frags[iCore]) {
Atom* a = em.getAtomWithIdx(ai);
newAtomMap[ai] = core->addAtom(a->copy(), true, true);
}
// add all bonds from this fragment
for (int ai : frags[iCore]) {
Atom* a = em.getAtomWithIdx(ai);
ROMol::OEDGE_ITER beg, end;
for (boost::tie(beg, end) = em.getAtomBonds(a); beg != end; ++beg) {
const Bond* bond = em[*beg];
if (newAtomMap.end() == newAtomMap.find(bond->getBeginAtomIdx()) ||
newAtomMap.end() == newAtomMap.find(bond->getEndAtomIdx()) ||
visitedBonds.end() != visitedBonds.find(bond->getIdx()))
continue;
unsigned ai1 = newAtomMap[bond->getBeginAtomIdx()];
unsigned ai2 = newAtomMap[bond->getEndAtomIdx()];
unsigned bi = core->addBond(ai1, ai2, bond->getBondType());
visitedBonds[bond->getIdx()] = bi;
}
}
// DEBUG PRINT
#ifdef _DEBUG
// std::cout<<res.size()+1<<" isotope="<< isotope <<" "<< MolToSmiles(*core,
// true)<<", "<<MolToSmiles(*side_chains, true)<<"\n";
#endif
} // iCore != -1
}
// check for duplicates:
bool resFound = false;
size_t ri = 0;
for (ri = 0; ri < res.size(); ri++) {
const std::pair<ROMOL_SPTR, ROMOL_SPTR>& r = res[ri];
if (side_chains->getNumAtoms() == r.second->getNumAtoms() &&
side_chains->getNumBonds() == r.second->getNumBonds() &&
((nullptr == core.get() && nullptr == r.first.get()) ||
(nullptr != core.get() && nullptr != r.first.get() &&
core->getNumAtoms() == r.first->getNumAtoms() &&
core->getNumBonds() == r.first->getNumBonds()))) {
// ToDo accurate check:
// 1. compare hash code
if (computeMorganCodeHash(*side_chains) ==
computeMorganCodeHash(*r.second) &&
(nullptr == core ||
computeMorganCodeHash(*core) == computeMorganCodeHash(*r.first))) {
// 2. final check to exclude hash collisions
// We decided that it does not neccessary to implement
resFound = true;
break;
}
}
}
if (!resFound) {
// std::cerr << "**********************" << std::endl;
// From rfrag.py
// now change the labels on sidechains and core
// to get the new labels, cansmi the dot-disconnected side chains
// the first fragment in the side chains has attachment label 1, 2nd: 2,
// 3rd: 3
// then change the labels accordingly in the core
std::map<unsigned int, int> canonicalAtomMaps;
if (side_chains.get()) {
RWMol tmp_side_chain(*(side_chains.get()));
std::vector<int> oldMaps(tmp_side_chain.getNumAtoms(), 0);
// clear atom labels (they are used in canonicalization)
// and move them to dummy storage
for (ROMol::AtomIterator at = tmp_side_chain.beginAtoms();
at != tmp_side_chain.endAtoms(); ++at) {
int label = 0;
if ((*at)->getPropIfPresent(common_properties::molAtomMapNumber,
label)) {
(*at)->clearProp(common_properties::molAtomMapNumber);
oldMaps[(*at)->getIdx()] = label;
}
}
const bool doIsomericSmiles = true; // should this be false???
std::string smiles = MolToSmiles(tmp_side_chain, doIsomericSmiles);
// std::cerr << "smiles: " << smiles << std::endl;
// Get the canonical output order and use it to remap
// the atom maps int the side chains
// these will get reapplied to the core (if there is a core)
const std::vector<unsigned int>& ranks =
tmp_side_chain.getProp<std::vector<unsigned int>>(
common_properties::_smilesAtomOutputOrder);
std::vector<std::pair<unsigned int, int>> rankedAtoms;
for (size_t idx = 0; idx < ranks.size(); ++idx) {
unsigned int atom_idx = ranks[idx];
if (oldMaps[atom_idx] > 0) {
const int label = oldMaps[atom_idx];
// std::cerr << "atom_idx: " << atom_idx << " rank: " <<
// ranks[atom_idx] <<
// " molAtomMapNumber: " << label << std::endl;
rankedAtoms.push_back(std::make_pair(idx, label));
}
}
std::sort(rankedAtoms.begin(), rankedAtoms.end());
int nextMap = 0;
for (auto& rankedAtom : rankedAtoms) {
if (canonicalAtomMaps.find(rankedAtom.second) ==
canonicalAtomMaps.end()) {
// std::cerr << "Remapping: " << rankedAtoms[i].second << " " << " to
// " << (i+1) <<
// std::endl;
canonicalAtomMaps[rankedAtom.second] = ++nextMap;
}
}
}
// std::cerr << "======== Remap core " << std::endl;
if (core.get()) { // remap core if it exists
for (ROMol::AtomIterator at = core->beginAtoms(); at != core->endAtoms();
++at) {
int label = 0;
if ((*at)->getPropIfPresent(common_properties::molAtomMapNumber,
label)) {
// std::cerr << "remapping core: " << label << " :" <<
// canonicalAtomMaps[label] <<
// std::endl;
(*at)->setProp(common_properties::molAtomMapNumber,
canonicalAtomMaps[label]);
}
}
}
// std::cerr << "======== Remap side-chain " << std::endl;
for (ROMol::AtomIterator at = side_chains->beginAtoms();
at != side_chains->endAtoms(); ++at) {
int label = 0;
if ((*at)->getPropIfPresent(common_properties::molAtomMapNumber, label)) {
// std::cerr << "remapping side chain: " << label << " :" <<
// canonicalAtomMaps[label] << std::endl;
(*at)->setProp(common_properties::molAtomMapNumber,
canonicalAtomMaps[label]);
}
}
res.push_back(std::pair<ROMOL_SPTR, ROMOL_SPTR>(core, side_chains)); //
}
#ifdef _DEBUG
else
std::cout << res.size() + 1 << " --- DUPLICATE Result FOUND --- ri=" << ri
<< "\n";
#endif
}
//=====================================================================
static inline void appendBonds(BondVector_t& bonds,
const BondVector_t& matching_bonds) {
for (const auto& matching_bond : matching_bonds)
bonds.push_back(matching_bond);
}
static inline void processCuts(
size_t i, size_t minCuts, size_t maxCuts, BondVector_t& bonds_selected,
const std::vector<BondVector_t>& matching_bonds, const ROMol& mol,
std::vector<std::pair<ROMOL_SPTR, ROMOL_SPTR>>& res) {
if (maxCuts < minCuts)
throw ValueErrorException("supplied maxCuts is less than minCuts");
if (minCuts == 0) throw ValueErrorException("minCuts must be greater than 0");
for (size_t x = i; x < matching_bonds.size(); x++) {
appendBonds(bonds_selected, matching_bonds[x]);
if (bonds_selected.size() >= minCuts) {
addResult(res, mol, bonds_selected, maxCuts);
}
if (bonds_selected.size() < maxCuts) {
processCuts(x + 1, minCuts, maxCuts, bonds_selected, matching_bonds, mol,
res);
}
bonds_selected.pop_back();
}
}
//=====================================================================
// Public API implementation:
//=====================================================================
bool fragmentMol(const ROMol& mol,
std::vector<std::pair<ROMOL_SPTR, ROMOL_SPTR>>& res,
unsigned int maxCuts, unsigned int maxCutBonds,
const std::string& pattern) {
return fragmentMol(mol, res, 1, maxCuts, maxCutBonds, pattern);
}
bool fragmentMol(const ROMol& mol,
std::vector<std::pair<ROMOL_SPTR, ROMOL_SPTR>>& res,
unsigned int minCuts, unsigned int maxCuts,
unsigned int maxCutBonds, const std::string& pattern) {
#ifdef _DEBUG
for (size_t i = 0; i < mol.getNumAtoms(); i++) {
std::string symbol = mol.getAtomWithIdx(i)->getSymbol();
int label = 0;
mol.getAtomWithIdx(i)->getPropIfPresent(common_properties::molAtomMapNumber,
label);
char a1[32];
if (0 == label)
sprintf(a1, "\'%s\'", symbol.c_str(), label);
else
sprintf(a1, "\'%s:%u\'", symbol.c_str(), label);
std::cout << "Atom " << i << ": " << a1; //<<" Bonds:";
std::cout << "\n";
}
#endif
res.clear();
std::auto_ptr<const ROMol> smarts((const ROMol*)SmartsToMol(pattern));
std::vector<MatchVectType>
matching_atoms; // one bond per match ! with default pattern
unsigned int total = SubstructMatch(mol, *smarts, matching_atoms);
#ifdef _DEBUG
std::cout << "total substructs =" << total
<< "\nmatching bonds (atom1, atom2):\n";
#endif
if (0 == total) // Not found. Return empty set of molecules
return false;
#ifdef _DEBUG
for (size_t i = 0; i < matching_atoms.size(); i++) {
std::string symbol =
mol.getAtomWithIdx(matching_atoms[i][0].second)->getSymbol();
int label = 0;
mol.getAtomWithIdx(matching_atoms[i][0].second)
->getPropIfPresent(common_properties::molAtomMapNumber, label);
char a1[32];
if (0 == label)
sprintf(a1, "\'%s\'", symbol.c_str(), label);
else
sprintf(a1, "\'%s:%u\'", symbol.c_str(), label);
symbol = mol.getAtomWithIdx(matching_atoms[i][1].second)->getSymbol();
label = 0;
mol.getAtomWithIdx(matching_atoms[i][1].second)
->getPropIfPresent(common_properties::molAtomMapNumber, label);
char a2[32];
if (0 == label)
sprintf(a2, "\'%s\'", symbol.c_str(), label);
else
sprintf(a2, "\'%s:%u\'", symbol.c_str(), label);
std::cout << i << ": (" << matching_atoms[i][0].second << a1 << ","
<< matching_atoms[i][1].second << a2 << ") \n";
}
#endif
std::vector<BondVector_t> matching_bonds; // List of matched query's bonds
convertMatchingToBondVect(matching_bonds, matching_atoms, mol);
if (matching_bonds.size() > maxCutBonds) return false;
#ifdef _DEBUG
std::cout << "total matching_bonds = " << matching_bonds.size() << "\n";
#endif
// loop to generate every cut in the molecule
BondVector_t bonds_selected;
processCuts(0, minCuts, maxCuts, bonds_selected, matching_bonds, mol, res);
return true;
}
bool fragmentMol(const ROMol& mol,
std::vector<std::pair<ROMOL_SPTR, ROMOL_SPTR>>& res,
const std::vector<unsigned int>& bondsToCut,
unsigned int minCuts, unsigned int maxCuts) {
std::vector<BondVector_t> matching_bonds; // List of matched query's bonds
BOOST_FOREACH (unsigned int i, bondsToCut) {
const Bond* bond = mol.getBondWithIdx(i);
BondVector_t bonds;
unsigned int a1 = bond->getBeginAtomIdx();
unsigned int a2 = bond->getEndAtomIdx();
bonds.push_back(std::make_pair(a1, a2));
matching_bonds.push_back(bonds);
}
// loop to generate every cut in the molecule
BondVector_t bonds_selected;
processCuts(0, minCuts, maxCuts, bonds_selected, matching_bonds, mol, res);
return true;
}
}
} // namespace RDKit
|