1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491
|
// file stddefs.H
// D Cosgrove
// Zeneca Pharms
// 27th June 1995
//
// This file has all the standard definitions etc used by the DACLibrary
// and other things
#ifndef DAC_STDDEFS
#define DAC_STDDEFS
#include <fstream>
#include <iostream>
#include <iterator>
#include <string>
#include <cmath>
#ifndef M_PI
# define M_PI 3.14159265358979323846 /* pi */
#endif
// ****************************************************************************
// cactvs also define YES and NO!
typedef enum { DAC_YES , DAC_NO , DAC_PASS } DAC_YES_NO;
namespace DACLIB {
template <class T> inline T square( T x ) { return x * x; }
template <class T> inline T cube( T x ) { return x * x * x; }
// ****************************************************************************
template <class T> inline T length( const T vector[3] ) {
T ret_value;
ret_value = square( vector[0] ) + square( vector[1] ) +
square( vector[2] );
return sqrt( ret_value );
}
// ****************************************************************************
template <class T> inline void normalise( T vec[3] ) {
T len = length( vec );
vec[0] /= len;
vec[1] /= len;
vec[2] /= len;
}
// ****************************************************************************
template <class T> inline void cross_product( const T vec1[3] , const T vec2[3] ,
T cp[3] ) {
cp[0] = vec1[1] * vec2[2] - vec1[2] * vec2[1];
cp[1] = vec1[2] * vec2[0] - vec1[0] * vec2[2];
cp[2] = vec1[0] * vec2[1] - vec1[1] * vec2[0];
}
// ****************************************************************************
// compute the normalised cross-product pair of vectors
template <class T> inline void norm_cross_product( const T vec1[3] ,
const T vec2[3] ,
T cp[3] ) {
T l;
// take cross-product
cross_product( vec1 , vec2 , cp );
// normalise it
l = length( cp );
cp[0] /= l;
cp[1] /= l;
cp[2] /= l;
}
// ****************************************************************************
// compute the dot product
template <class T> inline T dot_product( const T vec1[3] , const T vec2[3] ) {
return( vec1[0] * vec2[0] + vec1[1] * vec2[1] + vec1[2] * vec2[2] );
}
// ****************************************************************************
// compute the vector joining the two given points
template <class T> inline void join_vector( const T vec1[3] , const T vec2[3] ,
T vec12[3] ) {
vec12[0] = vec2[0] - vec1[0];
vec12[1] = vec2[1] - vec1[1];
vec12[2] = vec2[2] - vec1[2];
}
// ****************************************************************************
// function to find the cosine of the angle between the first
// vector and the second. The vector lengths are passed in as well.
template <class T> inline T cos_angle( const T vec1[3] , T len1 ,
const T vec2[3] , T len2 ) {
T cos_theta;
cos_theta = dot_product( vec1 , vec2 );
cos_theta /= ( len1 * len2 );
return cos_theta;
}
// ****************************************************************************
// function to find the sine of the angle between the first vector and
// the second. Vector lengths passed in as well.
template <class T> inline T sin_angle( const T vec1[3] , T len1 ,
const T vec2[3] , T len2 ) {
T sin_theta;
T cp[3] , len_cp;
cross_product( vec1 , vec2 , cp );
len_cp = length( cp );
sin_theta = len_cp / ( len1 * len2 );
return sin_theta;
}
// ****************************************************************************
// function to find the angle between the two vectors, lengths given,
// relative to the first vector - with ascending values in anti-clockwise
// direction from direction of 1st vector.
template <class T> inline T angle( const T vec1[3] , T len1 ,
const T vec2[3] , T len2 ) {
T sin_theta = sin_angle( vec1 , len1 , vec2 , len2 );
T cos_theta = cos_angle( vec1 , len1 , vec2 , len2 );
// correct for floating point errors - sometimes creeps ever so slightly
// above 1.0 or below -1.0
if( sin_theta > 1.0 ) {
sin_theta = 1.0;
} else if( sin_theta < -1.0 ) {
sin_theta = -1.0;
}
T theta = fabs( asin( sin_theta ) );
// find the appropriate quadrant - if both positive, nothing to do
if( sin_theta > 0.0 && cos_theta < 0.0 )
// 2nd quadrant - subtract from 180
theta = M_PI - theta;
else if( sin_theta < 0.0 && cos_theta < 0.0 )
// 3rd quadrant, add 180
theta += M_PI;
else if( sin_theta < 0.0 && cos_theta > 0.0 )
// 4th quadrant, subtract from 360
theta = 2 * M_PI - theta;
return theta;
}
// ****************************************************************************
// the squared distance between the 2 3D points
template <class T> inline T sq_distance( const T *vec1 , const T *vec2 ) {
T dist;
dist = square( vec1[0] - vec2[0] ) + square( vec1[1] - vec2[1] ) +
square( vec1[2] - vec2[2] );
return dist;
}
// ****************************************************************************
// the squared distance between 2 vectors of 3D points
template <class T> inline T sq_distance( const T *vec1 , const T *vec2 ,
int num_points ) {
T dist = 0;
const T *v1 = vec1 , *v2 = vec2;
int i;
for( i = 3 * num_points ; i ; i-- ) {
dist += square( *v1 - *v2 );
v1++;
v2++;
}
return dist;
}
// ****************************************************************************
// the distance between the 2 3D points
template <class T> inline T distance( const T *vec1 , const T *vec2 ) {
return sqrt( sq_distance( vec1 , vec2 ) );
}
// ****************************************************************************
// the distance between 2 vectors of 3D points
template <class T> inline T distance( const T *vec1 , const T *vec2 ,
int num_points ) {
return sqrt( sq_distance( vec1 , vec2 , num_points ) );
}
// ****************************************************************************
// rotate about a point
template <class T , class U> inline void rotate( U coords[3] ,
T rot_matrix[3][3] ,
T rot_centre[3] ) {
U cds[3];
coords[0] -= rot_centre[0];
coords[1] -= rot_centre[1];
coords[2] -= rot_centre[2];
cds[0] = rot_matrix[0][0] * coords[0] +
rot_matrix[0][1] * coords[1] + rot_matrix[0][2] * coords[2];
cds[1] = rot_matrix[1][0] * coords[0] +
rot_matrix[1][1] * coords[1] + rot_matrix[1][2] * coords[2];
cds[2] = rot_matrix[2][0] * coords[0] +
rot_matrix[2][1] * coords[1] + rot_matrix[2][2] * coords[2];
coords[0] = cds[0] + rot_centre[0];
coords[1] = cds[1] + rot_centre[1];
coords[2] = cds[2] + rot_centre[2];
}
// ****************************************************************************
// rotate directly
template <typename T , typename U> inline void rotate( U coords[3] ,
T rot_matrix[3][3] ) {
U cds[3];
cds[0] = rot_matrix[0][0] * coords[0] +
rot_matrix[0][1] * coords[1] + rot_matrix[0][2] * coords[2];
cds[1] = rot_matrix[1][0] * coords[0] +
rot_matrix[1][1] * coords[1] + rot_matrix[1][2] * coords[2];
cds[2] = rot_matrix[2][0] * coords[0] +
rot_matrix[2][1] * coords[1] + rot_matrix[2][2] * coords[2];
coords[0] = cds[0]; coords[1] = cds[1]; coords[2] = cds[2];
}
// ****************************************************************************
// translate coords
template <class T , class U> inline void translate( U coords[3] ,
T x_trans , T y_trans ,
T z_trans ) {
coords[0] += x_trans;
coords[1] += y_trans;
coords[2] += z_trans;
}
// **************************************************************************
// does the same as the Unix touch command - open a file for writing and
// closes it, this creating it if it doesn't already exist, and updating
// the last access time if it does. Returns true if successful, false otherwise
inline bool touch_file( const std::string filename ) {
std::ofstream tf( filename.c_str() );
if( tf && tf.good() )
return true;
else
return false;
}
// **************************************************************************
// write a 3D vector to cout, for debugging use.
template <class T> inline void vec_print( const T *vec ,
bool add_new_line = true ) {
std::cout << vec[0] << " , " << vec[1] << " , " << vec[2];
if( add_new_line )
std::cout << std::endl;
}
// **************************************************************************
// swap two things
template <class T> inline void swap( T* thing1 , T* thing2 ) {
T *temp_thing = thing1;
thing1 = thing2;
thing2 = temp_thing;
}
// **************************************************************************
// make sure the given array is big enough to hold the number sent in
template <class T> inline void make_buffer_big_enough( T *&buff ,
int &new_num ,
int &curr_size ) {
if( new_num >= curr_size ) {
delete [] buff;
buff = new T[new_num];
curr_size = new_num;
}
}
// **************************************************************************
// calculate normal to 2D vector
template <class T> inline void calc_normal_to_2D_vec( T bond[2] ,
T normal[2] ) {
T length , bond_hat[2] , ell[2];
// check if bond is parallel to an axis
if( fabs( 0.0 - bond[0] ) < 1.0e-10 ) {
normal[0] = 1.0;
normal[1] = 0.0;
return;
} else if( fabs( 0.0 - bond[1] ) < 1.0e-10 ) {
normal[0] = 0.0;
normal[1] = 1.0;
return;
}
length = bond[0] * bond[0] + bond[1] * bond[1];
length = sqrt( length );
// normalise the bond length
bond_hat[0] = bond[0] / length;
bond_hat[1] = bond[1] / length;
// calculate ell, the length of the project of ( the projection of
// the bond onto the x axis ) back onto the bond
length = bond[0] * bond_hat[0];
ell[0] = length * bond_hat[0];
ell[1] = length * bond_hat[1];
// calculate the normal to the bond, which is bond_hat scaled
// by ell minus the projection of the bond on the x axis
normal[0] = ell[0] - bond[0];
normal[1] = ell[1];
length = sqrt( normal[0] * normal[0] + normal[1] * normal[1] );
normal[0] /= length;
normal[1] /= length;
}
// **************************************************************************
// make a square matrix of the given size in a memory efficient way. Must be
// deleted in two steps : delete [] t[0]; delete [] t;
template <class T> inline void make_square_matrix( T **&t , int mat_size ) {
if( mat_size <= 0 )
t = 0;
else {
t = new T *[mat_size];
t[0] = new T[mat_size * mat_size];
for( int i = 1 ; i < mat_size ; ++i )
t[i] = t[i-1] + mat_size;
}
}
// **************************************************************************
template <class T> inline void destroy_square_matrix( T **&t ) {
if( t ) {
delete [] t[0];
delete [] t;
}
}
// ***********************************************************************
// make and destroy 2D matrix - more general case of above.
template <class T> inline T** make_2d_matrix( int num_x , int num_y ) {
if( num_x <= 0 || num_y <= 0 )
return 0;
T **ret_mat = new T*[num_x];
ret_mat[0] = new T[num_x * num_y];
for( int i = 1 ; i < num_x ; ++i )
ret_mat[i] = ret_mat[i-1] + num_y;
return ret_mat;
}
// ***********************************************************************
template <class T> inline void destroy_2d_matrix( T **&in_mat ) {
delete [] in_mat[0];
delete [] in_mat;
}
// *******************************************************************
// make and destroy 3D matrix - required only 3 allocations of memory
// and all the values are in 1 continguous array of T elements, so
// that 2 matrices can be compared very rapidly.
template <class T> inline T*** make_3d_matrix( int num_x , int num_y ,
int num_z ) {
if( num_x <= 0 || num_y <= 0 || num_z <= 0 )
return 0;
T ***ret_mat = new T**[num_x];
ret_mat[0] = new T*[num_x * num_y];
ret_mat[0][0] = new T[num_x * num_y * num_z];
for( int j = 1 ; j < num_y ; ++j )
ret_mat[0][j] = ret_mat[0][j-1] + num_z;
for( int i = 1 ; i < num_x ; ++i ) {
ret_mat[i] = ret_mat[i-1] + num_y;
ret_mat[i][0] = ret_mat[i-1][0] + num_y * num_z;
for( int j = 1 ; j < num_y ; ++j )
ret_mat[i][j] = ret_mat[i][j-1] + num_z;
}
return ret_mat;
}
//***************************************************************************
template <class T> inline void destroy_3d_matrix( T ***&in_mat ) {
if( !in_mat )
return;
delete [] in_mat[0][0];
delete [] in_mat[0];
delete [] in_mat;
in_mat = 0;
}
//***************************************************************************
// factorials
inline double fac( int n ) {
double fac = 1.0;
if( n < 30 ) {
for( int i = 1 ; i <= n ; ++i )
fac *= i;
} else {
// uses Gosper's approximation, more accurate than Stirling's
double fltn = double( n );
double facn = sqrt( ( ( 2 * fltn ) + 1.0 / 3.0 ) * M_PI );
facn *= pow( fltn , fltn ) * exp( -fltn );
fac = round( facn );
}
return fac;
}
// **********************************************************************
template <class T> inline T radians_to_degrees( T rads ) {
return rads * 180.0 / M_PI;
}
// **********************************************************************
template <class T> inline T degrees_to_radians( T degs ) {
return degs * M_PI / 180.0;
}
} // end of namespace
// for easy output, syntax of use:
// copy( rara.begin() , rara.end() , intOut )
static std::ostream_iterator<char> charOut( std::cout , " " );
static std::ostream_iterator<int> intOut( std::cout , " " );
static std::ostream_iterator<unsigned int> uintOut( std::cout , " " );
static std::ostream_iterator<float> floatOut( std::cout , " " );
static std::ostream_iterator<double> doubleOut( std::cout , " " );
static std::ostream_iterator<std::string> stringOut( std::cout , " " );
#endif
|