File: testMolHash.cpp

package info (click to toggle)
rdkit 201809.1%2Bdfsg-6
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 123,688 kB
  • sloc: cpp: 230,509; python: 70,501; java: 6,329; ansic: 5,427; sql: 1,899; yacc: 1,739; lex: 1,243; makefile: 445; xml: 229; fortran: 183; sh: 123; cs: 93
file content (554 lines) | stat: -rw-r--r-- 21,742 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
// $Id$
//
//  Copyright (C) 2014 Novartis Institutes for BioMedical Research
//
//   @@ All Rights Reserved @@
//  This file is part of the RDKit.
//  The contents are covered by the terms of the BSD license
//  which is included in the file license.txt, found at the root
//  of the RDKit source tree.
//
#include <RDGeneral/test.h>
#include <list>
#include <vector>
#include <string>
#include <stdio.h>
#include <ctype.h>
#include "../RDKitBase.h"
#include "../SmilesParse/SmilesParse.h"
#include "MolHash.h"

using namespace RDKit::MolHash;
namespace RDKit {

void test1() {
  BOOST_LOG(rdInfoLog) << "-------------------------------------" << std::endl;
  BOOST_LOG(rdInfoLog) << "Testing MolHash test1 DEFAULT ARGUMENTS"
                       << std::endl;
  std::cout << "Hash size = " << 8 * sizeof(HashCodeType) << " bits.\n";
  const char* smi[] = {
      "CN(C)c1ccc(CC(=O)NCCCCCCCCCCNC23CC4CC(C2)CC(C3)C4)cc1",
      "CN(C)c1ccc(CC(=O)NCCCCCCCNC23CC4CC(C2)CC(C3)C4)cc1",
      "CN(C)c1ccc(CC(=O)NCCCCCCCCCCCCNC23CC4CC(C2)CC(C3)C4)cc1",
      "CN(C)c1ccc(CC(=O)NCCCCCCCCCNC23CC4CC(C2)CC(C3)C4)cc1",
      "CN(C)c1ccc(CC(=O)NCCCCCCCCNC23CC4CC(C2)CC(C3)C4)cc1",
      "CN(C)c1ccc(CC(=O)NCCCCCCCCCCCNC23CC4CC(C2)CC(C3)C4)cc1",
      "CN(C)c1ccc(CC(NCCCCCC(NO)=O)=O)cc1",
      "CC(C)Cc1ccc(C(C)C(=O)NC23CC4CC(C2)CC(C3)C4)cc1",
      "c1cc([N+]([O-])=O)ccc1CC(=O)NC1CCCCCC1",
      "CC1(C)NC(C)(C)CC(NC(=O)Cc2ccccc2)C1",
      "CC(C)CC(NC(CNC(CNC(C(Cc1c2ccccc2[nH]c1)NC(C(Cc1cnc[nH]1)NC(CNC(C(C(C)O)"
      "NC(C(C(C)(C)S)NC(C(Cc1ccccc1)NC(C(CCCNC(=N)N)NC(C(N)CCC(N)=O)=O)=O)=O)="
      "O)=O)=O)=O)=O)=O)=O)C(NC(C(=O)N1CCCC1C(=O)NC(CS)C(NC(CC(N)=O)C(NCC(=O)"
      "N1CCCC1C(O)=O)=O)=O)Cc1ccc(O)cc1)=O",  // CHEMBL527084
      "CCCCCCC1C23C4=c5c6c7c8c5c5c9c%10c%11c%12c(c%108)c8c7c7c%10c%13c%14c%15c%"
      "16c%17c%18c%19c%20c(c%21c%22c%23c(c9C(C25C[N+]1(C)C)C1c2c3c3c5c9c2-c(c%"
      "231)c(c%22%19)C%18C9C1(C5=C%13C(C43)c6%10)C%14%17C[N+](C)(C)C1CCCCCC)c%"
      "21%11)c%12c(c%16%20)c8c%157",  // CHEMBL439119
      "CC(C)CC(NC(=O)C(Cc1ccc(NC(C)=O)cc1)NC(=O)C(Cc1ccc(NC(C)=O)cc1)NC(C(CO)"
      "NC(C(NC(c1ccncc1)=O)NC(=O)C(Cc1ccc(Cl)cc1)NC(C(NC(C)=O)Cc1cc2ccccc2cc1)="
      "O)=O)=O)C(NC(CCCCNC(C)C)C(N1C(C(=O)NC(C)C(N)=O)CCC1)=O)=O",  // CHEMBL439258
      "NCCCCC(NC(CN)=O)C(NCC(NC(CC(C)C)C(=O)N1Cc2ccccc2CC1C(N1CC2CCCCC2C1C(NCC("
      "NC(CC(C)C)C(=O)N1Cc2ccccc2CC1C(=O)N1CC2CCCCC2C1C(NCC(NC(C("
      "N1Cc2ccccc2CC1C(N1CC2CCCCC2C1C(NCC(NC(CC(C)C)C(=O)N1Cc2ccccc2CC1C(=O)"
      "N1CC2CCCCC2C1C(NCC(NC(C(N1Cc2c(cccc2)CC1C(N1CC2CCCCC2C1C(NCC(NC(CC(C)C)"
      "C(=O)N1Cc2ccccc2CC1C(N1CC2CCCCC2C1C(NCC(NC(CC(C)C)C(NC(C(N)=O)CCCNC(=N)"
      "N)=O)=O)=O)=O)=O)=O)=O)=O)CCCCN)=O)=O)=O)=O)=O)=O)CCCCN)=O)=O)=O)=O)=O)="
      "O)=O",  // CHEMBL441746
      "CC(C)CC(NC(C(C(C)C)NC(C(N)CCC(O)=O)=O)=O)C(NC(C(O)C(=O)NC(CC(O)=O)C(NCC("
      "=O)NC(CCC(O)=O)C(NC(C(O)=O)Cc1ccccc1)=O)=O)Cc1ccccc1)=O",  // CHEMBL384606
      "CCC(C)C1C(=O)N2CCCC2C(=O)NC2CSSCC3NC(=O)C(C(C)C)NC(=O)C(CCCCN)NC(=O)C("
      "CC(N)=O)NC(=O)C(CCCCN)NC(=O)C4CSSCC(C(=O)NC(C(C)C)C(=O)NC(Cc5ccccc5)C(="
      "O)N1)NC(=O)C(CO)NC(=O)C(CCC(O)=O)NC(=O)CNC(=O)C(NC(=O)C1CCCN1C(=O)C(C(C)"
      "CC)NC(=O)CNC(=O)C(CC(N)=O)NC(=O)C(CCCNC(=N)N)NC(=O)C(Cc1ccc(O)cc1)NC3=O)"
      "CSSCC(NC(=O)CNC(=O)C(C)NC(=O)C(C(C)C)NC(=O)C(C(C)O)NC(=O)C(C(C)O)NC(=O)"
      "C(CC(C)C)NC2=O)C(=O)NC(CO)C(=O)N4",  // CHEMBL526869
  };
  for (auto& i : smi) {
    ROMOL_SPTR mol = ROMOL_SPTR(SmilesToMol(i));
    std::vector<unsigned> atomsToUse;
    std::vector<unsigned> bondsToUse;
    std::vector<boost::uint32_t> atomCodes(mol->getNumAtoms());
    std::vector<boost::uint32_t> bondCodes(mol->getNumBonds());

    unsigned n;
    n = mol->getNumAtoms();
    atomsToUse.resize(n);
    for (unsigned i = 0; i < n; i++) atomsToUse[i] = i;
    n = mol->getNumBonds();
    bondsToUse.resize(n);
    for (unsigned i = 0; i < n; i++) bondsToUse[i] = i;

    n = mol->getNumAtoms();
    for (unsigned i = 0; i < n; i++)
      atomCodes[i] =
          1;  // + mol->getAtomWithIdx(i)->getAtomicNum(); //res0 != res1,2,3
    n = mol->getNumBonds();
    for (unsigned i = 0; i < n; i++) bondCodes[i] = 1;

    fillAtomBondCodes(*mol, CF_NO_LABELS, &atomCodes, &bondCodes);

    HashCodeType res0 = generateMoleculeHashCode(*mol);
    HashCodeType res1 = generateMoleculeHashCode(*mol, &atomsToUse, nullptr,
                                                 &atomCodes, &bondCodes);
    HashCodeType res2 = generateMoleculeHashCode(*mol, nullptr, &bondsToUse,
                                                 &atomCodes, &bondCodes);
    HashCodeType res3 = generateMoleculeHashCode(*mol, &atomsToUse, &bondsToUse,
                                                 &atomCodes, &bondCodes);

    std::cout << res0 << " = " << encode(&res0, sizeof(res0)) << std::endl;
    std::cout << res1 << " = " << encode(&res1, sizeof(res1)) << std::endl;
    std::cout << res2 << " = " << encode(&res2, sizeof(res2)) << std::endl;
    std::cout << res3 << " = " << encode(&res3, sizeof(res3)) << std::endl
              << std::endl;

    //            bool passed = 0 != res0 && res0 == res1 && res0 == res2 &&
    //            res0 == res3;
    //            TEST_ASSERT(passed);
  }
  BOOST_LOG(rdInfoLog) << "\tdone" << std::endl;
}

void test2() {
  BOOST_LOG(rdInfoLog) << "-------------------------------------" << std::endl;
  BOOST_LOG(rdInfoLog) << "Testing MolHash test2 CHIRALITY == ATOM"
                       << std::endl;
  std::cout << "Hash size = " << 8 * sizeof(HashCodeType) << " bits.\n";
  const char* smi[] = {
      // equal non-chiral hash
      "C[C@H](F)Cl",   "C[C@@H](F)Cl", "CC(F)Cl",
      "[13CH3]C(F)Cl", "C[C@H](Cl)F",  "C[C@@H](Cl)F",
  };

  std::vector<HashCodeType> HashNonChiral;

  for (auto& i : smi) {
    ROMOL_SPTR mol = ROMOL_SPTR(SmilesToMol(i));
    std::vector<boost::uint32_t> atomCodes(mol->getNumAtoms());
    std::vector<boost::uint32_t> bondCodes(mol->getNumBonds());

    fillAtomBondCodes(*mol, CF_ELEMENT | CF_CHARGE /*|CF_VALENCE*/
                                | CF_ATOM_AROMATIC,
                      &atomCodes, &bondCodes);

    //            fillAtomBondCodes(*mol, CF_ATOM_ALL &(~(CF_BOND_CHIRALITY |
    //            CF_ATOM_CHIRALITY | CF_ISOTOPE)), &atomCodes, &bondCodes);
    HashCodeType res = generateMoleculeHashCode(*mol, nullptr, nullptr,
                                                &atomCodes, &bondCodes);
    HashNonChiral.push_back(res);
    std::cout << res << " = " << encode(&res, sizeof(res)) << " | " << i
              << std::endl;
  }
  bool passed = true;
  for (size_t i = 0; i < HashNonChiral.size(); i++)
    for (size_t j = 0; j < HashNonChiral.size(); j++)
      if (i != j && HashNonChiral[i] != HashNonChiral[j]) passed = false;
  TEST_ASSERT(passed);
  BOOST_LOG(rdInfoLog) << "\tdone" << std::endl;
}

void test21() {
  BOOST_LOG(rdInfoLog) << "-------------------------------------" << std::endl;
  BOOST_LOG(rdInfoLog) << "Testing MolHash test21 CHIRALITY == BOND"
                       << std::endl;
  std::cout << "Hash size = " << 8 * sizeof(HashCodeType) << " bits.\n";
  const char* smi[] = {
      // equal non-chiral BOND hash
      "C/C=C/C", "CC=CC", "C/C=C\\C",
  };

  std::vector<HashCodeType> HashNonChiral;

  for (auto& i : smi) {
    ROMOL_SPTR mol = ROMOL_SPTR(SmilesToMol(i));
    std::vector<boost::uint32_t> atomCodes(mol->getNumAtoms());
    std::vector<boost::uint32_t> bondCodes(mol->getNumBonds());

    fillAtomBondCodes(*mol, CF_BOND_ALL & (~(CF_BOND_CHIRALITY)), &atomCodes,
                      &bondCodes);
    HashCodeType res = generateMoleculeHashCode(*mol, nullptr, nullptr,
                                                &atomCodes, &bondCodes);
    HashNonChiral.push_back(res);
    std::cout << res << " = " << encode(&res, sizeof(res)) << " | " << i
              << std::endl;
  }
  bool passed = true;
  for (size_t i = 0; i < HashNonChiral.size(); i++)
    for (size_t j = 0; j < HashNonChiral.size(); j++)
      if (i != j && HashNonChiral[i] != HashNonChiral[j]) passed = false;
  TEST_ASSERT(passed);
  BOOST_LOG(rdInfoLog) << "\tdone" << std::endl;
}

void test3() {
  BOOST_LOG(rdInfoLog) << "-------------------------------------" << std::endl;
  BOOST_LOG(rdInfoLog) << "Testing MolHash test3 CHIRALITY DIFF" << std::endl;
  const char* smi[] = {
      // different chiral hash
      "C[C@H](F)Cl", "C[C@@H](F)Cl", "CC(F)Cl", "[13CH3]C(F)Cl",

      "C[C@H]1CC[C@H](C)CC1", "C[C@H]1CC[C@@H](C)CC1", "CC1CCC(C)CC1",
  };

  std::vector<HashCodeType> HashChiral;

  for (auto& i : smi) {
    ROMOL_SPTR mol = ROMOL_SPTR(SmilesToMol(i));
    std::vector<boost::uint32_t> atomCodes(mol->getNumAtoms());
    std::vector<boost::uint32_t> bondCodes(mol->getNumBonds());

    fillAtomBondCodes(*mol, CF_BOND_CHIRALITY | CF_ATOM_CHIRALITY | CF_ISOTOPE,
                      &atomCodes, &bondCodes);
    HashCodeType resC = generateMoleculeHashCode(*mol, nullptr, nullptr,
                                                 &atomCodes, &bondCodes);
    HashChiral.push_back(resC);

    std::cout << resC << " = " << encode(&resC, sizeof(resC)) << "  " << i
              << std::endl;
  }

  bool passed = true;
  for (size_t i = 0; i < HashChiral.size(); i++)
    for (size_t j = 0; j < HashChiral.size(); j++)
      if (i != j && HashChiral[i] == HashChiral[j]) passed = false;
  TEST_ASSERT(passed);
  BOOST_LOG(rdInfoLog) << "\tdone" << std::endl;
}

void test3a() {
  BOOST_LOG(rdInfoLog) << "-------------------------------------" << std::endl;
  BOOST_LOG(rdInfoLog) << "Testing MolHash test3a CHIRALITY EQUAL" << std::endl;
  {
    const char* smi[] = {
        "C[C@H](F)Cl", "C[C@@H](Cl)F",
    };
    ROMOL_SPTR mol1 = ROMOL_SPTR(SmilesToMol(smi[0]));
    ROMOL_SPTR mol2 = ROMOL_SPTR(SmilesToMol(smi[1]));

    std::vector<boost::uint32_t> atomCodes(mol1->getNumAtoms());
    std::vector<boost::uint32_t> bondCodes(mol2->getNumBonds());

    fillAtomBondCodes(*mol1, CF_BOND_CHIRALITY | CF_ATOM_CHIRALITY | CF_ISOTOPE,
                      &atomCodes, &bondCodes);
    HashCodeType hash1 = generateMoleculeHashCode(*mol1, nullptr, nullptr,
                                                  &atomCodes, &bondCodes);
    fillAtomBondCodes(*mol2, CF_BOND_CHIRALITY | CF_ATOM_CHIRALITY | CF_ISOTOPE,
                      &atomCodes, &bondCodes);
    HashCodeType hash2 = generateMoleculeHashCode(*mol2, nullptr, nullptr,
                                                  &atomCodes, &bondCodes);
    std::cout << hash1 << " " << hash2 << std::endl;
    TEST_ASSERT(hash1 == hash2);
  }
  {
    const char* smi[] = {
        "C[C@@H](F)Cl", "C[C@H](Cl)F",
    };
    ROMOL_SPTR mol1 = ROMOL_SPTR(SmilesToMol(smi[0]));
    ROMOL_SPTR mol2 = ROMOL_SPTR(SmilesToMol(smi[1]));

    std::vector<boost::uint32_t> atomCodes(mol1->getNumAtoms());
    std::vector<boost::uint32_t> bondCodes(mol2->getNumBonds());

    fillAtomBondCodes(*mol1, CF_BOND_CHIRALITY | CF_ATOM_CHIRALITY | CF_ISOTOPE,
                      &atomCodes, &bondCodes);
    HashCodeType hash1 = generateMoleculeHashCode(*mol1, nullptr, nullptr,
                                                  &atomCodes, &bondCodes);
    fillAtomBondCodes(*mol2, CF_BOND_CHIRALITY | CF_ATOM_CHIRALITY | CF_ISOTOPE,
                      &atomCodes, &bondCodes);
    HashCodeType hash2 = generateMoleculeHashCode(*mol2, nullptr, nullptr,
                                                  &atomCodes, &bondCodes);
    std::cout << hash1 << " " << hash2 << std::endl;
    TEST_ASSERT(hash1 == hash2);
  }

  {
    const char* smi[] = {
        "C/C=C/Cl", "Cl/C=C/C",
    };
    ROMOL_SPTR mol1 = ROMOL_SPTR(SmilesToMol(smi[0]));
    ROMOL_SPTR mol2 = ROMOL_SPTR(SmilesToMol(smi[1]));

    std::vector<boost::uint32_t> atomCodes(mol1->getNumAtoms());
    std::vector<boost::uint32_t> bondCodes(mol2->getNumBonds());

    fillAtomBondCodes(*mol1, CF_BOND_CHIRALITY | CF_ATOM_CHIRALITY | CF_ISOTOPE,
                      &atomCodes, &bondCodes);
    HashCodeType hash1 = generateMoleculeHashCode(*mol1, nullptr, nullptr,
                                                  &atomCodes, &bondCodes);
    fillAtomBondCodes(*mol2, CF_BOND_CHIRALITY | CF_ATOM_CHIRALITY | CF_ISOTOPE,
                      &atomCodes, &bondCodes);
    HashCodeType hash2 = generateMoleculeHashCode(*mol2, nullptr, nullptr,
                                                  &atomCodes, &bondCodes);
    std::cout << hash1 << " " << hash2 << std::endl;
    TEST_ASSERT(hash1 == hash2);
  }
  {
    const char* smi[] = {
        "C/C=C/Cl", "C/C=C\\Cl",
    };
    ROMOL_SPTR mol1 = ROMOL_SPTR(SmilesToMol(smi[0]));
    ROMOL_SPTR mol2 = ROMOL_SPTR(SmilesToMol(smi[1]));

    std::vector<boost::uint32_t> atomCodes(mol1->getNumAtoms());
    std::vector<boost::uint32_t> bondCodes(mol2->getNumBonds());

    fillAtomBondCodes(*mol1, CF_BOND_CHIRALITY | CF_ATOM_CHIRALITY | CF_ISOTOPE,
                      &atomCodes, &bondCodes);
    HashCodeType hash1 = generateMoleculeHashCode(*mol1, nullptr, nullptr,
                                                  &atomCodes, &bondCodes);
    fillAtomBondCodes(*mol2, CF_BOND_CHIRALITY | CF_ATOM_CHIRALITY | CF_ISOTOPE,
                      &atomCodes, &bondCodes);
    HashCodeType hash2 = generateMoleculeHashCode(*mol2, nullptr, nullptr,
                                                  &atomCodes, &bondCodes);
    std::cout << hash1 << " " << hash2 << std::endl;
    TEST_ASSERT(hash1 != hash2);
  }

  BOOST_LOG(rdInfoLog) << "\tdone" << std::endl;
}

void test4() {
  BOOST_LOG(rdInfoLog) << "-------------------------------------" << std::endl;
  BOOST_LOG(rdInfoLog) << "Testing MolHash test4 STRING" << std::endl;
  const char* smi[] = {
      // different chiral hash and equal non-chiral hash
      "C[C@H](F)Cl", "C[C@@H](F)Cl", "CC(F)Cl", "[13CH3]C(F)Cl",
      // different chiral hash
      "C[C@H]1CC[C@H](C)CC1", "C[C@H]1CC[C@@H](C)CC1", "CC1CCC(C)CC1",
  };

  for (auto& i : smi) {
    ROMOL_SPTR mol = ROMOL_SPTR(SmilesToMol(i));
    std::cout << generateMoleculeHashSet(*mol, nullptr, nullptr) << "  " << i
              << std::endl;
  }
  TEST_ASSERT(true);  // there is no any exseption
  BOOST_LOG(rdInfoLog) << "\tdone" << std::endl;
}

void test5() {
  BOOST_LOG(rdInfoLog) << "-------------------------------------" << std::endl;
  BOOST_LOG(rdInfoLog) << "Testing MolHash test5 " << std::endl;
  const char* smi[] = {// different chiral hash and equal non-chiral hash
                       // groups of 3
                       "C[CH](F)Cl", "C[C@H](F)Cl", "C[C@@H](F)Cl",
                       //
                       "c1cc(C[CH](F)Cl)cnc1", "c1cc(C[C@H](F)Cl)cnc1",
                       "c1cc(C[C@@H](F)Cl)cnc1"};

  for (size_t i = 0; i < sizeof(smi) / sizeof(smi[0]); i += 3) {
    ROMOL_SPTR mol1 = ROMOL_SPTR(SmilesToMol(smi[i]));
    TEST_ASSERT(mol1);
    ROMOL_SPTR mol2 = ROMOL_SPTR(SmilesToMol(smi[i + 1]));
    TEST_ASSERT(mol2);
    ROMOL_SPTR mol3 = ROMOL_SPTR(SmilesToMol(smi[i + 2]));
    TEST_ASSERT(mol3);
    {
      std::string hash1 = generateMoleculeHashSet(*mol1);
      std::string hash2 = generateMoleculeHashSet(*mol2);
      std::string hash3 = generateMoleculeHashSet(*mol3);
      TEST_ASSERT(hash1 != hash2);
      TEST_ASSERT(hash1 != hash3);
      TEST_ASSERT(hash3 != hash2);
    }
    // {
    //   std::string hash1=generateMoleculeHashSet(*mol1);
    //   std::string hash2=generateMoleculeHashSet(*mol2);
    //   std::cout << hash1 <<"  "<< smi[i] << std::endl;
    //   std::cout << hash2 <<"  "<< smi[i+1] << std::endl;
    //   TEST_ASSERT(hash1!=hash2);
    // }
  }
  BOOST_LOG(rdInfoLog) << "\tdone" << std::endl;
}

void doUnitTest() {
  std::cout << "Hash size = " << 8 * sizeof(HashCodeType) << " bits.\n";

  BOOST_LOG(rdInfoLog)
      << "*******************************************************\n";
  test1();
  BOOST_LOG(rdInfoLog)
      << "*******************************************************\n";
  test2();
  BOOST_LOG(rdInfoLog)
      << "*******************************************************\n";
  test21();
  BOOST_LOG(rdInfoLog)
      << "*******************************************************\n";
  test3();
  BOOST_LOG(rdInfoLog)
      << "*******************************************************\n";
  test3a();
  BOOST_LOG(rdInfoLog)
      << "*******************************************************\n";
  test4();
  BOOST_LOG(rdInfoLog)
      << "*******************************************************\n";
  test5();
}

//=============================================================================
// investigation test case for computing of a probability of the hash code
// collisions
//=============================================================================

std::string getSmilesOnly(const char* smiles, std::string* id = nullptr) {
  const char* sp = strchr(smiles, ' ');
  unsigned n = (sp ? sp - smiles + 1 : strlen(smiles));
  if (id) *id = std::string(smiles + n);
  return std::string(smiles, n);
}

HashCodeType computeHash(const ROMol& mol, CodeFlags flags) {
  std::vector<boost::uint32_t> atomCodes;
  std::vector<boost::uint32_t> bondCodes;

  fillAtomBondCodes(mol, flags, &atomCodes, &bondCodes);

  std::vector<unsigned> atomsToUse;
  std::vector<unsigned> bondsToUse;

  unsigned n = mol.getNumAtoms();
  for (unsigned i = 0; i < n; i++) {
    const Atom* atom = mol.getAtomWithIdx(i);
    if (1) atomsToUse.push_back(atom->getIdx());
  }

  n = mol.getNumBonds();
  for (unsigned i = 0; i < n; i++) {
    const Bond* bond = mol.getBondWithIdx(i);
    if (1) bondsToUse.push_back(bond->getIdx());
  }

  return generateMoleculeHashCode(mol, &atomsToUse, &bondsToUse, &atomCodes,
                                  &bondCodes);
}

//   {num atoms, num bonds} - {formula hash}
// - {non-chiral atom hashes} - {non-chiral bond hashes}
// - {chiral information}

#pragma pack(push, 1)
struct HashResult {
  unsigned Line;  // molecule Id [1, ...)
  HashCodeType Hash;
  //        unsigned   ChiralInfo;
  HashResult(unsigned id = 0)
      : Line(id),
        Hash(0)  //, ChiralInfo(0)
  {}
};
#pragma pack(pop)

bool lessHashResult_ALL(const HashResult& r, const HashResult& l) {
  return r.Hash < l.Hash;
}

void analyzeResults(std::list<HashResult>& res) {
  std::cerr << "\nANALYZING " << res.size() << " Results ...\n";
  std::cout << "Collisions found:\n";
  //        std::sort(res.begin(), res.end(), lessHashResult_ALL);
  unsigned rn = 0, cn = 0;
  for (auto r0 = res.begin(); r0 != res.end(); r0++) {
    std::cerr << "Result: " << ++rn << "\r";
    if (0 == r0->Line)  // collision has been already found
      continue;
    unsigned hashCollision = 0;
    std::vector<unsigned> cl;
    // use binary search of collision in sorted list to improve performance
    //........
    auto r1 = r0;
    for (auto r = ++r1; r != res.end(); r++) {
      if (0 == r->Line)  // collision has been already found
        continue;
      if (r->Hash == r0->Hash)  // collision found
      {
        ++hashCollision;
        cl.push_back(r->Line);
        //                    std::cout<<r0->Id<<"="<<r->Line<<"\n"; // TEMP
        //                    TEST
        r->Line =
            0;  // mark as already processed collision to exclude duplicates
      }
    }
    if (0 != hashCollision)  // collision found
    {
      cn += hashCollision;
      std::cout << "mol line " << r0->Line << ": " << hashCollision
                << " collisions with: ";
      for (unsigned int i : cl) std::cout << i << " ";
      std::cout << "lines.\n";
    }
  }
  std::cout << "Total: " << cn << " hash collisions found in " << res.size()
            << " molecules.\n";
}

void testFileSMILES(const char* file, HashCodeType bitMask) {
  unsigned line = 0;
  std::list<HashResult> res;
  std::cout << "FILE: " << file << "\n";

  FILE* f = fopen(file, "rt");
  if (!f) {
    perror("Could not OPEN smi file");
    return;
  }
  char smiles[4096];
  while (fgets(smiles, sizeof(smiles), f) && line <= 1000999) {
    for (size_t i = strlen(smiles) - 1; i > 0 && smiles[i] < ' '; i--)
      smiles[i] = '\0';  // remove LF
    std::string id;
    std::cerr << "\rLine: " << ++line << " ";
    if ('#' != smiles[0] && ' ' != smiles[0] &&
        '/' != smiles[0]                    // commented to skip
        && nullptr == strchr(smiles, '.'))  // skip ions
    {
      ROMOL_SPTR mol;
      try {
        mol = ROMOL_SPTR(SmilesToMol(getSmilesOnly(smiles, &id)));
      } catch (...)  // internal RDKit error: Invar::Invariant& ex
      {
        std::cerr << " RDKit error: " << smiles << "/n";
        continue;
      }
      res.push_back(HashResult(line));
      HashResult& r = res.back();
      //                r.ChiralInfo = 0;//mol-();
      r.Hash = computeHash(*mol, CF_ALL) & bitMask;
    } else
      std::cerr << " skipped: " << smiles << "/n";
  }
  fclose(f);
  std::cout << "\nDONE. " << res.size() << " molecules processed.\n";
  analyzeResults(res);
  std::cout << "Test COMPLETED.\n";
}

void checkCollisions(const char* file, boost::uint32_t bits = 0) {
  HashCodeType bitMask = 0;
  if (0 == bits || 8 * sizeof(HashCodeType) < bits)
    bits = 8 * sizeof(HashCodeType);
  for (unsigned i = 0; i < bits; i++) bitMask |= 1ULL << i;
  std::cout << "Hash size = " << bits << " bits. Mask = " << bitMask << "\n";

  if (0 == strcmp(file + strlen(file) - 4, ".smi"))
    testFileSMILES(file, bitMask);
  else
    std::cout << "UNKNOWN File Extention.\n";
}

}  // RDKit

int main(int argc, char* argv[]) {
  RDKit::doUnitTest();

  if (2 == argc)
    RDKit::checkCollisions(argv[1]);
  else if (3 == argc && isdigit(*argv[2]))
    RDKit::checkCollisions(argv[1], atoi(argv[2]));
  else if (1 != argc)
    std::cout << "UNKNOWN Argument.\n";
  return 0;
}