File: test1.cpp

package info (click to toggle)
rdkit 201809.1%2Bdfsg-6
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 123,688 kB
  • sloc: cpp: 230,509; python: 70,501; java: 6,329; ansic: 5,427; sql: 1,899; yacc: 1,739; lex: 1,243; makefile: 445; xml: 229; fortran: 183; sh: 123; cs: 93
file content (415 lines) | stat: -rw-r--r-- 15,691 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
//
//  Copyright (C) 2018 Susan H. Leung
//
//   @@ All Rights Reserved @@
//  This file is part of the RDKit.
//  The contents are covered by the terms of the BSD license
//  which is included in the file license.txt, found at the root
//  of the RDKit source tree.
//
#include "MolStandardize.h"
#include "Metal.h"
#include <RDGeneral/Invariant.h>
#include <GraphMol/RDKitBase.h>
#include <GraphMol/SmilesParse/SmilesParse.h>
#include <GraphMol/SmilesParse/SmilesWrite.h>
#include <GraphMol/ROMol.h>

#include <iostream>

using namespace RDKit;
using namespace std;

void testCleanup() {
  BOOST_LOG(rdInfoLog) << "-----------------------\n test cleanup" << std::endl;
  string smi1, smi2, smi3, smi4;
  MolStandardize::CleanupParameters params;

  // Test covalent metal is disconnected during standardize.
  smi1 = "CCC(=O)O[Na]";
  unique_ptr<RWMol> m1(SmilesToMol(smi1));
  unique_ptr<RWMol> res1(MolStandardize::cleanup(*m1, params));
  TEST_ASSERT(MolToSmiles(*res1) == "CCC(=O)[O-].[Na+]");

  // Test metal ion is untouched during standardize.
  smi2 = "CCC(=O)[O-].[Na+]";
  unique_ptr<RWMol> m2(SmilesToMol(smi2));
  unique_ptr<RWMol> res2(MolStandardize::cleanup(*m2, params));
  TEST_ASSERT(MolToSmiles(*res2) == "CCC(=O)[O-].[Na+]");

  // Test Hg is disconnected from O during standardize.
  smi3 = "CCC(=O)O[Hg]";
  unique_ptr<RWMol> m3(SmilesToMol(smi3));
  unique_ptr<RWMol> res3(MolStandardize::cleanup(*m3, params));
  TEST_ASSERT(MolToSmiles(*res3) == "CCC(=O)[O-].[Hg+]")

  // Test dimethylmercury is not disconnected during standardize.
  smi4 = "C[Hg]C";
  unique_ptr<RWMol> m4(SmilesToMol(smi4));
  unique_ptr<RWMol> res4(MolStandardize::cleanup(*m4, params));
  TEST_ASSERT(MolToSmiles(*res4) == "C[Hg]C")
  BOOST_LOG(rdInfoLog) << "Finished" << std::endl;
}

void testStandardizeSm() {
  BOOST_LOG(rdInfoLog) << "-----------------------\n test standardize smiles"
                       << std::endl;

  // check aromaticity
  std::string smi1 = "C1=CC=CC=C1";
  std::string ss1 = MolStandardize::standardizeSmiles(smi1);
  TEST_ASSERT(ss1 == "c1ccccc1");

  // both rings should be aromatic
  std::string smi2 = "C[N]1C=NC2=C1C(=O)N(C)C(=O)N2C";
  std::string ss2 = MolStandardize::standardizeSmiles(smi2);
  TEST_ASSERT(ss2 == "Cn1c(=O)c2c(ncn2C)n(C)c1=O");

  // both rings should be aromatic
  std::string smi3 = "C=Cc1ccc2c(c1)[nH]c(=O)/c/2=C\\c1ccc[nH]1";
  std::string ss3 = MolStandardize::standardizeSmiles(smi3);
  TEST_ASSERT(ss3 == "C=Cc1ccc2c(c1)NC(=O)/C2=C\\c1ccc[nH]1");

  // check stereochemistry is correctly perceived
  std::string smi4 = "Cl\\C=C/Cl";
  std::string ss4 = MolStandardize::standardizeSmiles(smi4);
  TEST_ASSERT(ss4 == "Cl/C=C\\Cl");

  // Break metal-organic covalent bonds
  std::string smi5 = "[Na]OC(=O)c1ccccc1";
  std::string ss5 = MolStandardize::standardizeSmiles(smi5);
  TEST_ASSERT(ss5 == "O=C([O-])c1ccccc1.[Na+]");

  // SMILES parsing error should stop tests
  //	std::string smi6 = "C1CCC1C(=O)O.Na";
  //	std::string ss6 = MolStandardize::standardizeSmiles(smi6);
  BOOST_LOG(rdInfoLog) << "Finished" << std::endl;
}

void testMetalDisconnector() {
  BOOST_LOG(rdInfoLog) << "-----------------------\n test metal disconnector"
                       << std::endl;

  MolStandardize::MetalDisconnector md;

  // testing overloaded function
  string smi1 = "CCC(=O)O[Na]";
  unique_ptr<ROMol> m1(SmilesToMol(smi1));
  TEST_ASSERT(m1);
  unique_ptr<ROMol> nm(md.disconnect(*m1));
  TEST_ASSERT(MolToSmiles(*nm) == "CCC(=O)[O-].[Na+]");

  string smi2 = "[Na]OC(=O)CCC(=O)O[Na]";
  unique_ptr<RWMol> m2(SmilesToMol(smi2));
  TEST_ASSERT(m2);
  md.disconnect(*m2);
  TEST_ASSERT(MolToSmiles(*m2) == "O=C([O-])CCC(=O)[O-].[Na+].[Na+]");

  string smi3 = "c1ccccc1[Mg]Br";
  unique_ptr<RWMol> m3(SmilesToMol(smi3));
  TEST_ASSERT(m3);
  md.disconnect(*m3);
  TEST_ASSERT(MolToSmiles(*m3) == "Br[Mg]c1ccccc1");

  string smi4 = "Br[Mg]c1ccccc1CCC(=O)O[Na]";
  unique_ptr<RWMol> m4(SmilesToMol(smi4));
  TEST_ASSERT(m4);
  md.disconnect(*m4);
  TEST_ASSERT(MolToSmiles(*m4) == "O=C([O-])CCc1ccccc1[Mg]Br.[Na+]");

  // test input own metal_non, metal_nof
  // missing out Na
  unique_ptr<ROMol> metal_nof(
      SmartsToMol("[Li,K,Rb,Cs,Fr,Be,Mg,Ca,Sr,Ba,Ra,Sc,Ti,V,Cr,Mn,Fe,Co,"
                  "Ni,Cu,Zn,Al,Ga,Y,Zr,Nb,Mo,Tc,Ru,Rh,Pd,Ag,Cd,In,Sn,Hf,Ta,"
                  "W,Re,Os,Ir,Pt,Au,Hg,Tl,Pb,Bi]~[N,O,F]"));
  md.setMetalNof(*metal_nof);
  string smi5 = "CCC(=O)O[Na]";
  unique_ptr<ROMol> m5(SmilesToMol(smi5));
  TEST_ASSERT(m5);
  unique_ptr<ROMol> nm5(md.disconnect(*m5));
  TEST_ASSERT(MolToSmiles(*nm5) == "CCC(=O)O[Na]");  // not disconnected
  BOOST_LOG(rdInfoLog) << "Finished" << std::endl;
}

void testNormalize() {
  BOOST_LOG(rdInfoLog) << "-----------------------\n test normalize"
                       << std::endl;

  string smi1, smi2, smi3, smi4, smi5, smi6, smi7, smi8, smi9, smi10, smi11,
      smi12, smi13, smi14, smi15, smi16, smi17;
  MolStandardize::CleanupParameters params;

  std::string rdbase = getenv("RDBASE");
  std::string transformFile =
      rdbase + "/Data/MolStandardize/normalizations.txt";
  params.normalizations = transformFile;

  // Normalize nitro group.
  smi1 = "C1(=CC=CC=C1)[N+](=O)[O-]";
  unique_ptr<RWMol> m1(SmilesToMol(smi1));
  unique_ptr<RWMol> res1(MolStandardize::cleanup(*m1, params));
  TEST_ASSERT(MolToSmiles(*res1) == "O=[N+]([O-])c1ccccc1");

  // Normalize nitro group.
  smi2 = "O=[N](=O)c1ccccc1";
  unique_ptr<RWMol> m2(SmilesToMol(smi2));
  unique_ptr<RWMol> res2(MolStandardize::cleanup(*m2, params));
  TEST_ASSERT(MolToSmiles(*res2) == "O=[N+]([O-])c1ccccc1");

  // Normalize nitro group.
  smi3 = "[O-][N+](=O)c1ccccc1";
  unique_ptr<RWMol> m3(SmilesToMol(smi3));
  unique_ptr<RWMol> res3(MolStandardize::cleanup(*m3, params));
  TEST_ASSERT(MolToSmiles(*res3) == "O=[N+]([O-])c1ccccc1");

  // Normalize nitro group.
  smi4 = "[N](=O)(=O)O";
  unique_ptr<RWMol> m4(SmilesToMol(smi4));
  unique_ptr<RWMol> res4(MolStandardize::cleanup(*m4, params));
  TEST_ASSERT(MolToSmiles(*res4) == "O=[N+]([O-])O");

  // Normalize nitro group.
  smi5 = "O[N+](=O)[O-]";
  unique_ptr<RWMol> m5(SmilesToMol(smi5));
  unique_ptr<RWMol> res5(MolStandardize::cleanup(*m5, params));
  TEST_ASSERT(MolToSmiles(*res5) == "O=[N+]([O-])O");

  // Normalize pyridine oxide.
  smi6 = "C1=[N](C=CC=C1)=O";
  unique_ptr<RWMol> m6(SmilesToMol(smi6));
  unique_ptr<RWMol> res6(MolStandardize::cleanup(*m6, params));
  TEST_ASSERT(MolToSmiles(*res6) == "[O-][n+]1ccccc1");

  // Normalize pyridine oxide.
  smi7 = "O=n1ccccc1";
  unique_ptr<RWMol> m7(SmilesToMol(smi7));
  unique_ptr<RWMol> res7(MolStandardize::cleanup(*m7, params));
  TEST_ASSERT(MolToSmiles(*res7) == "[O-][n+]1ccccc1");

  // normalize sulfone.
  smi8 = "C[S+2]([O-])([O-])C";
  unique_ptr<RWMol> m8(SmilesToMol(smi8));
  unique_ptr<RWMol> res8(MolStandardize::cleanup(*m8, params));
  TEST_ASSERT(MolToSmiles(*res8) == "CS(C)(=O)=O");

  // normalize sulfone.
  smi9 = "C[S+2]([O-])([O-])O";
  unique_ptr<RWMol> m9(SmilesToMol(smi9));
  unique_ptr<RWMol> res9(MolStandardize::cleanup(*m9, params));
  TEST_ASSERT(MolToSmiles(*res9) == "CS(=O)(=O)O");

  // normalize sulfoxide..
  smi10 = "CS(=O)C";
  unique_ptr<RWMol> m10(SmilesToMol(smi10));
  unique_ptr<RWMol> res10(MolStandardize::cleanup(*m10, params));
  TEST_ASSERT(MolToSmiles(*res10) == "C[S+](C)[O-]");

  // normalize sulfoxide.
  smi11 = "COC1=CC2=C(C=C1)[N]C(=N2)[S](=O)CC3=C(C(=C(C=N3)C)OC)C";
  unique_ptr<RWMol> m11(SmilesToMol(smi11));
  unique_ptr<RWMol> res11(MolStandardize::cleanup(*m11, params));
  TEST_ASSERT(MolToSmiles(*res11) ==
              "COc1ccc2c(c1)N=C([S+]([O-])Cc1ncc(C)c(OC)c1C)[N]2");

  // Normalize sulfoxide.
  smi12 = "COc1ccc2c(c1)nc([nH]2)S(=O)Cc1ncc(c(c1C)OC)C";
  unique_ptr<RWMol> m12(SmilesToMol(smi12));
  unique_ptr<RWMol> res12(MolStandardize::cleanup(*m12, params));
  TEST_ASSERT(MolToSmiles(*res12) ==
              "COc1ccc2[nH]c([S+]([O-])Cc3ncc(C)c(OC)c3C)nc2c1");

  // Normalize azide.
  smi13 = "C1(=CC=C(C=C1)N)N=[N]#N";
  unique_ptr<RWMol> m13(SmilesToMol(smi13));
  unique_ptr<RWMol> res13(MolStandardize::cleanup(*m13, params));
  TEST_ASSERT(MolToSmiles(*res13) == "[N-]=[N+]=Nc1ccc(N)cc1");

  // Normalize diazo.
  smi14 = "[N](#N)=C1C(NC(N=C1)=O)=O";
  unique_ptr<RWMol> m14(SmilesToMol(smi14));
  unique_ptr<RWMol> res14(MolStandardize::cleanup(*m14, params));
  TEST_ASSERT(MolToSmiles(*res14) == "[N-]=[N+]=C1C=NC(=O)NC1=O");

  // Normalize phosphate.
  smi15 = "C1=NC=C([N]1)CO[P+]([O-])([O-])[O-]";
  unique_ptr<RWMol> m15(SmilesToMol(smi15));
  unique_ptr<RWMol> res15(MolStandardize::cleanup(*m15, params));
  TEST_ASSERT(MolToSmiles(*res15) == "O=P([O-])([O-])OCC1=CN=C[N]1");

  // Normalize hydrazine-diazonium.
  smi16 = "CNNC[N+]#N";
  unique_ptr<RWMol> m16(SmilesToMol(smi16));
  unique_ptr<RWMol> res16(MolStandardize::cleanup(*m16, params));
  TEST_ASSERT(MolToSmiles(*res16) == "CN=[NH+]CN=N");

  // Normalize amidinium.
  smi17 = "[C+](C)(N)N";
  unique_ptr<RWMol> m17(SmilesToMol(smi17));
  unique_ptr<RWMol> res17(MolStandardize::cleanup(*m17, params));
  TEST_ASSERT(MolToSmiles(*res17) == "CC(N)=[NH2+]");
  BOOST_LOG(rdInfoLog) << "Finished" << std::endl;
}

void testNormalizeMultiFrags() {
  BOOST_LOG(rdInfoLog)
      << "-----------------------\n test normalize multiple frags" << std::endl;

  string smi1, smi2, smi3, smi4, smi5, smi6, smi7, smi8, smi9, smi10, smi11,
      smi12, smi13, smi14, smi15, smi16, smi17;
  MolStandardize::CleanupParameters params;

  std::string rdbase = getenv("RDBASE");
  std::string transformFile =
      rdbase + "/Data/MolStandardize/normalizations.txt";
  params.normalizations = transformFile;

  // All fragments should stay if one gets transformed by normalization.
  smi1 = "[Na]OC(=O)c1ccc(C[S+2]([O-])([O-]))cc1";
  unique_ptr<RWMol> m1(SmilesToMol(smi1));
  unique_ptr<RWMol> res1(MolStandardize::cleanup(*m1, params));
  TEST_ASSERT(MolToSmiles(*res1) == "O=C([O-])c1ccc(C[S](=O)=O)cc1.[Na+]");

  // All fragments should stay if one gets transformed by normalization.
  smi2 = "[Na+].[O-]C(=O)c1ccc(C[S+2]([O-])([O-]))cc1";
  unique_ptr<RWMol> m2(SmilesToMol(smi2));
  unique_ptr<RWMol> res2(MolStandardize::cleanup(*m2, params));
  TEST_ASSERT(MolToSmiles(*res2) == "O=C([O-])c1ccc(C[S](=O)=O)cc1.[Na+]");

  // Recombine non-aromatic 1,3-separated charges.
  smi3 = "C[N-]C(C)=[N+](C)C";
  unique_ptr<RWMol> m3(SmilesToMol(smi3));
  unique_ptr<RWMol> res3(MolStandardize::cleanup(*m3, params));
  TEST_ASSERT(MolToSmiles(*res3) == "CN=C(C)N(C)C");

  // Recombine aromatic 1,3-separated charges.
  smi4 = "[n-]1c(=[N+](C)C)cccc1";
  unique_ptr<RWMol> m4(SmilesToMol(smi4));
  unique_ptr<RWMol> res4(MolStandardize::cleanup(*m4, params));
  TEST_ASSERT(MolToSmiles(*res4) == "CN(C)c1ccccn1");

  // Recombine aromatic 1,3-separated charges.
  smi5 = "C[n+]1c([N-](C))cccc1";
  unique_ptr<RWMol> m5(SmilesToMol(smi5));
  unique_ptr<RWMol> res5(MolStandardize::cleanup(*m5, params));
  TEST_ASSERT(MolToSmiles(*res5) == "CN=c1ccccn1C");

  // Recombine aromatic 1,3-separated charges to form pyrimidone.
  smi6 = "[O-]c1[n+](C)cccc1";
  unique_ptr<RWMol> m6(SmilesToMol(smi6));
  unique_ptr<RWMol> res6(MolStandardize::cleanup(*m6, params));
  TEST_ASSERT(MolToSmiles(*res6) == "Cn1ccccc1=O");

  // Recombine aromatic 1,3-separated charges to form pyrimidone.
  smi7 = "COc1cc2ccc3c4c(OC)cc(OC)c(OC)c4c([O-])[n+](C)c3c2cc1OC";
  unique_ptr<RWMol> m7(SmilesToMol(smi7));
  unique_ptr<RWMol> res7(MolStandardize::cleanup(*m7, params));
  TEST_ASSERT(MolToSmiles(*res7) ==
              "COc1cc2ccc3c4c(OC)cc(OC)c(OC)c4c(=O)n(C)c3c2cc1OC");

  // Recombine non-aromatic 1,5-separated charges.
  smi8 = "C[N-]C=CC=[N+](C)C";
  unique_ptr<RWMol> m8(SmilesToMol(smi8));
  unique_ptr<RWMol> res8(MolStandardize::cleanup(*m8, params));
  TEST_ASSERT(MolToSmiles(*res8) == "CN=CC=CN(C)C");

  // Recombine aromatic 1,5-separated charges.
  smi9 = "[n-]1ccc(=[N+](C)C)cc1";
  unique_ptr<RWMol> m9(SmilesToMol(smi9));
  unique_ptr<RWMol> res9(MolStandardize::cleanup(*m9, params));
  TEST_ASSERT(MolToSmiles(*res9) == "CN(C)c1ccncc1");

  // Recombine aromatic 1,5-separated charges.
  smi10 = "C[n+]1ccc([N-]C)cc1";
  unique_ptr<RWMol> m10(SmilesToMol(smi10));
  unique_ptr<RWMol> res10(MolStandardize::cleanup(*m10, params));
  TEST_ASSERT(MolToSmiles(*res10) == "CN=c1ccn(C)cc1");

  // Shift positive charge from nonprotonated to protonated atom.
  smi11 = "CNC=[N+](C)C";
  unique_ptr<RWMol> m11(SmilesToMol(smi11));
  unique_ptr<RWMol> res11(MolStandardize::cleanup(*m11, params));
  TEST_ASSERT(MolToSmiles(*res11) == "C[NH+]=CN(C)C");

  // Shift positive charge from nonprotonated to protonated atom."
  smi12 = "CNC=CC=[N+](C)C";
  unique_ptr<RWMol> m12(SmilesToMol(smi12));
  unique_ptr<RWMol> res12(MolStandardize::cleanup(*m12, params));
  TEST_ASSERT(MolToSmiles(*res12) == "C[NH+]=CC=CN(C)C");

  // Shift positive charge from nonprotonated to protonated atom."
  smi13 = "[nH]1ccc(=[N+](C)C)cc1";
  unique_ptr<RWMol> m13(SmilesToMol(smi13));
  unique_ptr<RWMol> res13(MolStandardize::cleanup(*m13, params));
  TEST_ASSERT(MolToSmiles(*res13) == "CN(C)c1cc[nH+]cc1");

  // Ensure no transforms inadvertently breaks open rings.
  smi14 = "[O-]C1=CC=CC2=CC=CC=[N+]12";
  unique_ptr<RWMol> m14(SmilesToMol(smi14));
  unique_ptr<RWMol> res14(MolStandardize::cleanup(*m14, params));
  TEST_ASSERT(MolToSmiles(*res14) == "O=c1cccc2ccccn12");

  // Shift positive charge from nonprotonated to protonated atom.
  smi15 = "[nH]1c(=[N+](C)C)cccc1";
  unique_ptr<RWMol> m15(SmilesToMol(smi15));
  unique_ptr<RWMol> res15(MolStandardize::cleanup(*m15, params));
  TEST_ASSERT(MolToSmiles(*res15) == "CN(C)c1cccc[nH+]1");
  BOOST_LOG(rdInfoLog) << "Finished" << std::endl;
}

void testCharge() {
  BOOST_LOG(rdInfoLog) << "-----------------------\n test charges" << std::endl;

  std::string smi1, smi2, smi3, smi4;

  // Reionization should not infinitely loop forever on these molecules.
  smi1 = "CCCCCCCCCCCCCCCCCC(=O)CC(=C)C(=O)O[Ti](=O)(OC(C)C)C(C)C";
  std::string ss = MolStandardize::standardizeSmiles(smi1);
  TEST_ASSERT(
      ss ==
      "C=C(CC(=O)[CH-]CCCCCCCCCCCCCCCC)C(=O)[O-].CC(C)[O-].CCC.[O-2].[Ti+5]");

  // Reionization should not infinitely loop forever on these molecules.
  smi2 =
      "OP(=O)(O)[O-].OP(=O)([O-])[O-].[O-]S(=O)(=O)[O-].[Na+].[Na+].[Na+].[Mg+"
      "2].[Cl-].[Cl-].[K+].[K+]";
  std::string ss2 = MolStandardize::standardizeSmiles(smi2);
  TEST_ASSERT(ss2 ==
              "O=P([O-])(O)O.O=P([O-])([O-])O.O=S(=O)([O-])[O-].[Cl-].[Cl-].[K+"
              "].[K+].[Mg+2].[Na+].[Na+].[Na+]");

  // Charge parent!!
  // Test reionizer moves proton to weaker acid.
  smi3 = "[Na].[Na]";
  std::string ss3 = MolStandardize::standardizeSmiles(smi3);
  TEST_ASSERT(ss3 == "[Na+].[Na+]");

  // TODO: Arguably should become selenite ion... O=[Se]([O-])[O-].
  // Need an AcidBasePair?
  smi4 = "[Na].[Na].O[Se](O)=O";
  std::string ss4 = MolStandardize::standardizeSmiles(smi4);
  TEST_ASSERT(ss4 == "O=[Se](O)O.[Na+].[Na+]");
  BOOST_LOG(rdInfoLog) << "Finished" << std::endl;
}

void testEnumerateTautomerSmiles() {
  BOOST_LOG(rdInfoLog)
      << "-----------------------\n test enumerate tautomer smiles"
      << std::endl;
  MolStandardize::CleanupParameters params;
  std::string smi1 = "c1(ccccc1)/C=C(/O)\\C";
  std::vector<std::string> tsmiles =
      MolStandardize::enumerateTautomerSmiles(smi1, params);
  BOOST_LOG(rdInfoLog) << "Finished" << std::endl;
}

int main() {
  testCleanup();
  testStandardizeSm();
  testMetalDisconnector();
  testNormalize();
  testNormalizeMultiFrags();
  testCharge();
  //	testEnumerateTautomerSmiles();
  return 0;
}