File: MolTransforms.cpp

package info (click to toggle)
rdkit 201809.1%2Bdfsg-6
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 123,688 kB
  • sloc: cpp: 230,509; python: 70,501; java: 6,329; ansic: 5,427; sql: 1,899; yacc: 1,739; lex: 1,243; makefile: 445; xml: 229; fortran: 183; sh: 123; cs: 93
file content (583 lines) | stat: -rw-r--r-- 21,338 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
//
//   Copyright (C) 2003-2016 Greg Landrum and Rational Discovery LLC
//
//   @@ All Rights Reserved @@
//  This file is part of the RDKit.
//  The contents are covered by the terms of the BSD license
//  which is included in the file license.txt, found at the root
//  of the RDKit source tree.
//
#include "MolTransforms.h"
#include <GraphMol/RDKitBase.h>
#include <GraphMol/QueryOps.h>
#include <Numerics/EigenSolvers/PowerEigenSolver.h>
#include <Numerics/SymmMatrix.h>
#include <Numerics/Matrix.h>
#include <Geometry/Transform3D.h>
#include <stack>
#include <boost/dynamic_bitset.hpp>
#include <RDGeneral/Exceptions.h>

#define EIGEN_TOLERANCE 5.0e-2
namespace MolTransforms {

using namespace RDKit;
void transformAtom(Atom *atom, RDGeom::Transform3D &tform) {
  PRECONDITION(atom, "no atom");
  ROMol &mol = atom->getOwningMol();
  for (ROMol::ConstConformerIterator ci = mol.beginConformers();
       ci != mol.endConformers(); ci++) {
    RDGeom::Point3D &pos = (*ci)->getAtomPos(atom->getIdx());
    tform.TransformPoint(pos);
  }
  // atom->setPos(pos);
}
void transformMolsAtoms(ROMol *mol, RDGeom::Transform3D &tform) {
  PRECONDITION(mol, "no molecule");

  ROMol::AtomIterator atomIt;
  for (atomIt = mol->beginAtoms(); atomIt != mol->endAtoms(); atomIt++) {
    transformAtom(*atomIt, tform);
  }
}

RDGeom::Point3D computeCentroid(const Conformer &conf, bool ignoreHs) {
  RDGeom::Point3D res(0.0, 0.0, 0.0);
  const ROMol &mol = conf.getOwningMol();
  ROMol::ConstAtomIterator cai;
  unsigned int nAtms = 0;

  for (cai = mol.beginAtoms(); cai != mol.endAtoms(); cai++) {
    if (((*cai)->getAtomicNum() == 1) && (ignoreHs)) {
      continue;
    }
    res += conf.getAtomPos((*cai)->getIdx());
    nAtms++;
  }
  res /= nAtms;
  return res;
}
namespace {
void computeCovarianceTerms(const Conformer &conf,
                            const RDGeom::Point3D &center, double &xx,
                            double &xy, double &xz, double &yy, double &yz,
                            double &zz, bool normalize, bool ignoreHs,
                            const std::vector<double> *weights) {
  PRECONDITION(!weights || weights->size() >= conf.getNumAtoms(),
               "bad weights vector");

  xx = xy = xz = yy = yz = zz = 0.0;
  const ROMol &mol = conf.getOwningMol();
  double wSum = 0.0;
  for (ROMol::ConstAtomIterator cai = mol.beginAtoms(); cai != mol.endAtoms();
       cai++) {
    if (((*cai)->getAtomicNum() == 1) && (ignoreHs)) {
      continue;
    }
    RDGeom::Point3D loc = conf.getAtomPos((*cai)->getIdx());
    loc -= center;
    double w = 1.0;
    if (weights) {
      w = (*weights)[(*cai)->getIdx()];
    }
    wSum += w;
    xx += w * loc.x * loc.x;
    xy += w * loc.x * loc.y;
    xz += w * loc.x * loc.z;
    yy += w * loc.y * loc.y;
    yz += w * loc.y * loc.z;
    zz += w * loc.z * loc.z;
  }
  if (normalize) {
    xx /= wSum;
    xy /= wSum;
    xz /= wSum;
    yy /= wSum;
    yz /= wSum;
    zz /= wSum;
  }
}

RDNumeric::DoubleSymmMatrix *computeCovarianceMatrix(
    const Conformer &conf, const RDGeom::Point3D &center, bool normalize,
    bool ignoreHs) {
  double xx, xy, xz, yy, yz, zz;
  computeCovarianceTerms(conf, center, xx, xy, xz, yy, yz, zz, normalize,
                         ignoreHs, nullptr);
  auto *res = new RDNumeric::DoubleSymmMatrix(3, 3);
  res->setVal(0, 0, xx);
  res->setVal(0, 1, xy);
  res->setVal(0, 2, xz);
  res->setVal(1, 1, yy);
  res->setVal(1, 2, yz);
  res->setVal(2, 2, zz);
  return res;
}

void computeInertiaTerms(const Conformer &conf, const RDGeom::Point3D &center,
                         double &xx, double &xy, double &xz, double &yy,
                         double &yz, double &zz, bool ignoreHs,
                         const std::vector<double> *weights) {
  PRECONDITION(!weights || weights->size() >= conf.getNumAtoms(),
               "bad weights vector");

  xx = xy = xz = yy = yz = zz = 0.0;
  const ROMol &mol = conf.getOwningMol();
  for (ROMol::ConstAtomIterator cai = mol.beginAtoms(); cai != mol.endAtoms();
       cai++) {
    if (((*cai)->getAtomicNum() == 1) && (ignoreHs)) {
      continue;
    }
    RDGeom::Point3D loc = conf.getAtomPos((*cai)->getIdx());
    loc -= center;
    double w = 1.0;
    if (weights) {
      w = (*weights)[(*cai)->getIdx()];
    }
    xx += w * (loc.y * loc.y + loc.z * loc.z);
    yy += w * (loc.x * loc.x + loc.z * loc.z);
    zz += w * (loc.y * loc.y + loc.x * loc.x);
    xy -= w * loc.x * loc.y;
    xz -= w * loc.x * loc.z;
    yz -= w * loc.z * loc.y;
  }
}
}
#ifdef RDK_HAS_EIGEN3
#include <Eigen/Dense>

bool computePrincipalAxesAndMoments(const RDKit::Conformer &conf,
                                    Eigen::Matrix3d &axes,
                                    Eigen::Vector3d &moments, bool ignoreHs,
                                    bool force,
                                    const std::vector<double> *weights) {
  PRECONDITION((!weights || weights->size() >= conf.getNumAtoms()),
               "bad weights vector");
  const char *axesPropName = ignoreHs ? "_principalAxes_noH" : "_principalAxes";
  const char *momentsPropName =
      ignoreHs ? "_principalMoments_noH" : "_principalMoments";
  if (!weights && !force && conf.getOwningMol().hasProp(axesPropName) &&
      conf.getOwningMol().hasProp(momentsPropName)) {
    conf.getOwningMol().getProp(axesPropName, axes);
    conf.getOwningMol().getProp(momentsPropName, moments);
    return true;
  }
  const ROMol &mol = conf.getOwningMol();
  RDGeom::Point3D origin(0, 0, 0);
  double wSum = 0.0;
  for (unsigned int i = 0; i < conf.getNumAtoms(); ++i) {
    if (ignoreHs && mol.getAtomWithIdx(i)->getAtomicNum() == 1) continue;
    double w = 1.0;
    if (weights) {
      w = (*weights)[i];
    }
    wSum += w;
    origin += conf.getAtomPos(i) * w;
  }
  // std::cerr<<"  origin: "<<origin<<" "<<wSum<<std::endl;
  origin /= wSum;

  double sumXX, sumXY, sumXZ, sumYY, sumYZ, sumZZ;
  computeInertiaTerms(conf, origin, sumXX, sumXY, sumXZ, sumYY, sumYZ, sumZZ,
                      ignoreHs, weights);

  Eigen::Matrix3d mat;
  mat << sumXX, sumXY, sumXZ, sumXY, sumYY, sumYZ, sumXZ, sumYZ, sumZZ;
  // std::cerr<<"  matrix: "<<mat<<std::endl;
  Eigen::SelfAdjointEigenSolver<Eigen::Matrix3d> eigensolver(mat);
  if (eigensolver.info() != Eigen::Success) {
    BOOST_LOG(rdErrorLog) << "eigenvalue calculation did not converge"
                          << std::endl;
    return false;
  }

  axes = eigensolver.eigenvectors();
  moments = eigensolver.eigenvalues();
  if (!weights) {
    conf.getOwningMol().setProp(axesPropName, axes, true);
    conf.getOwningMol().setProp(momentsPropName, moments, true);
  }
  return true;
}
bool computePrincipalAxesAndMomentsFromGyrationMatrix(
    const RDKit::Conformer &conf, Eigen::Matrix3d &axes,
    Eigen::Vector3d &moments, bool ignoreHs, bool force,
    const std::vector<double> *weights) {
  PRECONDITION((!weights || weights->size() >= conf.getNumAtoms()),
               "bad weights vector");
  const char *axesPropName =
      ignoreHs ? "_principalAxes_noH_cov" : "_principalAxes_cov";
  const char *momentsPropName =
      ignoreHs ? "_principalMoments_noH_cov" : "_principalMoments_cov";
  if (!weights && !force && conf.getOwningMol().hasProp(axesPropName) &&
      conf.getOwningMol().hasProp(momentsPropName)) {
    conf.getOwningMol().getProp(axesPropName, axes);
    conf.getOwningMol().getProp(momentsPropName, moments);
    return true;
  }
  const ROMol &mol = conf.getOwningMol();
  RDGeom::Point3D origin(0, 0, 0);
  double wSum = 0.0;
  for (unsigned int i = 0; i < conf.getNumAtoms(); ++i) {
    if (ignoreHs && mol.getAtomWithIdx(i)->getAtomicNum() == 1) continue;
    double w = 1.0;
    if (weights) {
      w = (*weights)[i];
    }
    wSum += w;
    origin += conf.getAtomPos(i) * w;
  }
  // std::cerr<<"  origin: "<<origin<<" "<<wSum<<std::endl;
  origin /= wSum;

  double sumXX, sumXY, sumXZ, sumYY, sumYZ, sumZZ;
  computeCovarianceTerms(conf, origin, sumXX, sumXY, sumXZ, sumYY, sumYZ, sumZZ,
                         true, ignoreHs, weights);

  Eigen::Matrix3d mat;
  mat << sumXX, sumXY, sumXZ, sumXY, sumYY, sumYZ, sumXZ, sumYZ, sumZZ;
  // std::cerr<<"  matrix: "<<mat<<std::endl;
  Eigen::SelfAdjointEigenSolver<Eigen::Matrix3d> eigensolver(mat);
  if (eigensolver.info() != Eigen::Success) {
    BOOST_LOG(rdErrorLog) << "eigenvalue calculation did not converge"
                          << std::endl;
    return false;
  }

  axes = eigensolver.eigenvectors();
  moments = eigensolver.eigenvalues();
  if (!weights) {
    conf.getOwningMol().setProp(axesPropName, axes, true);
    conf.getOwningMol().setProp(momentsPropName, moments, true);
  }
  return true;
}
#endif

RDGeom::Transform3D *computeCanonicalTransform(const Conformer &conf,
                                               const RDGeom::Point3D *center,
                                               bool normalizeCovar,
                                               bool ignoreHs) {
  RDGeom::Point3D origin;
  if (!center) {
    origin = computeCentroid(conf, ignoreHs);
  } else {
    origin = (*center);
  }
  RDNumeric::DoubleSymmMatrix *covMat =
      computeCovarianceMatrix(conf, origin, normalizeCovar, ignoreHs);
  // find the eigen values and eigen vectors for the covMat
  RDNumeric::DoubleMatrix eigVecs(3, 3);
  RDNumeric::DoubleVector eigVals(3);
  // if we have a single atom system we don't need to do anyhting other than
  // setting translation
  // translation
  unsigned int nAtms = conf.getNumAtoms();
  auto *trans = new RDGeom::Transform3D;

  // set the translation
  origin *= -1.0;
  // trans->SetTranslation(origin);
  // if we have a single atom system we don't need to do anyhting setting
  // translation is sufficient
  if (nAtms > 1) {
    RDNumeric::EigenSolvers::powerEigenSolver(3, *covMat, eigVals, eigVecs,
                                              conf.getNumAtoms());
    // deal with zero eigen value systems
    unsigned int i, j, dim = 3;
    for (i = 0; i < 3; ++i) {
      // std::cerr<<"  ev: "<<i<<": "<<eigVals.getVal(i)<<std::endl;
      if (fabs(eigVals.getVal(i)) < EIGEN_TOLERANCE) {
        dim--;
      }
    }
    CHECK_INVARIANT(dim >= 1, "");
    if (dim < 3) {
      RDGeom::Point3D first(eigVecs.getVal(0, 0), eigVecs.getVal(0, 1),
                            eigVecs.getVal(0, 2));
      if (dim == 1) {
        // pick an arbitrary eigen vector perpendicular to the first vector
        RDGeom::Point3D second(first.getPerpendicular());
        eigVecs.setVal(1, 0, second.x);
        eigVecs.setVal(1, 1, second.y);
        eigVecs.setVal(1, 2, second.z);
        if (eigVals.getVal(0) > 1.0) {
          eigVals.setVal(1, 1.0);
        } else {
          eigVals.setVal(1, eigVals.getVal(0) / 2.0);
        }
      }
      RDGeom::Point3D second(eigVecs.getVal(1, 0), eigVecs.getVal(1, 1),
                             eigVecs.getVal(1, 2));
      // pick the third eigen vector perpendicular to the first two
      RDGeom::Point3D third = first.crossProduct(second);
      eigVecs.setVal(2, 0, third.x);
      eigVecs.setVal(2, 1, third.y);
      eigVecs.setVal(2, 2, third.z);
      if (eigVals.getVal(1) > 1.0) {
        eigVals.setVal(2, 1.0);
      } else {
        eigVals.setVal(2, eigVals.getVal(1) / 2.0);
      }
    }
    // now set the transformation
    for (i = 0; i < 3; ++i) {
      for (j = 0; j < 3; ++j) {
        trans->setVal(i, j, eigVecs.getVal(i, j));
      }
    }
  }  // end of multiple atom system
  trans->TransformPoint(origin);
  trans->SetTranslation(origin);
  delete covMat;

  return trans;
}

void transformConformer(Conformer &conf, const RDGeom::Transform3D &trans) {
  RDGeom::POINT3D_VECT &positions = conf.getPositions();
  RDGeom::POINT3D_VECT_I pi;
  for (pi = positions.begin(); pi != positions.end(); ++pi) {
    trans.TransformPoint(*pi);
  }
}

void canonicalizeConformer(Conformer &conf, const RDGeom::Point3D *center,
                           bool normalizeCovar, bool ignoreHs) {
  RDGeom::Transform3D *trans =
      computeCanonicalTransform(conf, center, normalizeCovar, ignoreHs);
  transformConformer(conf, *trans);
  delete trans;
}

void canonicalizeMol(RDKit::ROMol &mol, bool normalizeCovar, bool ignoreHs) {
  ROMol::ConformerIterator ci;
  for (ci = mol.beginConformers(); ci != mol.endConformers(); ci++) {
    canonicalizeConformer(*(*ci), nullptr, normalizeCovar, ignoreHs);
  }
}

namespace {
void _toBeMovedIdxList(const ROMol &mol, unsigned int iAtomId,
                       unsigned int jAtomId, std::list<unsigned int> &alist) {
  unsigned int nAtoms = mol.getNumAtoms();
  boost::dynamic_bitset<> visitedIdx(nAtoms);
  std::stack<unsigned int> stack;
  stack.push(jAtomId);
  visitedIdx[iAtomId] = 1;
  visitedIdx[jAtomId] = 1;
  unsigned int tIdx;
  unsigned int wIdx;
  ROMol::ADJ_ITER nbrIdx;
  ROMol::ADJ_ITER endNbrs;
  bool doMainLoop;
  while (stack.size()) {
    doMainLoop = false;
    tIdx = stack.top();
    const Atom *tAtom = mol.getAtomWithIdx(tIdx);
    boost::tie(nbrIdx, endNbrs) = mol.getAtomNeighbors(tAtom);
    unsigned int eIdx;
    for (eIdx = 0; nbrIdx != endNbrs; ++nbrIdx, ++eIdx) {
      wIdx = (mol[*nbrIdx])->getIdx();
      if (!visitedIdx[wIdx]) {
        visitedIdx[wIdx] = 1;
        stack.push(wIdx);
        doMainLoop = true;
        break;
      }
    }
    if (doMainLoop) {
      continue;
    }
    visitedIdx[tIdx] = 1;
    stack.pop();
  }
  alist.clear();
  for (unsigned int i = 0; i < nAtoms; ++i) {
    if (visitedIdx[i] && (i != iAtomId)) {
      alist.push_back(i);
    }
  }
}
}
double getBondLength(const Conformer &conf, unsigned int iAtomId,
                     unsigned int jAtomId) {
  const RDGeom::POINT3D_VECT &pos = conf.getPositions();
  URANGE_CHECK(iAtomId, pos.size());
  URANGE_CHECK(jAtomId, pos.size());

  return (pos[iAtomId] - pos[jAtomId]).length();
}

void setBondLength(Conformer &conf, unsigned int iAtomId, unsigned int jAtomId,
                   double value) {
  RDGeom::POINT3D_VECT &pos = conf.getPositions();
  URANGE_CHECK(iAtomId, pos.size());
  URANGE_CHECK(jAtomId, pos.size());
  ROMol &mol = conf.getOwningMol();
  Bond *bond = mol.getBondBetweenAtoms(iAtomId, jAtomId);
  if (!bond) throw ValueErrorException("atoms i and j must be bonded");
  if (queryIsBondInRing(bond))
    throw ValueErrorException("bond (i,j) must not belong to a ring");
  RDGeom::Point3D v = pos[iAtomId] - pos[jAtomId];
  double origValue = v.length();
  if (origValue <= 1.e-8)
    throw ValueErrorException("atoms i and j have identical 3D coordinates");

  // get all atoms bonded to j
  std::list<unsigned int> alist;
  _toBeMovedIdxList(mol, iAtomId, jAtomId, alist);
  v *= (value / origValue - 1.);
  for (unsigned int &it : alist) {
    pos[it] -= v;
  }
}

double getAngleRad(const Conformer &conf, unsigned int iAtomId,
                   unsigned int jAtomId, unsigned int kAtomId) {
  const RDGeom::POINT3D_VECT &pos = conf.getPositions();
  URANGE_CHECK(iAtomId, pos.size());
  URANGE_CHECK(jAtomId, pos.size());
  URANGE_CHECK(kAtomId, pos.size());
  RDGeom::Point3D rJI = pos[iAtomId] - pos[jAtomId];
  double rJISqLength = rJI.lengthSq();
  if (rJISqLength <= 1.e-16)
    throw ValueErrorException("atoms i and j have identical 3D coordinates");
  RDGeom::Point3D rJK = pos[kAtomId] - pos[jAtomId];
  double rJKSqLength = rJK.lengthSq();
  if (rJKSqLength <= 1.e-16)
    throw ValueErrorException("atoms j and k have identical 3D coordinates");
  return rJI.angleTo(rJK);
}

void setAngleRad(Conformer &conf, unsigned int iAtomId, unsigned int jAtomId,
                 unsigned int kAtomId, double value) {
  RDGeom::POINT3D_VECT &pos = conf.getPositions();
  URANGE_CHECK(iAtomId, pos.size());
  URANGE_CHECK(jAtomId, pos.size());
  URANGE_CHECK(kAtomId, pos.size());
  ROMol &mol = conf.getOwningMol();
  Bond *bondJI = mol.getBondBetweenAtoms(jAtomId, iAtomId);
  if (!bondJI) throw ValueErrorException("atoms i and j must be bonded");
  Bond *bondJK = mol.getBondBetweenAtoms(jAtomId, kAtomId);
  if (!bondJK) throw ValueErrorException("atoms j and k must be bonded");
  if (queryIsBondInRing(bondJI) && queryIsBondInRing(bondJK))
    throw ValueErrorException(
        "bonds (i,j) and (j,k) must not both belong to a ring");

  RDGeom::Point3D rJI = pos[iAtomId] - pos[jAtomId];
  double rJISqLength = rJI.lengthSq();
  if (rJISqLength <= 1.e-16)
    throw ValueErrorException("atoms i and j have identical 3D coordinates");
  RDGeom::Point3D rJK = pos[kAtomId] - pos[jAtomId];
  double rJKSqLength = rJK.lengthSq();
  if (rJKSqLength <= 1.e-16)
    throw ValueErrorException("atoms j and k have identical 3D coordinates");

  // we only need to rotate by delta with respect to the current angle value
  value -= rJI.angleTo(rJK);
  RDGeom::Point3D &rotAxisBegin = pos[jAtomId];
  // our rotation axis is the normal to the plane of atoms i, j, k
  RDGeom::Point3D rotAxisEnd = rJI.crossProduct(rJK) + pos[jAtomId];
  RDGeom::Point3D rotAxis = rotAxisEnd - rotAxisBegin;
  rotAxis.normalize();
  // get all atoms bonded to j and loop through them
  std::list<unsigned int> alist;
  _toBeMovedIdxList(mol, jAtomId, kAtomId, alist);
  for (unsigned int &it : alist) {
    // translate atom so that it coincides with the origin of rotation
    pos[it] -= rotAxisBegin;
    // rotate around our rotation axis
    RDGeom::Transform3D rotByAngle;
    rotByAngle.SetRotation(value, rotAxis);
    rotByAngle.TransformPoint(pos[it]);
    // translate atom back
    pos[it] += rotAxisBegin;
  }
}

double getDihedralRad(const Conformer &conf, unsigned int iAtomId,
                      unsigned int jAtomId, unsigned int kAtomId,
                      unsigned int lAtomId) {
  const RDGeom::POINT3D_VECT &pos = conf.getPositions();
  URANGE_CHECK(iAtomId, pos.size());
  URANGE_CHECK(jAtomId, pos.size());
  URANGE_CHECK(kAtomId, pos.size());
  URANGE_CHECK(lAtomId, pos.size());
  RDGeom::Point3D rIJ = pos[jAtomId] - pos[iAtomId];
  double rIJSqLength = rIJ.lengthSq();
  if (rIJSqLength <= 1.e-16)
    throw ValueErrorException("atoms i and j have identical 3D coordinates");
  RDGeom::Point3D rJK = pos[kAtomId] - pos[jAtomId];
  double rJKSqLength = rJK.lengthSq();
  if (rJKSqLength <= 1.e-16)
    throw ValueErrorException("atoms j and k have identical 3D coordinates");
  RDGeom::Point3D rKL = pos[lAtomId] - pos[kAtomId];
  double rKLSqLength = rKL.lengthSq();
  if (rKLSqLength <= 1.e-16)
    throw ValueErrorException("atoms k and l have identical 3D coordinates");

  RDGeom::Point3D nIJK = rIJ.crossProduct(rJK);
  double nIJKSqLength = nIJK.lengthSq();
  RDGeom::Point3D nJKL = rJK.crossProduct(rKL);
  double nJKLSqLength = nJKL.lengthSq();
  RDGeom::Point3D m = nIJK.crossProduct(rJK);
  // we want a signed dihedral, that's why we use atan2 instead of acos
  return -atan2(m.dotProduct(nJKL) / sqrt(nJKLSqLength * m.lengthSq()),
                nIJK.dotProduct(nJKL) / sqrt(nIJKSqLength * nJKLSqLength));
}

void setDihedralRad(Conformer &conf, unsigned int iAtomId, unsigned int jAtomId,
                    unsigned int kAtomId, unsigned int lAtomId, double value) {
  RDGeom::POINT3D_VECT &pos = conf.getPositions();
  URANGE_CHECK(iAtomId, pos.size());
  URANGE_CHECK(jAtomId, pos.size());
  URANGE_CHECK(kAtomId, pos.size());
  URANGE_CHECK(lAtomId, pos.size());
  ROMol &mol = conf.getOwningMol();
  Bond *bondJK = mol.getBondBetweenAtoms(jAtomId, kAtomId);
  if (!bondJK) throw ValueErrorException("atoms j and k must be bonded");

  if (queryIsBondInRing(bondJK))
    throw ValueErrorException("bond (j,k) must not belong to a ring");
  RDGeom::Point3D rIJ = pos[jAtomId] - pos[iAtomId];
  double rIJSqLength = rIJ.lengthSq();
  if (rIJSqLength <= 1.e-16)
    throw ValueErrorException("atoms i and j have identical 3D coordinates");
  RDGeom::Point3D rJK = pos[kAtomId] - pos[jAtomId];
  double rJKSqLength = rJK.lengthSq();
  if (rJKSqLength <= 1.e-16)
    throw ValueErrorException("atoms j and k have identical 3D coordinates");
  RDGeom::Point3D rKL = pos[lAtomId] - pos[kAtomId];
  double rKLSqLength = rKL.lengthSq();
  if (rKLSqLength <= 1.e-16)
    throw ValueErrorException("atoms k and l have identical 3D coordinates");

  RDGeom::Point3D nIJK = rIJ.crossProduct(rJK);
  double nIJKSqLength = nIJK.lengthSq();
  RDGeom::Point3D nJKL = rJK.crossProduct(rKL);
  double nJKLSqLength = nJKL.lengthSq();
  RDGeom::Point3D m = nIJK.crossProduct(rJK);
  // we only need to rotate by delta with respect to the current dihedral value
  value -= -atan2(m.dotProduct(nJKL) / sqrt(nJKLSqLength * m.lengthSq()),
                  nIJK.dotProduct(nJKL) / sqrt(nIJKSqLength * nJKLSqLength));
  // our rotation axis is the (j,k) bond
  RDGeom::Point3D &rotAxisBegin = pos[jAtomId];
  RDGeom::Point3D &rotAxisEnd = pos[kAtomId];
  RDGeom::Point3D rotAxis = rotAxisEnd - rotAxisBegin;
  rotAxis.normalize();
  // get all atoms bonded to k and loop through them
  std::list<unsigned int> alist;
  _toBeMovedIdxList(mol, jAtomId, kAtomId, alist);
  for (unsigned int &it : alist) {
    // translate atom so that it coincides with the origin of rotation
    pos[it] -= rotAxisBegin;
    // rotate around our rotation axis
    RDGeom::Transform3D rotByAngle;
    rotByAngle.SetRotation(value, rotAxis);
    rotByAngle.TransformPoint(pos[it]);
    // translate atom back
    pos[it] += rotAxisBegin;
  }
}
}