File: rdMolTransforms.cpp

package info (click to toggle)
rdkit 201809.1%2Bdfsg-6
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 123,688 kB
  • sloc: cpp: 230,509; python: 70,501; java: 6,329; ansic: 5,427; sql: 1,899; yacc: 1,739; lex: 1,243; makefile: 445; xml: 229; fortran: 183; sh: 123; cs: 93
file content (258 lines) | stat: -rw-r--r-- 11,528 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
// $Id$
//
//  Copyright (C) 2005-2008 Greg Landrum and Rational Discovery LLC
//
//   @@ All Rights Reserved @@
//  This file is part of the RDKit.
//  The contents are covered by the terms of the BSD license
//  which is included in the file license.txt, found at the root
//  of the RDKit source tree.
//
#define PY_ARRAY_UNIQUE_SYMBOL rdmoltransforms_array_API
#include <RDBoost/python.h>
#include <RDBoost/import_array.h>
#include "numpy/arrayobject.h"
#include <GraphMol/ROMol.h>
#include <RDBoost/Wrap.h>
#include <GraphMol/Conformer.h>
#include <GraphMol/MolTransforms/MolTransforms.h>
#include <Geometry/Transform3D.h>
#include <Geometry/point.h>

namespace python = boost::python;

namespace RDKit {
PyObject *computeCanonTrans(const Conformer &conf,
                            const RDGeom::Point3D *center = nullptr,
                            bool normalizeCovar = false, bool ignoreHs = true) {
  RDGeom::Transform3D *trans;
  trans = MolTransforms::computeCanonicalTransform(conf, center, normalizeCovar,
                                                   ignoreHs);
  npy_intp dims[2];
  dims[0] = 4;
  dims[1] = 4;
  PyArrayObject *res = (PyArrayObject *)PyArray_SimpleNew(2, dims, NPY_DOUBLE);
  double *resData = reinterpret_cast<double *>(PyArray_DATA(res));
  const double *tdata = trans->getData();
  memcpy(static_cast<void *>(resData), static_cast<const void *>(tdata),
         4 * 4 * sizeof(double));
  delete trans;
  return PyArray_Return(res);
}

#ifdef RDK_HAS_EIGEN3
PyObject *computePrincAxesMomentsHelper(bool func(const Conformer &,
                            Eigen::Matrix3d &, Eigen::Vector3d &,
                            bool, bool, const std::vector<double> *),
                            const Conformer &conf,
                            bool ignoreHs, const python::object &weights) {
  Eigen::Matrix3d axes;
  Eigen::Vector3d moments;
  std::vector<double> *weightsVecPtr = NULL;
  std::vector<double> weightsVec;
  size_t i;
  if (weights != python::object()) {
    size_t numElements = python::extract<int>(weights.attr("__len__")());
    if (numElements != conf.getNumAtoms())
      throw ValueErrorException("The Python container must have length equal to conf.GetNumAtoms()");
    weightsVec.resize(numElements);
    for (i = 0; i < numElements; ++i)
      weightsVec[i] = python::extract<double>(weights[i]);
    weightsVecPtr = &weightsVec;
  }
  PyObject *res = PyTuple_New(2);
  bool success = func(conf, axes, moments, ignoreHs, true, weightsVecPtr);
  if (success) {
    npy_intp dims[2];
    dims[0] = 3;
    dims[1] = 3;
    PyArrayObject *axesNpy = (PyArrayObject *)PyArray_SimpleNew(2, dims, NPY_DOUBLE);
    double *axesNpyData = reinterpret_cast<double *>(PyArray_DATA(axesNpy));
    i = 0;
    for (size_t y = 0; y < 3; ++y) {
      for (size_t x = 0; x < 3; ++x)
        axesNpyData[i++] = axes(y, x);
    }
    PyArrayObject *momentsNpy = (PyArrayObject *)PyArray_SimpleNew(1, dims, NPY_DOUBLE);
    double *momentsNpyData = reinterpret_cast<double *>(PyArray_DATA(momentsNpy));
    for (size_t y = 0; y < 3; ++y)
      momentsNpyData[y] = moments(y);
    res = PyTuple_New(2);
    PyTuple_SetItem(res, 0, (PyObject *)axesNpy);
    PyTuple_SetItem(res, 1, (PyObject *)momentsNpy);
  }
  else {
    PyTuple_SetItem(res, 0, Py_None);
    PyTuple_SetItem(res, 1, Py_None);
  }
  return res;
}

PyObject *computePrincAxesMoments(const Conformer &conf,
                            bool ignoreHs, const python::object &weights) {
  return computePrincAxesMomentsHelper(
         MolTransforms::computePrincipalAxesAndMoments, conf, ignoreHs, weights);
}

PyObject *computePrincAxesMomentsFromGyrationMatrix(const Conformer &conf,
                            bool ignoreHs, const python::object &weights) {
  return computePrincAxesMomentsHelper(
         MolTransforms::computePrincipalAxesAndMomentsFromGyrationMatrix, conf, ignoreHs, weights);
}
#endif

void transConformer(Conformer &conf, python::object trans) {
  PyObject *transObj = trans.ptr();
  if (!PyArray_Check(transObj)) {
    throw_value_error("Expecting a numeric array for transformation");
  }
  PyArrayObject *transMat = reinterpret_cast<PyArrayObject *>(transObj);
  unsigned int nrows = PyArray_DIM(transMat, 0);
  unsigned int dSize = nrows * nrows;
  double *inData = reinterpret_cast<double *>(PyArray_DATA(transMat));
  RDGeom::Transform3D transform;
  double *tData = transform.getData();
  memcpy(static_cast<void *>(tData), static_cast<void *>(inData),
         dSize * sizeof(double));
  MolTransforms::transformConformer(conf, transform);
}
}

BOOST_PYTHON_MODULE(rdMolTransforms) {
  python::scope().attr("__doc__") =
      "Module containing functions to perform 3D operations like rotate and "
      "translate conformations";

  rdkit_import_array();

  std::string docString =
      "Compute the centroid of the conformation - hydrogens are ignored and no attention\n\
                           if paid to the difference in sizes of the heavy atoms\n";
  python::def("ComputeCentroid", MolTransforms::computeCentroid,
              (python::arg("conf"), python::arg("ignoreHs") = true),
              docString.c_str());

  docString =
      "Compute the transformation required aligna conformer so that\n\
               the the principal axes align up with the x,y, z axes\n\
               The conformer itself is left unchanged\n\
  ARGUMENTS:\n\
    - conf : the conformer of interest\n\
    - center : optional center point to compute the principal axes around (defaults to the centroid)\n\
    - normalizeCovar : optionally normalize the covariance matrix by the number of atoms\n";
  python::def(
      "ComputeCanonicalTransform", RDKit::computeCanonTrans,
      (python::arg("conf"), python::arg("center") = (RDGeom::Point3D *)nullptr,
       python::arg("normalizeCovar") = false, python::arg("ignoreHs") = true),
      docString.c_str());

#ifdef RDK_HAS_EIGEN3
  docString =
      "Compute principal axes and moments of inertia for a conformer\n\
       These values are calculated from the inertia tensor:\n\
       Iij = - sum_{s=1..N}(w_s * r_{si} * r_{sj}) i != j\n\
       Iii = sum_{s=1..N} sum_{j!=i} (w_s * r_{sj} * r_{sj})\n\
       where the coordinates are relative to the center of mass.\n\
\n\
  ARGUMENTS:\n\
    - conf : the conformer of interest\n\
    - ignoreHs : if True, ignore hydrogen atoms\n\
    - weights : if present, used to weight the atomic coordinates\n\n\
  Returns a (principal axes, principal moments) tuple\n";
  python::def(
      "ComputePrincipalAxesAndMoments", RDKit::computePrincAxesMoments,
      (python::arg("conf"), python::arg("ignoreHs") = true,
      python::arg("weights") = python::object()),
      docString.c_str());

  docString =
      "Compute principal axes and moments from the gyration matrix of a conformer\n\
       These values are calculated from the gyration matrix/tensor:\n\
       Iij = sum_{s=1..N}(w_s * r_{si} * r_{sj}) i != j\n\
       Iii = sum_{s=1..N} sum_{t!=s}(w_s * r_{si} * r_{ti})\n\
       where the coordinates are relative to the center of mass.\n\
\n\
  ARGUMENTS:\n\
    - conf : the conformer of interest\n\
    - ignoreHs : if True, ignore hydrogen atoms\n\
    - weights : if present, used to weight the atomic coordinates\n\n\
  Returns a (principal axes, principal moments) tuple\n";
  python::def(
      "ComputePrincipalAxesAndMomentsFromGyrationMatrix", RDKit::computePrincAxesMomentsFromGyrationMatrix,
      (python::arg("conf"), python::arg("ignoreHs") = true,
      python::arg("weights") = python::object()),
      docString.c_str());
#endif

  python::def("TransformConformer", RDKit::transConformer,
              "Transform the coordinates of a conformer");

  docString =
      "Canonicalize the orientation of a conformer so that its principal axes\n\
               around the specified center point coincide with the x, y, z axes\n\
  \n\
  ARGUMENTS:\n\
    - conf : conformer of interest \n\
    - center : optionally center point about which the principal axes are computed \n\
                          if not specified the centroid of the conformer will be used\n\
    - normalizeCovar : Optionally normalize the covariance matrix by the number of atoms\n";
  python::def(
      "CanonicalizeConformer", MolTransforms::canonicalizeConformer,
      (python::arg("conf"), python::arg("center") = (RDGeom::Point3D *)nullptr,
       python::arg("normalizeCovar") = false, python::arg("ignoreHs") = true),
      docString.c_str());

  python::def("CanonicalizeMol", MolTransforms::canonicalizeMol,
              (python::arg("mol"), python::arg("normalizeCovar") = false,
               python::arg("ignoreHs") = true),
              "Loop over the conformers in a molecule and canonicalize their "
              "orientation");
  python::def(
      "GetBondLength", &MolTransforms::getBondLength,
      (python::arg("conf"), python::arg("iAtomId"), python::arg("jAtomId")),
      "Returns the bond length in angstrom between atoms i, j\n");
  python::def("SetBondLength", &MolTransforms::setBondLength,
              (python::arg("conf"), python::arg("iAtomId"),
               python::arg("jAtomId"), python::arg("value")),
              "Sets the bond length in angstrom between atoms i, j; "
              "all atoms bonded to atom j are moved\n");
  python::def("GetAngleRad", &MolTransforms::getAngleRad,
              (python::arg("conf"), python::arg("iAtomId"),
               python::arg("jAtomId"), python::arg("kAtomId")),
              "Returns the angle in radians between atoms i, j, k\n");
  python::def("GetAngleDeg", &MolTransforms::getAngleDeg,
              (python::arg("conf"), python::arg("iAtomId"),
               python::arg("jAtomId"), python::arg("kAtomId")),
              "Returns the angle in degrees between atoms i, j, k\n");
  python::def(
      "SetAngleRad", &MolTransforms::setAngleRad,
      (python::arg("conf"), python::arg("iAtomId"), python::arg("jAtomId"),
       python::arg("kAtomId"), python::arg("value")),
      "Sets the angle in radians between atoms i, j, k; "
      "all atoms bonded to atom k are moved\n");
  python::def(
      "SetAngleDeg", &MolTransforms::setAngleDeg,
      (python::arg("conf"), python::arg("iAtomId"), python::arg("jAtomId"),
       python::arg("kAtomId"), python::arg("value")),
      "Sets the angle in degrees between atoms i, j, k; "
      "all atoms bonded to atom k are moved\n");
  python::def(
      "GetDihedralRad", &MolTransforms::getDihedralRad,
      (python::arg("conf"), python::arg("iAtomId"), python::arg("jAtomId"),
       python::arg("kAtomId"), python::arg("lAtomId")),
      "Returns the dihedral angle in radians between atoms i, j, k, l\n");
  python::def(
      "GetDihedralDeg", &MolTransforms::getDihedralDeg,
      (python::arg("conf"), python::arg("iAtomId"), python::arg("jAtomId"),
       python::arg("kAtomId"), python::arg("lAtomId")),
      "Returns the dihedral angle in degrees between atoms i, j, k, l\n");
  python::def(
      "SetDihedralRad", &MolTransforms::setDihedralRad,
      (python::arg("conf"), python::arg("iAtomId"), python::arg("jAtomId"),
       python::arg("kAtomId"), python::arg("lAtomId"), python::arg("value")),
      "Sets the dihedral angle in radians between atoms i, j, k, l; "
      "all atoms bonded to atom l are moved\n");
  python::def("SetDihedralDeg", &MolTransforms::setDihedralDeg,
              "Sets the dihedral angle in degrees between atoms i, j, k, l; "
              "all atoms bonded to atom l are moved\n");
}