1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265
|
// $Id$
//
// Copyright (C) 2003-2011 Greg Landrum and Rational Discovery LLC
//
// @@ All Rights Reserved @@
// This file is part of the RDKit.
// The contents are covered by the terms of the BSD license
// which is included in the file license.txt, found at the root
// of the RDKit source tree.
//
#include "GasteigerCharges.h"
#include <RDGeneral/types.h>
#include <GraphMol/RDKitBase.h>
#include <GraphMol/ROMol.h>
#include <GraphMol/MolOps.h>
#include "GasteigerParams.h"
namespace Gasteiger {
using namespace RDKit;
/*! \brief split the formal charge across atoms of same type if we have a
*conjugated system
*
* This function is called before the charge equivalization iteration is
*started for the
* Gasteiger charges. If any of the atom involved in conjugated system have
*formal charges
* set on them, this charges is equally distributed across atoms of the same
*type in that
* conjugated system. So for example the two nitrogens in the benzamidine
*system start the iteration
* with equal charges of 0.5
*/
void splitChargeConjugated(const ROMol &mol, DOUBLE_VECT &charges) {
int aix;
int natms = mol.getNumAtoms();
INT_VECT marker;
INT_VECT_CI mci;
int aax, yax;
double formal;
const Atom *at, *aat, *yat;
for (aix = 0; aix < natms; aix++) {
at = mol.getAtomWithIdx(aix);
formal = at->getFormalCharge();
// std::cout << aix << " formal charges:" << formal << "\n";
marker.resize(0);
if ((fabs(formal) > EPS_DOUBLE) && (fabs(charges[aix]) < EPS_DOUBLE)) {
marker.push_back(aix);
ROMol::OEDGE_ITER bnd1, end1, bnd2, end2;
boost::tie(bnd1, end1) = mol.getAtomBonds(at);
while (bnd1 != end1) {
if (mol[*bnd1]->getIsConjugated()) {
aax = mol[*bnd1]->getOtherAtomIdx(aix);
aat = mol.getAtomWithIdx(aax);
boost::tie(bnd2, end2) = mol.getAtomBonds(aat);
while (bnd2 != end2) {
if ((*bnd1) != (*bnd2)) {
if (mol[*bnd2]->getIsConjugated()) {
yax = mol[*bnd2]->getOtherAtomIdx(aax);
yat = mol.getAtomWithIdx(yax);
if (at->getAtomicNum() == yat->getAtomicNum()) {
formal += yat->getFormalCharge();
marker.push_back(yax);
}
}
}
bnd2++;
}
}
bnd1++;
}
for (mci = marker.begin(); mci != marker.end(); mci++) {
charges[*mci] = (formal / marker.size());
}
}
}
/*
for (aix = 0; aix < natms; aix++) {
std::cout << "In splitter: " << " charges:" << charges[aix] << "\n";
}*/
}
} // end of namespace Gasteiger
namespace RDKit {
void computeGasteigerCharges(const ROMol *mol, int nIter,
bool throwOnParamFailure) {
PRECONDITION(mol, "bad molecule");
computeGasteigerCharges(*mol, nIter, throwOnParamFailure);
}
void computeGasteigerCharges(const ROMol &mol, int nIter,
bool throwOnParamFailure) {
std::vector<double> chgs(mol.getNumAtoms());
computeGasteigerCharges(mol, chgs, nIter, throwOnParamFailure);
}
/*! \brief compute the Gasteiger partial charges and return a new molecule with
*the charges set
*
* Ref : J.Gasteiger, M. Marsili, "Iterative Equalization of Oribital
*Electronegatiity
* A Rapid Access to Atomic Charges", Tetrahedron Vol 36 p3219 1980
*/
void computeGasteigerCharges(const ROMol &mol, std::vector<double> &charges,
int nIter, bool throwOnParamFailure) {
PRECONDITION(charges.size() >= mol.getNumAtoms(), "bad array size");
PeriodicTable *table = PeriodicTable::getTable();
const GasteigerParams *params = GasteigerParams::getParams();
double damp = DAMP;
int natms = mol.getNumAtoms();
// space for parameters for each atom in the molecule
std::vector<DOUBLE_VECT> atmPs;
atmPs.reserve(natms);
std::fill(charges.begin(), charges.end(), 0.0);
DOUBLE_VECT
hChrg; // total charge on the implicit hydrogen on each heavy atom
hChrg.resize(natms, 0.0);
DOUBLE_VECT ionX;
ionX.resize(natms, 0.0);
DOUBLE_VECT energ;
energ.resize(natms, 0.0);
ROMol::ADJ_ITER nbrIdx, endIdx;
// deal with the conjugated system - distribute the formal charges on atoms of
// same type in each
// conjugated system
Gasteiger::splitChargeConjugated(mol, charges);
// now read in the parameters
ROMol::ConstAtomIterator ai;
for (ai = mol.beginAtoms(); ai != mol.endAtoms(); ai++) {
std::string elem = table->getElementSymbol((*ai)->getAtomicNum());
std::string mode;
switch ((*ai)->getHybridization()) {
case Atom::SP3:
mode = "sp3";
break;
case Atom::SP2:
mode = "sp2";
break;
case Atom::SP:
mode = "sp";
break;
default:
if ((*ai)->getAtomicNum() == 1) {
// if it is hydrogen
mode = "*";
} else if ((*ai)->getAtomicNum() == 16) {
// we have a sulfur atom with no hydribidation information
// check how many oxygens we have on the sulfer
boost::tie(nbrIdx, endIdx) = mol.getAtomNeighbors(*ai);
int no = 0;
while (nbrIdx != endIdx) {
if (mol.getAtomWithIdx(*nbrIdx)->getAtomicNum() == 8) {
no++;
}
nbrIdx++;
}
if (no == 2) {
mode = "so2";
} else if (no == 1) {
mode = "so";
} else {
// some other sulfur state. Default to sp3
mode = "sp3";
}
}
}
// if we get a unknown mode or element type the
// following will will throw an exception
atmPs.push_back(params->getParams(elem, mode, throwOnParamFailure));
// set ionX paramters
// if Hydrogen treat differently
int idx = (*ai)->getIdx();
if ((*ai)->getAtomicNum() == 1) {
ionX[idx] = IONXH;
} else {
ionX[idx] = atmPs[idx][0] + atmPs[idx][1] + atmPs[idx][2];
}
}
// do the iteration here
int itx, aix, sgn, niHs;
double enr, dq, dx, qHs, dqH;
// parameters for hydrogen atoms (for case where the hydrogen are not in the
// graph (implicit hydrogens)
DOUBLE_VECT hParams;
hParams = params->getParams("H", "*", throwOnParamFailure);
/*
int itmp;
for (itmp = 0; itmp < 5; itmp++) {
std::cout << " aq:" << charges[itmp] << "\n";
}*/
for (itx = 0; itx < nIter; itx++) {
for (aix = 0; aix < natms; aix++) {
// enr = p0 + charge*(p1 + p2*charge)
enr = atmPs[aix][0] +
charges[aix] * (atmPs[aix][1] + atmPs[aix][2] * charges[aix]);
energ[aix] = enr;
}
for (aix = 0; aix < natms; aix++) {
dq = 0.0;
boost::tie(nbrIdx, endIdx) =
mol.getAtomNeighbors(mol.getAtomWithIdx(aix));
while (nbrIdx != endIdx) {
dx = energ[*nbrIdx] - energ[aix];
if (dx < 0.0) {
sgn = 0;
} else {
sgn = 1;
}
dq += dx / ((sgn * (ionX[aix] - ionX[*nbrIdx])) + ionX[*nbrIdx]);
nbrIdx++;
}
// now loop over the implicit hydrogens and get their contributions
// since hydrogens don't connect to anything else, update their charges at
// the same time
niHs = mol.getAtomWithIdx(aix)->getTotalNumHs();
if (niHs > 0) {
qHs = hChrg[aix] / niHs;
enr = hParams[0] + qHs * (hParams[1] + hParams[2] * qHs);
dx = enr - energ[aix];
if (dx < 0.0) {
sgn = 0;
} else {
sgn = 1;
}
dqH = dx / ((sgn * (ionX[aix] - IONXH)) + IONXH);
dq += (niHs * dqH);
// adjust the charges on the hydrogens simultaneously (possible because
// each of the
// hydrogens have no other neighbors)
hChrg[aix] -= (niHs * dqH * damp);
}
charges[aix] += (damp * dq);
}
damp *= DAMP_SCALE;
}
for (aix = 0; aix < natms; aix++) {
mol.getAtomWithIdx(aix)->setProp(common_properties::_GasteigerCharge,
charges[aix], true);
// set the implicit hydrogen charges
mol.getAtomWithIdx(aix)->setProp(common_properties::_GasteigerHCharge,
hChrg[aix], true);
}
}
}
|