File: RGroupDecomp.cpp

package info (click to toggle)
rdkit 201809.1%2Bdfsg-6
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 123,688 kB
  • sloc: cpp: 230,509; python: 70,501; java: 6,329; ansic: 5,427; sql: 1,899; yacc: 1,739; lex: 1,243; makefile: 445; xml: 229; fortran: 183; sh: 123; cs: 93
file content (1093 lines) | stat: -rw-r--r-- 36,698 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
//  Copyright (c) 2017, Novartis Institutes for BioMedical Research Inc.
//  All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
//     * Redistributions of source code must retain the above copyright
//       notice, this list of conditions and the following disclaimer.
//     * Redistributions in binary form must reproduce the above
//       copyright notice, this list of conditions and the following
//       disclaimer in the documentation and/or other materials provided
//       with the distribution.
//     * Neither the name of Novartis Institutes for BioMedical Research Inc.
//       nor the names of its contributors may be used to endorse or promote
//       products derived from this software without specific prior written
//       permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
#include "RGroupDecomp.h"

#include <GraphMol/RDKitBase.h>
#include <GraphMol/Substruct/SubstructMatch.h>
#include <GraphMol/SmilesParse/SmilesWrite.h>
#include <GraphMol/SmilesParse/SmartsWrite.h>
#include <GraphMol/SmilesParse/SmilesParse.h>
#include <GraphMol/ChemTransforms/ChemTransforms.h>
#include <GraphMol/FMCS/FMCS.h>
#include <boost/scoped_ptr.hpp>
#include <set>
#include <utility>
#include <vector>

//#define DEBUG

namespace RDKit {

// Attachment Points
//  labeled cores => isotopes
//  atom mappings
//  atom indices => use -1 - atom index, range is [-1, ...., -num_atoms]
namespace {
const std::string RLABEL = "tempRlabel";
const std::string SIDECHAIN_RLABELS = "sideChainRlabels";
const std::string done = "RLABEL_PROCESSED";

bool setLabel(Atom *atom, int label, std::set<int> &labels, int &maxLabel,
              bool relabel, const std::string &type) {
  if (type == "IsotopeLabels") {
    atom->setIsotope(0);
  }

  if (label) {
    if (labels.find(label) != labels.end()) {
      if (relabel)
        label = maxLabel + 1;
      else
        // XXX FIX me - get label id
        throw ValueErrorException(
            std::string("Duplicate label in input, current type is:") + type);
    }

    atom->setProp<int>(RLABEL, label);
    labels.insert(label);
    maxLabel = label + 1;
    return true;
  }
  return false;
}

bool hasDummy(const RWMol &core) {
  for (RWMol::ConstAtomIterator atIt = core.beginAtoms();
       atIt != core.endAtoms(); ++atIt) {
    if ((*atIt)->getAtomicNum() == 0) return true;
  }
  return false;
}
}

bool RGroupDecompositionParameters::prepareCore(RWMol &core,
                                                const RWMol *alignCore) {
  const bool relabel = labels & RelabelDuplicateLabels;
  if (alignCore && (alignment & MCS)) {
    std::vector<ROMOL_SPTR> mols;
    mols.push_back(ROMOL_SPTR(new ROMol(core)));
    mols.push_back(ROMOL_SPTR(new ROMol(*alignCore)));
    MCSResult res = findMCS(mols);
    if (res.isCompleted()) {
      RWMol *m = SmartsToMol(res.SmartsString);
      if (m) {
        MatchVectType match1;
        MatchVectType match2;

        bool target_matched1 = SubstructMatch(core, *m, match1);
        bool target_matched2 = SubstructMatch(*alignCore, *m, match2);
        CHECK_INVARIANT(match1.size() == match2.size(),
                        "Matches should be the same size in prepareCore");

        if (target_matched1 && target_matched2) {
          for (size_t i = 0; i < match1.size(); ++i) {
            int queryAtomIdx1 = match1[i].first;
            int coreAtomIdx = match1[i].second;
            int queryAtomIdx2 = match2[i].first;
            int alignCoreAtomIdx = match2[i].second;
            CHECK_INVARIANT(queryAtomIdx1 == queryAtomIdx2,
                            "query atoms aren't the same");
            const Atom *coreAtm = core.getAtomWithIdx(coreAtomIdx);
            const Atom *alignCoreAtm =
                alignCore->getAtomWithIdx(alignCoreAtomIdx);
            int rlabel = alignCoreAtm->getProp<int>(RLABEL);
            coreAtm->setProp(RLABEL, rlabel);
          }
        }
        delete m;
      }
    }
  }

  std::set<int> foundLabels;

  int maxLabel = 0;
  int nextOffset = 0;
  std::map<int, int> atomToLabel;

  for (RWMol::AtomIterator atIt = core.beginAtoms(); atIt != core.endAtoms();
       ++atIt) {
    Atom *atom = *atIt;
    bool found = false;

    if (atom->hasProp(RLABEL)) found = true;

    if (!found && (labels & IsotopeLabels)) {
      if (setLabel(atom, rdcast<int>(atom->getIsotope()), foundLabels, maxLabel,
                   relabel, "IsotopeLabels"))
        found = true;
    }

    if (!found && (labels & AtomMapLabels)) {
      if (setLabel(atom, rdcast<int>(atom->getAtomMapNum()), foundLabels,
                   maxLabel, relabel, "AtomMapLabels"))
        found = true;
    }

    if (!found && (labels & AtomIndexLabels)) {
      if (setLabel(atom, indexOffset - atom->getIdx(), foundLabels, maxLabel,
                   relabel, "IndexLabels"))
        nextOffset++;
      found = true;
    }

    int rlabel;
    if (atom->getPropIfPresent(RLABEL, rlabel)) {
      atomToLabel[atom->getIdx()] = rlabel;
    }
  }

  indexOffset -= nextOffset;

  MolOps::AdjustQueryParameters adjustParams;
  adjustParams.makeDummiesQueries = true;
  adjustParams.adjustDegree = false;
  adjustParams.adjustHeavyDegree = onlyMatchAtRGroups;
  // if (onlyMatchAtRGroups)
  //   adjustParams.adjustDegreeFlags |= MolOps::ADJUST_IGNOREHS;
  adjustQueryProperties(core, &adjustParams);

  for (auto &it : atomToLabel)
    core.getAtomWithIdx(it.first)->setProp(RLABEL, it.second);
  return true;
}

namespace {
// RGroup Class to hold the attached bits

struct RGroupData {
  boost::shared_ptr<RWMol> combinedMol;
  std::vector<boost::shared_ptr<ROMol>> mols;  // All the mols in the rgroup
  std::set<std::string> smilesSet;             // used for rgroup equivalence
  std::string
      smiles;  // smiles for all the mols in the rgroup (with attachments)
  std::set<int> attachments;  // attachment points
  bool labelled;

 private:
  RGroupData(const RGroupData &rhs);

 public:
  RGroupData()
      : combinedMol(),
        mols(),
        smilesSet(),
        smiles(),
        attachments(),
        labelled(false) {}

  void add(boost::shared_ptr<ROMol> newMol,
           const std::vector<int> &rlabel_attachments) {
    // some fragments can be add multiple times if they are cyclic
    for (auto &mol : mols) {
      if (newMol.get() == mol.get()) return;
    }

    labelled = false;
    std::copy(rlabel_attachments.begin(), rlabel_attachments.end(),
              std::inserter(attachments, attachments.end()));

    mols.push_back(newMol);
    std::string smi = MolToSmiles(*newMol, true);
    smilesSet.insert(smi);
    if (!combinedMol.get()) {
      combinedMol = boost::shared_ptr<RWMol>(new RWMol(*mols[0].get()));
    } else {
      ROMol *m = combineMols(*combinedMol.get(), *newMol.get());
      m->updateProps(*combinedMol.get());
      combinedMol.reset(new RWMol(*m));
      delete m;
    }
    smiles = getSmiles();
    combinedMol->setProp(common_properties::internalRgroupSmiles, smiles);
  }

  std::map<int, int> getNumBondsToRlabels() const {
    std::map<int, int> rlabelsUsedCount;

    for (ROMol::AtomIterator atIt = combinedMol->beginAtoms();
         atIt != combinedMol->endAtoms(); ++atIt) {
      Atom *atom = *atIt;
      int rlabel;
      if (atom->getPropIfPresent<int>(RLABEL, rlabel))
        rlabelsUsedCount[rlabel] += 1;
    }
    return rlabelsUsedCount;
  }

  bool isHydrogen() const {  // is the rgroup all Hs
    for (const auto &mol : mols) {
      for (ROMol::AtomIterator atIt = mol->beginAtoms();
           atIt != mol->endAtoms(); ++atIt) {
        if ((*atIt)->getAtomicNum() > 1) return false;
      }
    }
    return true;
  }

 private:
  std::string getSmiles()
      const {  // compute the canonical smiles for the attachments
    std::string s;
    for (const auto &it : smilesSet) {
      s += it;
    }
    return s;
  }
};
}

namespace {
typedef boost::shared_ptr<RGroupData> RData;

typedef std::map<int, RData> R_DECOMP;
struct RGroupMatch {
  // RGroupMatch is the decomposition for a single molecule
  size_t core_idx;   // index of the matching core
  R_DECOMP rgroups;  // rlabel->RGroupData mapping

  RGroupMatch(size_t core_index, R_DECOMP input_rgroups)
      : core_idx(core_index), rgroups(std::move(input_rgroups)) {}
};

void ADD_MATCH(R_DECOMP &match, int rlabel) {
  if (match.find(rlabel) == match.end())
    match[rlabel] = boost::make_shared<RGroupData>();
}

struct CartesianProduct {
  std::vector<size_t> permutation;
  std::vector<size_t> sizes;
  size_t maxPermutations;
  size_t permutationCount;
  CartesianProduct(const std::vector<size_t> &inputSizes)
      : permutation(inputSizes.size(), 0),
        sizes(inputSizes),
        permutationCount(0) {
    maxPermutations = 1;
    for (unsigned long size : sizes)
      maxPermutations *= size;  // may overflow....
  }

  bool next() {
    ++permutationCount;
    if (permutationCount == 1) {
      return true;
    }

    return increment(0);
  }

  bool increment(size_t rowToIncrement) {
    if (permutationCount > maxPermutations) return false;

    permutation[rowToIncrement] += 1;
    size_t max_index_of_row = sizes[rowToIncrement] - 1;
    if (permutation[rowToIncrement] > max_index_of_row) {
      permutation[rowToIncrement] = 0;
      return increment(rowToIncrement + 1);
    }
    return true;
  }
};

// stupid total score
double score(const std::vector<size_t> &permutation,
             const std::vector<std::vector<RGroupMatch>> &matches,
             const std::set<int> &labels) {
  double score = 1.;

#ifdef DEBUG
  std::cerr << "---------------------------------------------------"
            << std::endl;
  std::cerr << "Scoring permutation " << std::endl;
#endif

  for (int l : labels) {
#ifdef DEBUG
    std::cerr << "Label: " << l << std::endl;
#endif
    std::map<std::string, int> matchSet;
    std::map<std::set<int>, int> linkerMatchSet;

    for (size_t m = 0; m < permutation.size(); ++m) {  // for each molecule
      auto rg = matches[m][permutation[m]].rgroups.find(l);
      if (rg != matches[m][permutation[m]].rgroups.end()) {
#ifdef DEBUG
        std::cerr << " RGroup: " << rg->second->smiles;
#endif
        matchSet[rg->second->smiles]+=1;
#ifdef DEBUG
        std::cerr << " score: " << matchSet[rg->second->smiles] << std::endl;
#endif
        // XXX Use fragment counts to see if we are linking cycles?
        if (rg->second->smiles.find(".") == std::string::npos &&
            rg->second->attachments.size() > 1) {
          linkerMatchSet[rg->second->attachments]++;
#ifdef DEBUG
          std::cerr << " Linker Score: "
                    << linkerMatchSet[rg->second->attachments]++ << std::endl;
#endif
        }
      }
    }

    // get the counts for each rgroup found and sort in reverse order
    std::vector<float> equivalentRGroupCount;

    for (std::map<std::string, int>::const_iterator it = matchSet.begin();
         it != matchSet.end(); ++it) {
      
      // if the rgroup is a hydrogens, only consider if the group is all
      //  hydrogen, otherwise score based on the non hydrogens
      if(it->first.find("[H]") != std::string::npos) {
        if(static_cast<size_t>(it->second) == permutation.size())
          equivalentRGroupCount.push_back(static_cast<float>(it->second));
        else
          equivalentRGroupCount.push_back(it->second * 1.0/permutation.size()); // massively downweight hydrogens
      } else {
        equivalentRGroupCount.push_back(static_cast<float>(it->second));
      }
    }
    std::sort(equivalentRGroupCount.begin(), equivalentRGroupCount.end(),
              std::greater<float>());

    double tempScore = 1.;
    // score the sets from the largest to the smallest
    //  each smaller set gets penalized (i+1) below
    //  1.0 is the perfect score
    for (size_t i = 0; i < equivalentRGroupCount.size(); ++i) {
      tempScore *=
          equivalentRGroupCount[i] / ((i + 1) * (double)matches.size());
    }

    // overweight linkers with the same attachments points....
    //  because these belong to 2 rgroups we really want these to stay
    //  ** this heuristic really should be taken care of above **
    int maxLinkerMatches = 0;
    for (std::map<std::set<int>, int>::const_iterator it =
             linkerMatchSet.begin();
         it != linkerMatchSet.end(); ++it) {
      if (it->second > 1) {
        if (it->second > maxLinkerMatches) maxLinkerMatches = it->second;
      }
    }
#ifdef DEBUG
    std::cerr << "Max Linker Matches :" << maxLinkerMatches << std::endl;
#endif
    double increment = 1.0;        // no change in score
    double linkerIncrement = 1.0;  // no change in score
    if (maxLinkerMatches) {
      linkerIncrement = (double)(maxLinkerMatches) / (double)matches.size();
    } else {
      increment = tempScore;
    }

    score *= increment * linkerIncrement;
#ifdef DEBUG
    std::cerr << "Increment: " << increment
              << " Linker_Increment: " << linkerIncrement << std::endl;
    std::cerr << "increment*linkerIncrement: " << increment * linkerIncrement
              << std::endl;
    std::cerr << "Score = " << score << std::endl;
#endif
  }

  return score;
}
}

const unsigned int EMPTY_CORE_LABEL = -100000;

struct RGroupDecompData {
  // matches[mol_idx] == vector of potential matches
  std::map<int, RWMol> cores;
  std::map<std::string, int> newCores;  // new "cores" found along the way
  int newCoreLabel;
  RGroupDecompositionParameters params;

  std::vector<std::vector<RGroupMatch>> matches;
  std::set<int> labels;
  std::vector<size_t> permutation;
  std::map<int, std::vector<int>> userLabels;

  std::vector<int> processedRlabels;
  std::map<int, boost::shared_ptr<RWMol>> labelledCores;

  std::map<int, int> finalRlabelMapping;

  RGroupDecompData(const RWMol &inputCore,
                   RGroupDecompositionParameters inputParams)
      : cores(),
        newCores(),
        newCoreLabel(EMPTY_CORE_LABEL),
        params(std::move(inputParams)) {
    cores[0] = inputCore;
    prepareCores();
  }

  RGroupDecompData(const std::vector<ROMOL_SPTR> &inputCores,
                   RGroupDecompositionParameters inputParams)
      : cores(),
        newCores(),
        newCoreLabel(EMPTY_CORE_LABEL),
        params(std::move(inputParams)) {
    for (size_t i = 0; i < inputCores.size(); ++i) {
      cores[i] = *inputCores[i].get();
    }

    prepareCores();
  }

  void prepareCores() {
    size_t idx = 0;
    for (auto coreIt = cores.begin(); coreIt != cores.end(); ++coreIt, ++idx) {
      RWMol *alignCore = coreIt->first ? &cores[0] : nullptr;
      params.prepareCore(coreIt->second, alignCore);
      labelledCores[coreIt->first] =
          boost::shared_ptr<RWMol>(new RWMol(coreIt->second));
    }
  }

  void setRlabel(Atom *atom, int rlabel) {
    // XXX Fix me - use parameters to decide what to do.  Currenty does
    // everything
    if (params.rgroupLabelling & AtomMap) atom->setAtomMapNum(rlabel);

    if (params.rgroupLabelling & MDLRGroup) {
      std::string dLabel = "R" + std::to_string(rlabel);
      atom->setProp(common_properties::dummyLabel, dLabel);
      setAtomRLabel(atom, rlabel);
    }

    if (params.rgroupLabelling & Isotope) atom->setIsotope(rlabel);
  }

  void prune() {  // prune all but the current "best" permutation of matches
    for (size_t mol_idx = 0; mol_idx < permutation.size(); ++mol_idx) {
      std::vector<RGroupMatch> keepVector;
      keepVector.push_back(matches[mol_idx][permutation[mol_idx]]);
      matches[mol_idx] = keepVector;
    }
    permutation = std::vector<size_t>(matches.size(), 0);
  }

  // Return the RGroups with the current "best" permutation
  //  of matches.
  std::vector<RGroupMatch> GetCurrentBestPermutation() const {
    const bool removeAllHydrogenRGroups = params.removeAllHydrogenRGroups;

    std::vector<RGroupMatch> result;  // std::map<int, RGroup> > result;
    for (size_t i = 0; i < permutation.size(); ++i) {
      PRECONDITION(i < matches.size(), "Best Permutation mol idx out of range");
      PRECONDITION(permutation[i] < matches[i].size(),
                   "Selected match at permutation out of range");
      result.push_back(matches[i][permutation[i]]);
    }

    if (removeAllHydrogenRGroups) {
      // if a label is all hydrogens, remove it
      for (int label : labels) {
        bool allH = true;
        for (auto &i : result) {
          R_DECOMP::const_iterator rgroup = i.rgroups.find(label);
          if (rgroup == i.rgroups.end() || !rgroup->second->isHydrogen()) {
            allH = false;
            break;
          }
        }

        if (allH) {
          for (auto &i : result) {
            i.rgroups.erase(label);
          }
        }
      }
    }
    return result;
  }

  void relabelCore(RWMol &mol, std::map<int, int> &mappings,
                   const std::set<int> &userLabels,
                   const std::set<int> &indexLabels,
                   std::map<int, std::vector<int>> extraAtomRLabels) {
    // Now remap to proper rlabel ids
    //  if labels are positive, they come from User labels
    //  if they are negative, they come from indices and should be
    //  numbered *after* the user labels.
    //
    //  Some indices are attached to multiple bonds,
    //   these rlabels should be incrementally added last
    int count = 0;
    std::map<int, Atom *> atoms;

    // a core only has one labelled index
    //  a secondary structure extraAtomRLabels contains the number
    //  of bonds between this atom and the side chain

    // a sidechain atom has a vector of the attachments back to the
    //  core that takes the place of numBondsToRlabel

    std::map<int, std::vector<int>> bondsToCore;

    for (RWMol::AtomIterator atIt = mol.beginAtoms(); atIt != mol.endAtoms();
         ++atIt) {
      Atom *atom = *atIt;

      if (atom->hasProp(RLABEL)) {
        int rlabel = (*atIt)->getProp<int>(RLABEL);  // user label
        PRECONDITION(atoms.find(rlabel) == atoms.end(),
                     "Duplicate labels in rgroup core!");
        atoms[rlabel] = *atIt;
      }
    }

    std::vector<std::pair<Atom *, Atom *>> atomsToAdd;  // adds -R if necessary

    // Deal with user supplied labels
    for (int userLabel : userLabels) {
      auto atm = atoms.find(userLabel);
      if (atm == atoms.end()) continue;  // label not used in the rgroup
      Atom *atom = atm->second;
      mappings[userLabel] = ++count;

      if (atom->getAtomicNum() == 0) {  // add to existing dummy/rlabel
        setRlabel(atom, count);
      } else {  // adds new rlabel
        auto *newAt = new Atom(0);
        setRlabel(newAt, count);
        atomsToAdd.push_back(std::make_pair(atom, newAt));
      }
    }

    // Deal with non-user supplied labels
    for (int indexLabel : indexLabels) {
      auto atm = atoms.find(indexLabel);
      if (atm == atoms.end()) continue;  // label not used in the rgroup

      Atom *atom = atm->second;
      mappings[indexLabel] = ++count;
      if (atom->getAtomicNum() == 0) {  // add to dummy
        setRlabel(atom, count);
      } else {
        auto *newAt = new Atom(0);
        setRlabel(newAt, count);
        atomsToAdd.push_back(std::make_pair(atom, newAt));
      }
    }

    // Deal with multiple bonds to the same label
    for (auto &extraAtomRLabel : extraAtomRLabels) {
      auto atm = atoms.find(extraAtomRLabel.first);
      if (atm == atoms.end()) continue;  // label not used in the rgroup
      Atom *atom = atm->second;

      for (size_t i = 0; i < extraAtomRLabel.second.size(); ++i) {
        extraAtomRLabel.second[i] = ++count;
        // Is this necessary?
        PRECONDITION(
            atom->getAtomicNum() > 1,
            "Multiple attachements to a dummy (or hydrogen) is weird.");
        auto *newAt = new Atom(0);
        setRlabel(newAt, count);
        atomsToAdd.push_back(std::make_pair(atom, newAt));
      }
    }

    for (auto &i : atomsToAdd) {
      mol.addAtom(i.second, false, true);
      mol.addBond(i.first, i.second, Bond::SINGLE);
    }
    mol.updatePropertyCache(false);  // this was github #1550
  }

  void relabelRGroup(RGroupData &rgroup, const std::map<int, int> &mappings) {
    PRECONDITION(rgroup.combinedMol.get(), "Unprocessed rgroup");

    RWMol &mol = *rgroup.combinedMol.get();
    if (rgroup.combinedMol->hasProp(done)) {
      rgroup.labelled = true;
      return;
    }

    mol.setProp(done, true);
    // std::cerr << "==> relabelling: " << mol.getProp<int>("idx") << " <++idx"
    // << std::endl;

    std::vector<std::pair<Atom *, Atom *>> atomsToAdd;  // adds -R if necessary

    for (RWMol::AtomIterator atIt = mol.beginAtoms(); atIt != mol.endAtoms();
         ++atIt) {
      Atom *atom = *atIt;
      if (atom->hasProp(SIDECHAIN_RLABELS)) {
        atom->setIsotope(0);
        const std::vector<int> &rlabels =
            atom->getProp<std::vector<int>>(SIDECHAIN_RLABELS);
        // switch on atom mappings or rlabels....

        for (int rlabel : rlabels) {
          auto label = mappings.find(rlabel);
          PRECONDITION(label != mappings.end(), "Unprocessed mapping");

          if (atom->getAtomicNum() == 0) {
            setRlabel(atom, label->second);
          } else {
            auto *newAt = new Atom(0);
            setRlabel(newAt, label->second);
            atomsToAdd.push_back(std::make_pair(atom, newAt));
          }
        }
      }
    }

    for (auto &i : atomsToAdd) {
      mol.addAtom(i.second, false, true);
      mol.addBond(i.first, i.second, Bond::SINGLE);
    }

    if (params.removeHydrogensPostMatch) {
      bool implicitOnly = false;
      bool updateExplicitCount = false;
      bool sanitize = false;
      MolOps::removeHs(mol, implicitOnly, updateExplicitCount, sanitize);
    }

    mol.updatePropertyCache(false);  // this was github #1550
    rgroup.labelled = true;
  }

  // relabel the core and sidechains using the specified user labels
  //  if matches exist for non labelled atoms, these are added as well
  void relabel() {
    std::vector<RGroupMatch> best = GetCurrentBestPermutation();

    // get the labels used
    std::set<int> userLabels;
    std::set<int> indexLabels;

    // Go through all the RGroups and find out which labels were
    //  actually used.

    // some atoms will have multiple attachment points, i.e. cycles
    //  split these up into new rlabels if necessary
    //  These are detected at match time
    //  This vector will hold the extra (new) labels required
    std::map<int, std::vector<int>> extraAtomRLabels;

    for (auto &it : best) {
      for (auto rit = it.rgroups.begin(); rit != it.rgroups.end(); ++rit) {
        if (rit->first >= 0) userLabels.insert(rit->first);
        if (rit->first < 0) indexLabels.insert(rit->first);

        std::map<int, int> rlabelsUsedInRGroup =
            rit->second->getNumBondsToRlabels();
        for (auto &numBondsUsed : rlabelsUsedInRGroup) {
          // Make space for the extra labels
          if (numBondsUsed.second > 1) {  // multiple
            extraAtomRLabels[numBondsUsed.first].resize(numBondsUsed.second -
                                                        1);
          }
        }
      }
    }

    finalRlabelMapping.clear();
    for (std::map<int, RWMol>::const_iterator coreIt = cores.begin();
         coreIt != cores.end(); ++coreIt) {
      boost::shared_ptr<RWMol> labelledCore(new RWMol(coreIt->second));
      labelledCores[coreIt->first] = labelledCore;

      relabelCore(*labelledCore.get(), finalRlabelMapping, userLabels,
                  indexLabels, extraAtomRLabels);
    }

    for (auto &it : best) {
      for (auto rit = it.rgroups.begin(); rit != it.rgroups.end(); ++rit) {
        relabelRGroup(*rit->second, finalRlabelMapping);
      }
    }
  }

  bool process(bool pruneMatches, bool finalize = false) {
    if (matches.size() == 0) return false;

    // Exhaustive search, get the MxN matrix
    size_t M = matches.size();
    std::vector<size_t> permutations;
    size_t N = 1;

    for (size_t m = 0; m < M; ++m) {
      size_t sz = matches[m].size();
      permutations.push_back(sz);
      N *= sz;
    }

    permutation = std::vector<size_t>(permutations.size(), 0);

    // run through all possible matches and score each
    //  set
    double best_score = 0;
    std::vector<size_t> best_permutation = permutation;
    size_t count = 0;
#ifdef DEBUG
    std::cerr << "Processing" << std::endl;
#endif
    CartesianProduct iterator(permutations);
    while (iterator.next()) {
      if (count > N) throw ValueErrorException("Next did not finish");
#ifdef DEBUG
      std::cerr << "**************************************************"
                << std::endl;
#endif
      double newscore = score(iterator.permutation, matches, labels);
      if (newscore > best_score) {
#ifdef DEBUG
        std::cerr << " ===> current best:" << newscore << ">" << best_score
                  << std::endl;
#endif
        best_score = newscore;
        best_permutation = iterator.permutation;
      }
    }

    permutation = best_permutation;
    if (pruneMatches || finalize) {
      prune();
    }

    if (finalize) {
      relabel();
    }

    return true;
  }
};

RGroupDecomposition::RGroupDecomposition(
    const ROMol &inputCore, const RGroupDecompositionParameters &params)
    : data(new RGroupDecompData(inputCore, params)) {}

RGroupDecomposition::RGroupDecomposition(
    const std::vector<ROMOL_SPTR> &cores,
    const RGroupDecompositionParameters &params)
    : data(new RGroupDecompData(cores, params)) {}

RGroupDecomposition::~RGroupDecomposition() { delete data; }

int RGroupDecomposition::add(const ROMol &inmol) {
  // get the sidechains if possible
  //  Add hs for better symmeterization
  RWMol mol(inmol);
  MolOps::addHs(mol);

  int core_idx = 0;
  const RWMol *core = nullptr;
  std::vector<MatchVectType> tmatches;

  // Find the first matching core.
  for (std::map<int, RWMol>::const_iterator coreIt = data->cores.begin();
       coreIt != data->cores.end(); ++coreIt) {
    {
      const bool uniquify = false;
      const bool recursionPossible = false;
      const bool useChirality = true;
      SubstructMatch(mol, coreIt->second, tmatches, uniquify, recursionPossible,
                     useChirality);
    }

    if (!tmatches.size()) {
      continue;
    } else {
      if (tmatches.size() > 1) {
        if (data->matches.size() == 0) {
          // Greedy strategy just grabs the first match and
          //  takes the best matches from the rest
          if (data->params.matchingStrategy == Greedy) tmatches.resize(1);
        }
      }
      core = &coreIt->second;
      core_idx = coreIt->first;
      break;
    }
  }

  if (core == nullptr) return -1;

  // strategies
  // ==========
  // Exhaustive - saves all matches and optimizes later exhaustive
  //               May never finish due to combinitorial complexity
  // Greedy - matches to *FIRST* available match
  // GreedyChunks - default - process every N chunks

  //  Should probably scan all mols first to find match with
  //  smallest number of matches...
  size_t size = data->matches.size();

  std::vector<RGroupMatch> potentialMatches;

  for (auto &tmatche : tmatches) {
    boost::scoped_ptr<ROMol> tMol;
    {
      const bool replaceDummies = false;
      const bool labelByIndex = true;
      const bool requireDummyMatch = false;
      tMol.reset(replaceCore(mol, *core, tmatche, replaceDummies, labelByIndex,
                             requireDummyMatch));
    }

    if (tMol) {
      R_DECOMP match;
      // rlabel rgroups
      MOL_SPTR_VECT fragments = MolOps::getMolFrags(*tMol, false);
      for (size_t i = 0; i < fragments.size(); ++i) {
        std::vector<int> attachments;
        boost::shared_ptr<ROMol> &newMol = fragments[i];
        newMol->setProp<int>("core", core_idx);
        newMol->setProp<int>("idx", size);
        newMol->setProp<int>("frag_idx", i);

        for (ROMol::AtomIterator atIt = newMol->beginAtoms();
             atIt != newMol->endAtoms(); ++atIt) {
          Atom *tmp = *atIt;
          unsigned int elno = tmp->getAtomicNum();
          if (elno == 0) {
            unsigned int index =
                tmp->getIsotope();  // this is the index into the core
            // it messes up when there are multiple ?
            int rlabel;
            if (core->getAtomWithIdx(index)->getPropIfPresent(RLABEL, rlabel)) {
              std::vector<int> rlabelsOnSideChain;
              tmp->getPropIfPresent(SIDECHAIN_RLABELS, rlabelsOnSideChain);
              rlabelsOnSideChain.push_back(rlabel);
              tmp->setProp(SIDECHAIN_RLABELS, rlabelsOnSideChain);

              data->labels.insert(rlabel);  // keep track of all labels used
              attachments.push_back(rlabel);
            }
          }
        }

        if (attachments.size() > 0) {
          // reject multiple attachments?
          // what to do with labelled cores ?
          std::string newCoreSmi = MolToSmiles(*newMol, true);

          for (size_t attach_idx = 0; attach_idx < attachments.size();
               ++attach_idx) {
            int rlabel = attachments[attach_idx];
            ADD_MATCH(match, rlabel);
            match[rlabel]->add(newMol, attachments);
          }
        } else {
          // special case, only one fragment
          if (fragments.size() == 1) {  // need to make a new core
            // remove the sidechains
            RWMol newCore(mol);

            for (MatchVectType::const_iterator mvit = tmatche.begin();
                 mvit != tmatche.end(); ++mvit) {
              const Atom *coreAtm = core->getAtomWithIdx(mvit->first);
              Atom *newCoreAtm = newCore.getAtomWithIdx(mvit->second);
              int rlabel;
              if (coreAtm->getPropIfPresent(RLABEL, rlabel)) {
                newCoreAtm->setProp<int>(RLABEL, rlabel);
              }
              newCoreAtm->setProp<bool>("keep", true);
            }

            for (int aIdx = newCore.getNumAtoms() - 1; aIdx >= 0; --aIdx) {
              Atom *atom = newCore.getAtomWithIdx(aIdx);
              if (!atom->hasProp("keep")) newCore.removeAtom(atom);
            }
            if (newCore.getNumAtoms()) {
              std::string newCoreSmi = MolToSmiles(newCore, true);
              // add a new core if possible
              auto newcore = data->newCores.find(newCoreSmi);
              int core_idx = 0;
              if (newcore == data->newCores.end()) {
                core_idx = data->newCores[newCoreSmi] = data->newCoreLabel--;
                data->cores[core_idx] = newCore;
                return add(inmol);
              }
            }
          }
        }
      }

      if (match.size()) {
        potentialMatches.push_back(RGroupMatch(core_idx, match));
      }
    }
  }
  if (potentialMatches.size() == 0) {
    BOOST_LOG(rdWarningLog) << "No attachment points in side chains"
                            << std::endl;

    return -1;
  }

  size_t N = 1;
  for (auto &matche : data->matches) {
    size_t sz = matche.size();
    N *= sz;
  }
  // oops, exponential is a pain
  if (N * potentialMatches.size() > 100000) {
    data->permutation = std::vector<size_t>(data->matches.size(), 0);
    data->process(true);
  }

  data->matches.push_back(potentialMatches);
  data->permutation = std::vector<size_t>(data->matches.size(), 0);

  if (size) {
    if (data->params.matchingStrategy & Greedy ||
        (data->params.matchingStrategy & GreedyChunks && size > 1 &&
         size % data->params.chunkSize == 0))
      data->process(true);
  }
  return data->matches.size() - 1;
}

bool RGroupDecomposition::process() {
  try {
    const bool prune = true;
    const bool finalize = true;
    return data->process(prune, finalize);
  } catch (...) {
    return false;
  }
}

RGroupRows RGroupDecomposition::getRGroupsAsRows() const {
  std::vector<RGroupMatch> permutation = data->GetCurrentBestPermutation();

  RGroupRows groups;

  int molidx = 0;
  for (auto it = permutation.begin(); it != permutation.end(); ++it, ++molidx) {
    // make a new rgroup entry
    groups.push_back(RGroupRow());
    RGroupRow &out_rgroups = groups.back();
    out_rgroups["Core"] = data->labelledCores[it->core_idx];

    R_DECOMP &in_rgroups = it->rgroups;

    for (R_DECOMP::const_iterator rgroup = in_rgroups.begin();
         rgroup != in_rgroups.end(); ++rgroup) {
      std::map<int, int>::const_iterator realLabel =
          data->finalRlabelMapping.find(rgroup->first);
      PRECONDITION(realLabel != data->finalRlabelMapping.end(),
                   "unprocessed rlabel, please call process() first.");
      out_rgroups[std::string("R") + std::to_string(realLabel->second)] =
          rgroup->second->combinedMol;
    }
  }
  return groups;
}
//! return rgroups in column order group[attachment_point][molidx] = ROMol
RGroupColumns RGroupDecomposition::getRGroupsAsColumns() const {
  std::vector<RGroupMatch> permutation = data->GetCurrentBestPermutation();

  RGroupColumns groups;

  unsigned int molidx = 0;
  for (auto it = permutation.begin(); it != permutation.end(); ++it, ++molidx) {
    R_DECOMP &in_rgroups = it->rgroups;
    groups["Core"].push_back(data->labelledCores[it->core_idx]);

    for (R_DECOMP::const_iterator rgroup = in_rgroups.begin();
         rgroup != in_rgroups.end(); ++rgroup) {
      std::map<int, int>::const_iterator realLabel =
          data->finalRlabelMapping.find(rgroup->first);
      PRECONDITION(realLabel != data->finalRlabelMapping.end(),
                   "unprocessed rlabel, please call process() first.");
      PRECONDITION(rgroup->second->combinedMol->hasProp(done),
                   "Not done! Call process()");

      std::string r = std::string("R") + std::to_string(realLabel->second);
      RGroupColumn &col = groups[r];
      if (molidx && col.size() < (size_t)(molidx - 1)) col.resize(molidx - 1);
      col.push_back(rgroup->second->combinedMol);
    }
  }
  // Now make all columns equal - this adds empty mols...
  for (auto &group : groups) {
    if (group.second.size() != molidx) {
      group.second.resize(molidx);
    }

    for (size_t idx = 0; idx < group.second.size(); ++idx) {
      if (!group.second[idx].get()) {
        group.second[idx] = boost::make_shared<RWMol>();
      }
    }
  }
  return groups;
}

namespace {
std::vector<unsigned int> Decomp(RGroupDecomposition &decomp,
                                 const std::vector<ROMOL_SPTR> &mols) {
  std::vector<unsigned int> unmatched;
  for (size_t i = 0; i < mols.size(); ++i) {
    int v = decomp.add(*mols[i].get());
    if (v == -1) unmatched.push_back(i);
  }
  decomp.process();
  return unmatched;
}
}
unsigned int RGroupDecompose(const std::vector<ROMOL_SPTR> &cores,
                             const std::vector<ROMOL_SPTR> &mols,
                             RGroupRows &rows,
                             std::vector<unsigned int> *unmatchedIndices,
                             const RGroupDecompositionParameters &options) {
  RGroupDecomposition decomp(cores, options);
  std::vector<unsigned int> unmatched = Decomp(decomp, mols);
  if (unmatchedIndices) *unmatchedIndices = unmatched;
  rows = decomp.getRGroupsAsRows();
  return mols.size() - unmatched.size();
}

unsigned int RGroupDecompose(const std::vector<ROMOL_SPTR> &cores,
                             const std::vector<ROMOL_SPTR> &mols,
                             RGroupColumns &columns,
                             std::vector<unsigned int> *unmatchedIndices,
                             const RGroupDecompositionParameters &options) {
  RGroupDecomposition decomp(cores, options);
  std::vector<unsigned int> unmatched = Decomp(decomp, mols);
  if (unmatchedIndices) *unmatchedIndices = unmatched;
  columns = decomp.getRGroupsAsColumns();
  return mols.size() - unmatched.size();
}
}