1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170
|
# Copyright (c) 2017, Novartis Institutes for BioMedical Research Inc.
# All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are
# met:
#
# * Redistributions of source code must retain the above copyright
# notice, this list of conditions and the following disclaimer.
# * Redistributions in binary form must reproduce the above
# copyright notice, this list of conditions and the following
# disclaimer in the documentation and/or other materials provided
# with the distribution.
# * Neither the name of Novartis Institutes for BioMedical Research Inc.
# nor the names of its contributors may be used to endorse or promote
# products derived from this software without specific prior written
# permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
# "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
# LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
# A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
# OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
# SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
# LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
# DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
# THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
# (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#
from __future__ import print_function
import unittest
import os,sys, copy
from rdkit.six.moves import cPickle
from rdkit import rdBase
from rdkit import Chem
from rdkit.Chem.rdRGroupDecomposition import RGroupDecompose, RGroupDecomposition, RGroupDecompositionParameters
from collections import OrderedDict
class TestCase(unittest.TestCase) :
def atest_multicores(self):
cores_smi_easy = OrderedDict()
cores_smi_hard = OrderedDict()
#cores_smi_easy['cephem'] = Chem.MolFromSmiles('O=C1C([1*])[C@@H]2N1C(C(O)=O)=C([3*])CS2')
cores_smi_easy['cephem'] = Chem.MolFromSmarts('O=C1C([*:1])C2N1C(C(O)=O)=C([*:3])CS2')
cores_smi_hard['cephem'] = Chem.MolFromSmarts('O=C1C([2*])([1*])[C@@H]2N1C(C(O)=O)=C([3*])CS2')
#cores_smi_easy['carbacephem'] = Chem.MolFromSmiles('O=C1C([1*])[C@@H]2N1C(C(O)=O)=C([3*])CC2')
cores_smi_easy['carbacephem'] = Chem.MolFromSmarts('O=C1C([1*])C2N1C(C(O)=O)=C([3*])CC2')
cores_smi_hard['carbacephem'] = Chem.MolFromSmarts('O=C1C([2*])([1*])[C@@H]2N1C(C(O)=O)=C([3*])CC2')
#cores_smi_easy['oxacephem'] = Chem.MolFromSmiles('O=C1C([1*])[C@@H]2N1C(C(O)=O)=C([3*])CO2')
cores_smi_easy['oxacephem'] = Chem.MolFromSmarts('O=C1C([1*])C2N1C(C(O)=O)=C([3*])CO2')
cores_smi_hard['oxacephem'] = Chem.MolFromSmarts('O=C1C([2*])([1*])[C@@H]2N1C(C(O)=O)=C([3*])CO2')
#cores_smi_easy['carbapenem'] = Chem.MolFromSmiles('O=C1C([1*])[C@@H]2N1C(C(O)=O)=C([3*])C2')
cores_smi_easy['carbapenem'] = Chem.MolFromSmarts('O=C1C([1*])C2N1C(C(O)=O)=C([3*])C2')
cores_smi_hard['carbapenem'] = Chem.MolFromSmarts('O=C1C([2*])([1*])[C@@H]2N1C(C(O)=O)=C([3*])C2')
#cores_smi_easy['carbapenam'] = Chem.MolFromSmiles('O=C1C([1*])[C@@H]2N1C(C(O)=O)C([3*])([4*])C2')
cores_smi_easy['carbapenam'] = Chem.MolFromSmarts('O=C1C([1*])C2N1C(C(O)=O)C([3*])([4*])C2')
cores_smi_hard['carbapenam'] = Chem.MolFromSmarts('O=C1C([2*])([1*])[C@@H]2N1C(C(O)=O)C([3*])([4*])C2')
#cores_smi_easy['penem'] = Chem.MolFromSmiles('O=C1C([1*])[C@@H]2N1C(C(O)=O)=C([3*])S2')
cores_smi_easy['penem'] = Chem.MolFromSmarts('O=C1C([1*])C2N1C(C(O)=O)=C([3*])S2')
cores_smi_hard['penem'] = Chem.MolFromSmarts('O=C1C([2*])([1*])[C@@H]2N1C(C(O)=O)=C([3*])S2')
#cores_smi_easy['penam'] = Chem.MolFromSmiles('O=C1C([1*])[C@@H]2N1C(C(O)=O)C([3*])([4*])S2')
cores_smi_easy['penam'] = Chem.MolFromSmarts('O=C1C([*:1])C2N1C(C(O)=O)C([*:3])([*:4])S2')
cores_smi_hard['penam'] = Chem.MolFromSmarts('O=C1C([*:2])([*:1])[C@@H]2N1C(C(O)=O)C([*:3])([*:4])S2')
#cores_smi_easy['oxapenam'] = Chem.MolFromSmiles('O=C1C([1*])[C@@H]2N1C(C(O)=O)C([3*])([4*])O2')
cores_smi_easy['oxapenam'] = Chem.MolFromSmarts('O=C1C([1*])C2N1C(C(O)=O)C([3*])([4*])O2')
cores_smi_hard['oxapenam'] = Chem.MolFromSmarts('O=C1C([2*])([1*])[C@@H]2N1C(C(O)=O)C([3*])([4*])O2')
cores_smi_easy['monobactam'] = Chem.MolFromSmarts('O=C1C([1*])C([5*])N1')
cores_smi_hard['monobactam'] = Chem.MolFromSmarts('O=C1C([2*])([1*])C([6*])([5*])N1')
rg_easy = RGroupDecomposition(cores_smi_easy.values())
rg_stereo = RGroupDecomposition(cores_smi_hard.values())
def test_stereo(self):
smiles = """C1CCO[C@@H](N)1
C1CCO[C@H](N)1
C1CCO[C@@](N)(O)1
C1CCO[C@@](N)(P)1
C1CCO[C@@](N)(S)1
C1CCO[C@@H](O)1
C1CCO[C@H](O)1
C1CCO[C@@](O)(N)1
C1CCO[C@@](O)(P)1
C1CCO[C@@](O)(S)1
C1CCO[C@@H](P)1
C1CCO[C@H](P)1
C1CCO[C@@](P)(N)1
C1CCO[C@@](P)(O)1
C1CCO[C@@](P)(S)1
C1CCO[C@@H](S)1
C1CCO[C@H](S)1
C1CCO[C@@](S)(N)1
C1CCO[C@@](S)(O)1
C1CCO[C@@](S)(P)1
"""
mols = []
for smi in smiles.split():
m = Chem.MolFromSmiles(smi)
assert m, smi
mols.append(m)
core = Chem.MolFromSmarts("C1CCOC1")
rgroups = RGroupDecomposition(core)
for m in mols:
rgroups.Add(m)
rgroups.Process()
columns = rgroups.GetRGroupsAsColumns()
data = {}
for k,v in columns.items():
data[k] = [Chem.MolToSmiles(m,True) for m in v]
rgroups2,unmatched = RGroupDecompose([core], mols)
columns2,unmatched = RGroupDecompose([core], mols, asRows=False)
data2 = {}
for k,v in columns2.items():
data2[k] = [Chem.MolToSmiles(m,True) for m in v]
self.assertEqual(data, data2)
columns3, unmatched = RGroupDecompose([core], mols, asRows=False, asSmiles=True)
self.assertEqual(data, columns3)
def test_h_options(self):
core = Chem.MolFromSmiles("O=c1oc2ccccc2cc1")
smiles = ("O=c1cc(Cn2ccnc2)c2ccc(Oc3ccccc3)cc2o1",
"O=c1oc2ccccc2c(Cn2ccnc2)c1-c1ccccc1",
"COc1ccc2c(Cn3cncn3)cc(=O)oc2c1")
params = RGroupDecompositionParameters()
rgd = RGroupDecomposition(core,params)
for smi in smiles:
m = Chem.MolFromSmiles(smi)
rgd.Add(m)
rgd.Process()
columns = rgd.GetRGroupsAsColumns()
self.assertEqual(columns['R2'][0].GetNumAtoms(),12)
params.removeHydrogensPostMatch = True
rgd = RGroupDecomposition(core,params)
for smi in smiles:
m = Chem.MolFromSmiles(smi)
rgd.Add(m)
rgd.Process()
columns = rgd.GetRGroupsAsColumns()
self.assertEqual(columns['R2'][0].GetNumAtoms(),7)
def test_unmatched(self):
cores = [Chem.MolFromSmiles("N")]
mols = [Chem.MolFromSmiles("CC"),
Chem.MolFromSmiles("CC"),
Chem.MolFromSmiles("CC"),
Chem.MolFromSmiles("N"),
Chem.MolFromSmiles("CC")]
res, unmatched = RGroupDecompose(cores, mols)
self.assertEquals(len(res), 1)
self.assertEquals(unmatched, [0,1,2,4])
if __name__ == '__main__':
unittest.main()
|