1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580
|
//
// Copyright (C) 2015 Paolo Tosco
//
// @@ All Rights Reserved @@
// This file is part of the RDKit.
// The contents are covered by the terms of the BSD license
// which is included in the file license.txt, found at the root
// of the RDKit source tree.
//
#include <GraphMol/RDKitBase.h>
#include <GraphMol/MolOps.h>
#include <GraphMol/Resonance.h>
#include <RDGeneral/hash/hash.hpp>
#include <RDGeneral/RDThreads.h>
#ifdef RDK_THREADSAFE_SSS
#include <thread>
#include <future>
#endif
namespace RDKit {
// class definitions that do not need being exposed in Resonance.h
class CEVect2 {
public:
CEVect2(CEMap &ceMap);
ConjElectrons *getCE(unsigned int depth, unsigned int width);
unsigned int ceCount() { return rdcast<unsigned int>(d_ceVect.size()); }
unsigned int depth() { return rdcast<unsigned int>(d_degVect.size()); }
void resize(unsigned int size);
void idxToDepthWidth(unsigned int idx, unsigned int &d, unsigned int &w);
unsigned int ceCountAtDepth(unsigned int depth);
unsigned int ceCountUntilDepth(unsigned int depth);
private:
static bool resonanceStructureCompare(const ConjElectrons *a,
const ConjElectrons *b);
CEVect d_ceVect;
std::vector<unsigned int> d_degVect;
};
class CEMetrics {
friend class ConjElectrons;
public:
CEMetrics();
bool operator==(const CEMetrics &other);
bool operator!=(const CEMetrics &other) { return !(*this == other); }
private:
unsigned int d_absFormalCharges;
unsigned int d_fcSameSignDist;
unsigned int d_fcOppSignDist;
unsigned int d_nbMissing;
int d_wtdFormalCharges;
unsigned int d_sumFormalChargeIdxs;
unsigned int d_sumMultipleBondIdxs;
};
class ConjElectrons {
public:
typedef enum {
HAVE_CATION_RIGHT_OF_N = (1 << 0),
HAVE_CATION = (1 << 1),
HAVE_ANION = (1 << 2)
} ConjElectronsFlags;
typedef enum { FP_BONDS = (1 << 0), FP_ATOMS = (1 << 1) } FPFlags;
ConjElectrons(ResonanceMolSupplier *parent, unsigned int groupIdx);
ConjElectrons(const ConjElectrons &ce);
~ConjElectrons();
unsigned int groupIdx() const { return d_groupIdx; };
unsigned int currElectrons() const { return d_currElectrons; };
unsigned int totalElectrons() const { return d_totalElectrons; };
void decrCurrElectrons(unsigned int d);
AtomElectrons *getAtomElectronsWithIdx(unsigned int ai);
BondElectrons *getBondElectronsWithIdx(unsigned int bi);
void pushToBeginStack(unsigned int ai);
bool popFromBeginStack(unsigned int &ai);
bool isBeginStackEmpty() { return d_beginAIStack.empty(); };
int allowedChgLeftOfN() const { return d_allowedChgLeftOfN; };
void decrAllowedChgLeftOfN(int d) { d_allowedChgLeftOfN -= d; };
int totalFormalCharge() const { return d_totalFormalCharge; };
bool hasCationRightOfN() const {
return static_cast<bool>(d_flags & HAVE_CATION_RIGHT_OF_N);
};
bool hasChargeSeparation() const {
return static_cast<bool>((d_flags & HAVE_CATION) && (d_flags & HAVE_ANION));
};
unsigned int absFormalCharges() const {
return d_ceMetrics.d_absFormalCharges;
};
unsigned int fcSameSignDist() const { return d_ceMetrics.d_fcSameSignDist; };
unsigned int fcOppSignDist() const { return d_ceMetrics.d_fcOppSignDist; };
unsigned int nbMissing() const { return d_ceMetrics.d_nbMissing; }
unsigned int sumFormalChargeIdxs() const {
return d_ceMetrics.d_sumFormalChargeIdxs;
}
unsigned int sumMultipleBondIdxs() const {
return d_ceMetrics.d_sumMultipleBondIdxs;
}
CEMetrics &metrics() { return d_ceMetrics; }
int wtdFormalCharges() const { return d_ceMetrics.d_wtdFormalCharges; };
void enumerateNonBonded(CEMap &ceMap);
void initCeFromMol();
void assignNonBonded();
void assignFormalCharge();
bool assignFormalChargesAndStore(CEMap &ceMap, unsigned int fpFlags);
void assignBondsFormalChargesToMol(ROMol &mol);
bool checkCharges();
void computeMetrics();
bool storeFP(CEMap &ceMap, unsigned int flags);
ResonanceMolSupplier *parent() const { return d_parent; };
private:
unsigned int d_groupIdx;
unsigned int d_totalElectrons;
unsigned int d_currElectrons;
unsigned int d_numFormalCharges;
int d_totalFormalCharge;
int d_allowedChgLeftOfN;
boost::uint8_t d_flags;
CEMetrics d_ceMetrics;
ConjBondMap d_conjBondMap;
ConjAtomMap d_conjAtomMap;
std::stack<unsigned int> d_beginAIStack;
ResonanceMolSupplier *d_parent;
ConjElectrons &operator=(const ConjElectrons &);
unsigned int countTotalElectrons();
void computeDistFormalCharges();
void computeSumFormalChargeIdxs();
void computeSumMultipleBondIdxs();
void checkOctets();
};
class CEVect2Store {
public:
CEVect2Store(CEVect &ceVect);
unsigned int ceCount() { return d_ceCount; }
ConjElectrons *getCE(unsigned int i, unsigned int j);
private:
unsigned int d_ceCount;
CEVect2 d_ceVect2;
};
class AtomElectrons {
public:
typedef enum {
LAST_BOND = (1 << 0),
DEFINITIVE = (1 << 1),
STACKED = (1 << 2)
} AtomElectronsFlags;
typedef enum { NEED_CHARGE_BIT = 1 } AllowedBondFlag;
AtomElectrons(ConjElectrons *parent, const Atom *a);
AtomElectrons(ConjElectrons *parent, const AtomElectrons &ae);
~AtomElectrons(){};
boost::uint8_t findAllowedBonds(unsigned int bi);
bool hasOctet() const { return ((d_nb + d_tv * 2) == 8); };
bool isLastBond() const { return (d_flags & LAST_BOND); };
void setLastBond() { d_flags |= LAST_BOND; };
bool isDefinitive() const { return (d_flags & DEFINITIVE); };
void setDefinitive() { d_flags |= DEFINITIVE; };
bool isStacked() const { return (d_flags & STACKED); };
void setStacked() { d_flags |= STACKED; };
void clearStacked() { d_flags &= ~STACKED; };
int conjGrpIdx() const {
return d_parent->parent()->getAtomConjGrpIdx(d_atom->getIdx());
};
void finalizeAtom();
unsigned int nb() const { return d_nb; };
unsigned int tv() const { return d_tv; };
unsigned int oe() const {
return PeriodicTable::getTable()->getNouterElecs(d_atom->getAtomicNum());
};
int fc() const { return d_fc; };
void tvIncr(unsigned int i) { d_tv += i; };
unsigned int neededNbForOctet() const { return (8 - (2 * d_tv + d_nb)); }
const Atom *atom() { return d_atom; }
void initTvNbFcFromAtom();
void assignNonBonded(unsigned int nb) { d_nb = nb; }
void assignFormalCharge() { d_fc = oe() - (d_nb + d_tv); }
bool isNbrCharged(unsigned int bo, unsigned int oeConstraint = 0);
private:
boost::uint8_t d_nb;
boost::uint8_t d_tv;
boost::int8_t d_fc;
boost::uint8_t d_flags;
const Atom *d_atom;
ConjElectrons *d_parent;
AtomElectrons &operator=(const AtomElectrons &);
boost::uint8_t canAddBondWithOrder(unsigned int bo);
void allConjBondsDefinitiveBut(unsigned int bi);
};
class BondElectrons {
public:
typedef enum { DEFINITIVE = (1 << 0) } BondElectronsFlags;
BondElectrons(ConjElectrons *parent, const Bond *b);
BondElectrons(ConjElectrons *parent, const BondElectrons &be);
~BondElectrons(){};
bool isDefinitive() const { return (d_flags & DEFINITIVE); };
void setDefinitive() { d_flags |= DEFINITIVE; };
int conjGrpIdx() const {
return d_parent->parent()->getBondConjGrpIdx(d_bond->getIdx());
};
void setOrder(unsigned int bo);
unsigned int order() const { return d_bo; };
unsigned int orderFromBond();
void initOrderFromBond() { d_bo = orderFromBond(); };
const Bond *bond() { return d_bond; };
private:
boost::uint8_t d_bo;
boost::uint8_t d_flags;
const Bond *d_bond;
ConjElectrons *d_parent;
BondElectrons &operator=(const BondElectrons &);
};
namespace ResonanceUtils {
// depending on the number of atoms which won't have a complete
// octet (nCandSlots) and the number of those which need non-bonded
// electrons (nTotalSlots), the number of permutations (numComb) and
// a binary code (v) which indicates which of the atom indices in
// aiVec will be octet-unsatisfied for each permutation are computed
void getNumCombStartV(unsigned int nCandSlots, unsigned int nTotalSlots,
unsigned int &numComb, unsigned int &v) {
numComb = 1;
v = 0;
for (unsigned int i = 0; i < nCandSlots; ++i) {
numComb *= (nTotalSlots - i);
numComb /= (i + 1);
v |= (1 << i);
}
}
// get the next permutation
void updateV(unsigned int &v) {
unsigned int t = (v | (v - 1)) + 1;
v = t | ((((t & (~t + 1)) / (v & (~v + 1))) >> 1) - 1);
}
// sanitize the resonance structure which has been assembled
void sanitizeMol(RWMol &mol) {
unsigned int opFailed;
MolOps::sanitizeMol(
mol, opFailed, MolOps::SANITIZE_FINDRADICALS | MolOps::SANITIZE_ADJUSTHS);
}
// fix the number of explicit and implicit Hs in the
// resonance structure which has been assembled
void fixExplicitImplicitHs(ROMol &mol) {
mol.clearComputedProps(false);
for (ROMol::AtomIterator ai = mol.beginAtoms(); ai != mol.endAtoms(); ++ai) {
(*ai)->clearComputedProps();
(*ai)->setNumExplicitHs((*ai)->getNumImplicitHs() +
(*ai)->getNumExplicitHs());
(*ai)->updatePropertyCache();
}
}
} // end of namespace ResonanceUtils
// object constructor
AtomElectrons::AtomElectrons(ConjElectrons *parent, const Atom *a)
: d_nb(0),
d_tv(static_cast<boost::uint8_t>(a->getTotalDegree())),
d_fc(0),
d_flags(0),
d_atom(a),
d_parent(parent) {
PRECONDITION(d_atom, "d_atom cannot be NULL");
}
// copy constructor
AtomElectrons::AtomElectrons(ConjElectrons *parent, const AtomElectrons &ae)
: d_nb(ae.d_nb),
d_tv(ae.d_tv),
d_fc(ae.d_fc),
d_flags(ae.d_flags),
d_atom(ae.d_atom),
d_parent(parent) {}
// assign total valence, formal charge and non-bonded electrons
// from the original atom
void AtomElectrons::initTvNbFcFromAtom() {
d_tv = d_atom->getTotalValence();
d_fc = d_atom->getFormalCharge();
d_nb = oe() - d_tv - d_fc;
}
boost::uint8_t AtomElectrons::findAllowedBonds(unsigned int bi) {
// AtomElectrons::findAllowedBonds returns a 6-bit result
// encoded as follows:
// +-------------------------------------+
// | BIT | MEANING |
// | 1 | can accept single bond |
// | 2 | needs charge if single bonded |
// | 3 | can accept double bond |
// | 4 | needs charge if double bonded |
// | 5 | can accept triple bond |
// | 6 | needs charge if triple bonded |
// +-------------------------------------+
allConjBondsDefinitiveBut(bi);
boost::uint8_t res = 0;
for (unsigned int i = 0; i < 3; ++i) {
res |= (canAddBondWithOrder(i + 1) << (i * 2));
}
return res;
}
// returns true if any conjugated neighbor is charged (and
// has atomic number == atomicNum, if the latter is non-zero)
bool AtomElectrons::isNbrCharged(unsigned int bo, unsigned int oeConstraint) {
bool res = false;
const ROMol &mol = d_parent->parent()->mol();
ROMol::OEDGE_ITER nbrIdx, endNbrs;
boost::tie(nbrIdx, endNbrs) = mol.getAtomBonds(d_atom);
for (; !res && (nbrIdx != endNbrs); ++nbrIdx) {
const Bond *bondNbr = mol[*nbrIdx];
unsigned int biNbr = bondNbr->getIdx();
if (d_parent->parent()->getBondConjGrpIdx(biNbr) != conjGrpIdx()) continue;
BondElectrons *beNbr = d_parent->getBondElectronsWithIdx(biNbr);
const Atom *atomNbr = bondNbr->getOtherAtom(d_atom);
unsigned int aiNbr = atomNbr->getIdx();
AtomElectrons *aeNbr = d_parent->getAtomElectronsWithIdx(aiNbr);
res = (((beNbr->isDefinitive() && !aeNbr->hasOctet()) ||
(!beNbr->isDefinitive() && aeNbr->isDefinitive() &&
(aeNbr->oe() < (5 - bo)))) &&
(!oeConstraint || (aeNbr->oe() == oeConstraint)));
}
return res;
}
// returns a 2-bit value, where the least significant bit is true
// if the atom can add a bond with order bo, and the most significant
// bit is true if the atom needs be charged
boost::uint8_t AtomElectrons::canAddBondWithOrder(unsigned int bo) {
boost::uint8_t canAdd = !isDefinitive();
if (canAdd) canAdd = (d_tv <= (5 - bo));
// if canAdd is true, loop over neighboring conjugated bonds
// and check their definitive flag; if all neighbors are
// definitive, we need an additional check on total valence
if (canAdd && isLastBond()) {
// we allow a formal charge up to 2 on atoms right of
// carbon, not more than 1 on atoms left of N
unsigned int rightOfC = ((oe() > 4) ? 1 : 0);
unsigned int fcInc = 0;
if (rightOfC)
fcInc = (!isNbrCharged(bo, 4) ? 1 : 0);
else {
// atoms left of N can be charged only if:
// - the neighbor is uncharged and either the conjugate
// group does not bear a non-zero total formal charge
// or it does and there is no other element left of N
// which has already been assigned a formal charge
// - the neighbor is charged, and triple-bonded to
// this atom, which is left of N (e.g., isonitrile)
bool isnc = isNbrCharged(bo);
fcInc = (((!isnc &&
!(!d_parent->allowedChgLeftOfN() &&
d_parent->totalFormalCharge())) ||
(isnc && (bo == 3) && (oe() < 5)))
? 1
: 0);
}
unsigned int e = oe() + d_tv - 1 + bo;
canAdd = ((e + fcInc + rightOfC) >= 8);
if (canAdd && (e < 8)) canAdd |= (1 << NEED_CHARGE_BIT);
}
return canAdd;
}
// sets the LAST_BOND flag on this atom if there is only one
// non-definitive bond left
void AtomElectrons::allConjBondsDefinitiveBut(unsigned int bi) {
bool allDefinitive = true;
ROMol &mol = d_atom->getOwningMol();
ROMol::OEDGE_ITER nbrIdx, endNbrs;
boost::tie(nbrIdx, endNbrs) = mol.getAtomBonds(d_atom);
for (; allDefinitive && (nbrIdx != endNbrs); ++nbrIdx) {
unsigned int nbi = mol[*nbrIdx]->getIdx();
if ((nbi != bi) &&
(d_parent->parent()->getBondConjGrpIdx(nbi) == conjGrpIdx()))
allDefinitive = d_parent->getBondElectronsWithIdx(nbi)->isDefinitive();
}
if (allDefinitive) setLastBond();
}
// called after all bonds to the atom have been marked as definitive
void AtomElectrons::finalizeAtom() {
// if the atom is left of N and needs non-bonded electrons
// to achieve the octet, it is the total formal charge
// of the conjugated group which determines if it is
// going to be a cation or an anion; once the formal
// charge is assigned to an atom left of N, the counter of allowed
// charges on atoms left of N (signed) is decremented by one
if (oe() < 5) {
unsigned int nb = neededNbForOctet();
if (nb) {
int fc = nb / 2;
if (d_parent->allowedChgLeftOfN()) {
if (d_parent->allowedChgLeftOfN() < 0) fc = -fc;
d_parent->decrAllowedChgLeftOfN(fc);
}
}
}
}
// object constructor
BondElectrons::BondElectrons(ConjElectrons *parent, const Bond *b)
: d_bo(1), d_flags(0), d_bond(b), d_parent(parent) {
PRECONDITION(d_bond, "d_bond cannot be NULL");
}
// copy constructor
BondElectrons::BondElectrons(ConjElectrons *parent, const BondElectrons &be)
: d_bo(be.d_bo), d_flags(be.d_flags), d_bond(be.d_bond), d_parent(parent) {}
// returns the bond order given the bond type
unsigned int BondElectrons::orderFromBond() {
unsigned int bo = 0;
switch (d_bond->getBondType()) {
case Bond::SINGLE:
bo = 1;
break;
case Bond::DOUBLE:
bo = 2;
break;
case Bond::TRIPLE:
bo = 3;
break;
default:
std::stringstream ss;
ss << "Bond idx " << d_bond->getIdx() << " between atoms "
<< d_bond->getBeginAtomIdx() << " and " << d_bond->getEndAtomIdx()
<< " has an invalid bond type";
throw std::runtime_error(ss.str());
}
return bo;
}
// set bond order, update total valence on the atoms involved
// in the bond and update count of current available electrons
void BondElectrons::setOrder(unsigned int bo) {
d_parent->getAtomElectronsWithIdx(d_bond->getBeginAtomIdx())->tvIncr(bo - 1);
d_parent->getAtomElectronsWithIdx(d_bond->getEndAtomIdx())->tvIncr(bo - 1);
setDefinitive();
d_parent->decrCurrElectrons(bo * 2);
d_bo = bo;
}
CEMetrics::CEMetrics()
: d_absFormalCharges(0),
d_fcSameSignDist(0),
d_fcOppSignDist(0),
d_nbMissing(0),
d_wtdFormalCharges(0),
d_sumFormalChargeIdxs(0),
d_sumMultipleBondIdxs(0){};
bool CEMetrics::operator==(const CEMetrics &other) {
return ((d_absFormalCharges == other.d_absFormalCharges) &&
(d_fcSameSignDist == other.d_fcSameSignDist) &&
(d_fcOppSignDist == other.d_fcOppSignDist) &&
(d_nbMissing == other.d_nbMissing) &&
(d_wtdFormalCharges == other.d_wtdFormalCharges));
}
// object constructor
ConjElectrons::ConjElectrons(ResonanceMolSupplier *parent,
unsigned int groupIdx)
: d_groupIdx(groupIdx),
d_totalElectrons(0),
d_numFormalCharges(0),
d_totalFormalCharge(0),
d_flags(0),
d_parent(parent) {
const ROMol &mol = d_parent->mol();
unsigned int nb = mol.getNumBonds();
unsigned int na = mol.getNumAtoms();
for (unsigned int ai = 0; ai < na; ++ai) {
if (d_parent->getAtomConjGrpIdx(ai) != -1)
d_totalFormalCharge += mol.getAtomWithIdx(ai)->getFormalCharge();
}
d_allowedChgLeftOfN = d_totalFormalCharge;
for (unsigned int bi = 0; bi < nb; ++bi) {
if (d_parent->getBondConjGrpIdx(bi) != static_cast<int>(groupIdx)) continue;
const Bond *bond = mol.getBondWithIdx(bi);
// store the pointers to BondElectrons objects in a map
d_conjBondMap[bi] = new BondElectrons(this, bond);
// store the pointers to AtomElectrons objects in a map
const Atom *atom[2] = {bond->getBeginAtom(), bond->getEndAtom()};
for (auto &i : atom) {
unsigned int ai = i->getIdx();
if (d_conjAtomMap.find(ai) == d_conjAtomMap.end())
d_conjAtomMap[ai] = new AtomElectrons(this, i);
}
}
// count total number of valence electrons in conjugated group
d_currElectrons = countTotalElectrons();
}
// copy constructor
ConjElectrons::ConjElectrons(const ConjElectrons &ce)
: d_groupIdx(ce.d_groupIdx),
d_totalElectrons(ce.d_totalElectrons),
d_currElectrons(ce.d_currElectrons),
d_numFormalCharges(ce.d_numFormalCharges),
d_totalFormalCharge(ce.d_totalFormalCharge),
d_allowedChgLeftOfN(ce.d_allowedChgLeftOfN),
d_flags(ce.d_flags),
d_ceMetrics(ce.d_ceMetrics),
d_beginAIStack(ce.d_beginAIStack),
d_parent(ce.d_parent) {
for (const auto &it : ce.d_conjAtomMap)
d_conjAtomMap[it.first] = new AtomElectrons(this, *(it.second));
for (const auto &it : ce.d_conjBondMap)
d_conjBondMap[it.first] = new BondElectrons(this, *(it.second));
}
// object destructor
ConjElectrons::~ConjElectrons() {
for (ConjAtomMap::const_iterator it = d_conjAtomMap.begin();
it != d_conjAtomMap.end(); ++it)
delete it->second;
for (ConjBondMap::const_iterator it = d_conjBondMap.begin();
it != d_conjBondMap.end(); ++it)
delete it->second;
}
// store fingerprints for this ConjElectrons object in ceMap
// return true if the FP did not already exist in the map, false
// if they did (so the ConjElectrons object can be deleted)
bool ConjElectrons::storeFP(CEMap &ceMap, unsigned int flags) {
boost::uint8_t byte;
ConjFP fp;
unsigned int fpSize = 0;
if (flags & FP_ATOMS) fpSize += rdcast<unsigned int>(d_conjAtomMap.size());
if (flags & FP_BONDS)
fpSize += rdcast<unsigned int>((d_conjBondMap.size() - 1) / 4 + 1);
fp.reserve(fpSize);
if (flags & FP_ATOMS) {
// for each atom, we push a byte to the FP vector whose
// 4 least significant bits are total valence and the
// 4 most significant bits are non-bonded electrons
for (ConjAtomMap::const_iterator it = d_conjAtomMap.begin();
it != d_conjAtomMap.end(); ++it) {
byte = it->second->tv() | (it->second->nb() << 4);
fp.push_back(byte);
}
}
if (flags & FP_BONDS) {
unsigned int i = 0;
byte = 0;
for (ConjBondMap::const_iterator it = d_conjBondMap.begin();
it != d_conjBondMap.end(); ++it) {
// for each bond, we push 2 bits to the FP vector which
// represent the bond order; the FP vector is byte-aligned
// anyway
if (i && !(i % 4)) {
fp.push_back(byte);
byte = 0;
i = 0;
}
byte |= (static_cast<boost::uint8_t>(it->second->order()) << (i * 2));
++i;
}
if (i) fp.push_back(byte);
}
// convert the FP vector to a hash
std::size_t hash = boost::hash_range(fp.begin(), fp.end());
// return true if the FP did not already exist in ceMap,
// false if it did
return ceMap.insert(std::make_pair(hash, this)).second;
}
// assign bond orders and formal charges as encoded in the
// ConjElectrons object to the ROMol passed as reference
void ConjElectrons::assignBondsFormalChargesToMol(ROMol &mol) {
const Bond::BondType bondType[3] = {Bond::SINGLE, Bond::DOUBLE, Bond::TRIPLE};
for (ConjAtomMap::const_iterator it = d_conjAtomMap.begin();
it != d_conjAtomMap.end(); ++it) {
unsigned int ai = it->first;
AtomElectrons *ae = it->second;
mol.getAtomWithIdx(ai)->setFormalCharge(ae->fc());
}
for (ConjBondMap::const_iterator it = d_conjBondMap.begin();
it != d_conjBondMap.end(); ++it) {
unsigned int bi = it->first;
BondElectrons *be = it->second;
if ((be->order() < 1) || (be->order() > 3)) {
std::stringstream ss;
ss << "bond order for bond with index " << bi << " is " << be->order()
<< "; it should be between 1 and 3";
throw std::runtime_error(ss.str());
}
mol.getBondWithIdx(bi)->setBondType(bondType[be->order() - 1]);
}
}
// init atom total valences and bond orders from the
// respective atoms and bonds
void ConjElectrons::initCeFromMol() {
for (ConjAtomMap::const_iterator it = d_conjAtomMap.begin();
it != d_conjAtomMap.end(); ++it)
it->second->initTvNbFcFromAtom();
for (ConjBondMap::const_iterator it = d_conjBondMap.begin();
it != d_conjBondMap.end(); ++it)
it->second->initOrderFromBond();
d_currElectrons = 0;
}
// assign non-bonded electrons to atoms
void ConjElectrons::assignNonBonded() {
for (ConjAtomMap::const_iterator it = d_conjAtomMap.begin();
it != d_conjAtomMap.end(); ++it) {
AtomElectrons *ae = it->second;
unsigned int nb = std::min(ae->neededNbForOctet(), d_currElectrons);
decrCurrElectrons(nb);
ae->assignNonBonded(nb);
}
}
// assign formal charges to atoms
void ConjElectrons::assignFormalCharge() {
for (ConjAtomMap::const_iterator it = d_conjAtomMap.begin();
it != d_conjAtomMap.end(); ++it)
it->second->assignFormalCharge();
}
// return true if formal charges for this ConjElectrons
// object are OK, false if they aren't
bool ConjElectrons::checkCharges() {
bool areAcceptable = true;
bool haveIncompleteOctetRightOfC = false;
bool havePosLeftOfN = false;
bool haveNegLeftOfN = false;
bool havePosRightOfNNoOctet = false;
for (ConjAtomMap::const_iterator it = d_conjAtomMap.begin();
areAcceptable && (it != d_conjAtomMap.end()); ++it) {
AtomElectrons *ae = it->second;
// formal charges should be between -2 and +1
areAcceptable = ((ae->fc() < 2) && (ae->fc() > -3));
if (areAcceptable) {
if (ae->fc() > 0)
d_flags |= HAVE_CATION;
else if (ae->fc() < 0)
d_flags |= HAVE_ANION;
if (ae->oe() > 4) {
if (!ae->hasOctet()) haveIncompleteOctetRightOfC = true;
if ((ae->fc() > 0) && (ae->oe() > 5)) {
d_flags |= HAVE_CATION_RIGHT_OF_N;
if (!ae->hasOctet()) havePosRightOfNNoOctet = true;
}
} else {
if (ae->fc() < 0)
haveNegLeftOfN = true;
else if (ae->fc() > 0)
havePosLeftOfN = true;
}
// no carbanions should coexist with incomplete octets
areAcceptable = !(haveIncompleteOctetRightOfC && haveNegLeftOfN);
}
}
if (areAcceptable &&
!(d_parent->flags() & ResonanceMolSupplier::UNCONSTRAINED_CATIONS)) {
// if the UNCONSTRAINED_CATIONS flag is not set, positively charged
// atoms left and right of N with an incomplete octet are acceptable
// only if the conjugated group has a positive total formal charge
if (havePosLeftOfN || havePosRightOfNNoOctet)
areAcceptable = (d_totalFormalCharge > 0);
}
if (areAcceptable && haveNegLeftOfN &&
!(d_parent->flags() & ResonanceMolSupplier::UNCONSTRAINED_ANIONS))
// if the UNCONSTRAINED_ANIONS flag is not set, negatively charged
// atoms left of N are acceptable only if the conjugated group has
// a negative total formal charge
areAcceptable = (d_totalFormalCharge < 0);
for (ConjBondMap::const_iterator it = d_conjBondMap.begin();
areAcceptable && (it != d_conjBondMap.end()); ++it) {
BondElectrons *be = it->second;
AtomElectrons *ae[2] = {d_conjAtomMap[be->bond()->getBeginAtomIdx()],
d_conjAtomMap[be->bond()->getEndAtomIdx()]};
for (unsigned int i = 0; areAcceptable && (i < 2); ++i) {
if (ae[i]->oe() < 5) {
// no carbocations allowed on carbons bearing double
// or triple bonds, carbanions allowed on all carbons
// no double charged allowed left of N
areAcceptable =
((be->order() == 1) || ((be->order() > 1) && (ae[i]->fc() < 1)));
}
}
if (areAcceptable)
// charged neighboring atoms left of N are not acceptable
areAcceptable = !((ae[0]->oe() < 5) && ae[0]->fc() && (ae[1]->oe() < 5) &&
ae[1]->fc());
}
return areAcceptable;
}
// assign formal charges and, if they are acceptable, store
// return true if FPs did not already exist in ceMap, false if they did
bool ConjElectrons::assignFormalChargesAndStore(CEMap &ceMap,
unsigned int fpFlags) {
assignFormalCharge();
bool ok = checkCharges();
if (ok) ok = storeFP(ceMap, fpFlags);
if (ok) computeMetrics();
return ok;
}
// enumerate all possible permutations of non-bonded electrons
void ConjElectrons::enumerateNonBonded(CEMap &ceMap) {
ConjElectrons *ce = this;
// the way we compute FPs for a resonance structure depends
// on whether we want to enumerate all Kekule structures
// or not; in the first case, we also include bond orders
// in the FP computation in addition to atom valences
const unsigned int fpFlags =
FP_ATOMS |
((d_parent->flags() & ResonanceMolSupplier::KEKULE_ALL) ? FP_BONDS : 0);
// count how many atoms need non-bonded electrons to complete
// their octet ant store their indices in aiVec
std::vector<unsigned int> aiVec;
unsigned int nbTotal = 0;
for (ConjAtomMap::const_iterator it = d_conjAtomMap.begin();
it != d_conjAtomMap.end(); ++it) {
unsigned int nb = it->second->neededNbForOctet();
if (nb) {
nbTotal += nb;
aiVec.push_back(it->first);
}
}
if (nbTotal > currElectrons()) {
// if the electrons required to satisfy all octets
// are more than those currently available, some atoms will
// be satisfied and some won't: we enumerate all permutations
// of the unsatisfied atoms
unsigned int missingElectrons = nbTotal - currElectrons();
// number of atoms which won't have a complete octet
unsigned int numCand = (missingElectrons - 1) / 2 + 1;
unsigned int numComb;
unsigned int v;
// depending on the number of atoms which won't have a complete
// octet and the number of those which need non-bonded electrons
// we compute the number of permutations (numComb) and a
// binary code (v) which indicates which of the atom indices in
// aiVec will be octet-unsatisfied for each permutation
ResonanceUtils::getNumCombStartV(
numCand, rdcast<unsigned int>(aiVec.size()), numComb, v);
// if there are multiple permutations, make a copy of the original
// ConjElectrons object, since the latter will be modified
ConjElectrons *ceCopy = ((numComb > 1) ? new ConjElectrons(*ce) : nullptr);
// enumerate all permutations
for (unsigned int c = 0; c < numComb; ++c) {
if (c) ce = new ConjElectrons(*ceCopy);
unsigned int vc = v;
for (unsigned int i : aiVec) {
AtomElectrons *ae = ce->getAtomElectronsWithIdx(i);
unsigned int e = ae->neededNbForOctet();
// if this atom was chosen to be octet-unsatisfied in
// this permutation, give it one electron pair less than
// its need (which most likely means no electrons at all)
if (vc & 1) e -= 2;
ce->decrCurrElectrons(e);
ae->assignNonBonded(e);
vc >>= 1;
}
// delete this candidate if it fails the formal charge check
if (!ce->assignFormalChargesAndStore(ceMap, fpFlags)) delete ce;
// get the next binary code
ResonanceUtils::updateV(v);
}
if (ceCopy) delete ceCopy;
} else if (nbTotal == currElectrons()) {
// if the electrons required to satisfy all octets
// are as many as those currently available, assignment
// is univocal
ce->assignNonBonded();
// delete this candidate if it fails the formal charge check
if (!ce->assignFormalChargesAndStore(ceMap, fpFlags)) delete ce;
} else
// if the electrons required to satisfy all octets are less
// than those currently available, we must have failed the bond
// assignment, so the candidate must be deleted
delete ce;
}
void ConjElectrons::computeMetrics() {
// 1000 * Electronegativity according to the Allen scale
// (Allen, L.C. J. Am. Chem. Soc. 1989, 111, 9003-9014)
static const unsigned int en[] = {
2300, 4160, 912, 1576, 2051, 2544, 3066, 3610, 4193, 4789, 869,
1293, 1613, 1916, 2253, 2589, 2869, 3242, 734, 1034, 1190, 1380,
1530, 1650, 1750, 1800, 1840, 1880, 1850, 1590, 1756, 1994, 2211,
2434, 2685, 2966, 706, 963, 1120, 1320, 1410, 1470, 1510, 1540,
1560, 1590, 1870, 1520, 1656, 1824, 1984, 2158, 2359, 2582, 659,
881, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000,
1000, 1000, 1000, 1000, 1090, 1160, 1340, 1470, 1600, 1650, 1680,
1720, 1920, 1760, 1789, 1854, 2010, 2190, 2390, 2600, 670, 890};
const int enSize = sizeof(en) / sizeof(double);
for (ConjAtomMap::const_iterator it = d_conjAtomMap.begin();
it != d_conjAtomMap.end(); ++it) {
d_ceMetrics.d_absFormalCharges += abs(it->second->fc());
int anIdx = it->second->atom()->getAtomicNum() - 1;
d_ceMetrics.d_wtdFormalCharges +=
(it->second->fc() * ((anIdx >= enSize) ? 1000 : en[anIdx]));
d_ceMetrics.d_nbMissing += it->second->neededNbForOctet();
}
computeDistFormalCharges();
computeSumFormalChargeIdxs();
computeSumMultipleBondIdxs();
}
// compute sum of shortest path distances between all pairs of
// formal charges of the same sign and of opposite signs
void ConjElectrons::computeDistFormalCharges() {
for (ConjAtomMap::const_iterator it1 = d_conjAtomMap.begin();
it1 != d_conjAtomMap.end(); ++it1) {
if (!it1->second->fc()) continue;
for (auto it2 = it1; it2 != d_conjAtomMap.end(); ++it2) {
if ((it1 == it2) || !it2->second->fc()) continue;
unsigned int dist = rdcast<unsigned int>(
MolOps::getShortestPath(d_parent->mol(), it1->first, it2->first)
.size());
if ((it1->second->fc() * it2->second->fc()) > 0)
d_ceMetrics.d_fcSameSignDist += dist;
else
d_ceMetrics.d_fcOppSignDist += dist;
}
}
}
// compute the sum of indices of atoms bearing a formal charge
void ConjElectrons::computeSumFormalChargeIdxs() {
for (ConjAtomMap::const_iterator it = d_conjAtomMap.begin();
it != d_conjAtomMap.end(); ++it) {
if (it->second->fc()) d_ceMetrics.d_sumFormalChargeIdxs += it->first;
}
}
// compute the sum of indices of multiple bonds
void ConjElectrons::computeSumMultipleBondIdxs() {
for (ConjBondMap::const_iterator it = d_conjBondMap.begin();
it != d_conjBondMap.end(); ++it) {
if (it->second->order() > 1) d_ceMetrics.d_sumMultipleBondIdxs += it->first;
}
}
// decrement the count of current electrons by d
void ConjElectrons::decrCurrElectrons(unsigned int d) {
if (d_currElectrons < d) {
std::stringstream ss;
ss << "d_currElectrons = " << d_currElectrons << ", d = " << d;
throw std::runtime_error(ss.str());
}
d_currElectrons -= d;
}
// push atom index ai to the begin stack if it is not already there
void ConjElectrons::pushToBeginStack(unsigned int ai) {
if (!d_conjAtomMap[ai]->isStacked()) {
d_conjAtomMap[ai]->setStacked();
d_beginAIStack.push(ai);
}
}
// pop an atom from the begin stack and put its index in ai
bool ConjElectrons::popFromBeginStack(unsigned int &ai) {
bool ok = false;
while (!d_beginAIStack.empty() && !ok) {
ai = d_beginAIStack.top();
d_beginAIStack.pop();
AtomElectrons *ae = d_conjAtomMap[ai];
ae->clearStacked();
ok = (!ae->isDefinitive());
}
return ok;
}
// function used to sort ConjElectrons objects based on their
// importance to describe the structure; criteria in order of decreasing
// priority follow:
// 1) Number of unsatisfied octets
// 2) Number of formal charges
// 3) Number of formal charges weighted by atom electronegativity
// 4) Distance between formal charges with the same sign
// 5) Distance between formal charges with opposite signs
// 6) Sum of the indices of atoms bearing a formal charge
// 7) Sum of the indices of multiple bonds
bool CEVect2::resonanceStructureCompare(const ConjElectrons *a,
const ConjElectrons *b) {
return (
(a->nbMissing() != b->nbMissing())
? (a->nbMissing() < b->nbMissing())
: (a->absFormalCharges() != b->absFormalCharges())
? (a->absFormalCharges() < b->absFormalCharges())
: (a->wtdFormalCharges() != b->wtdFormalCharges())
? (a->wtdFormalCharges() < b->wtdFormalCharges())
: (a->fcSameSignDist() != b->fcSameSignDist())
? (a->fcSameSignDist() > b->fcSameSignDist())
: (a->fcOppSignDist() != b->fcOppSignDist())
? (a->fcOppSignDist() > b->fcOppSignDist())
: (a->sumFormalChargeIdxs() !=
b->sumFormalChargeIdxs())
? (a->sumFormalChargeIdxs() <
b->sumFormalChargeIdxs())
: (a->sumMultipleBondIdxs() <
b->sumMultipleBondIdxs()));
}
CEVect2::CEVect2(CEMap &ceMap) {
d_ceVect.reserve(ceMap.size());
for (CEMap::const_iterator it = ceMap.begin(); it != ceMap.end(); ++it)
d_ceVect.push_back(it->second);
std::sort(d_ceVect.begin(), d_ceVect.end(), resonanceStructureCompare);
bool first = true;
CEMetrics metricsPrev;
for (CEVect::const_iterator it = d_ceVect.begin(); it != d_ceVect.end();
++it) {
if (first || ((*it)->metrics() != metricsPrev)) {
first = false;
metricsPrev = (*it)->metrics();
d_degVect.push_back(1);
} else
++d_degVect.back();
}
}
ConjElectrons *CEVect2::getCE(unsigned int depth, unsigned int width) {
if (depth >= d_degVect.size()) {
std::stringstream ss;
ss << "depth = " << depth << ", d_degVect.size() = " << d_degVect.size();
throw std::runtime_error(ss.str());
}
if (width >= d_degVect[depth]) {
std::stringstream ss;
ss << "width = " << width << ", d_degVect[" << depth
<< "] = " << d_degVect[depth];
throw std::runtime_error(ss.str());
}
unsigned int i = 0;
for (unsigned int d = 0; d < depth; ++d) i += d_degVect[d];
i += width;
return d_ceVect[i];
}
void CEVect2::resize(unsigned int size) {
d_ceVect.resize(size ? ceCountUntilDepth(size - 1) : 0);
d_degVect.resize(size);
}
unsigned int CEVect2::ceCountAtDepth(unsigned int depth) {
if (depth >= d_degVect.size()) {
std::stringstream ss;
ss << "depth = " << depth << ", d_degVect.size() = " << d_degVect.size();
throw std::runtime_error(ss.str());
}
return d_degVect[depth];
}
unsigned int CEVect2::ceCountUntilDepth(unsigned int depth) {
if (depth >= d_degVect.size()) {
std::stringstream ss;
ss << "depth = " << depth << ", d_degVect.size() = " << d_degVect.size();
throw std::runtime_error(ss.str());
}
unsigned int i = 0;
for (unsigned int d = 0; d <= depth; ++d) i += d_degVect[d];
return i;
}
void CEVect2::idxToDepthWidth(unsigned int idx, unsigned int &d,
unsigned int &w) {
if (idx >= d_ceVect.size()) {
std::stringstream ss;
ss << "idx = " << idx << ", d_ceVect.size() = " << d_ceVect.size();
throw std::runtime_error(ss.str());
}
d = 0;
while (idx >= d_degVect[d]) {
idx -= d_degVect[d];
++d;
}
w = idx;
}
// get the pointer to the BondElectrons object for bond having index bi
BondElectrons *ConjElectrons::getBondElectronsWithIdx(unsigned int bi) {
return d_conjBondMap[bi];
}
// get the pointer to the AtomElectrons object for atom having index ai
AtomElectrons *ConjElectrons::getAtomElectronsWithIdx(unsigned int ai) {
return d_conjAtomMap[ai];
}
// count number of total electrons
unsigned int ConjElectrons::countTotalElectrons() {
// count total number of valence electrons in conjugated group
for (ConjBondMap::const_iterator it = d_conjBondMap.begin();
it != d_conjBondMap.end(); ++it)
d_totalElectrons += (2 * it->second->orderFromBond());
for (ConjAtomMap::const_iterator it = d_conjAtomMap.begin();
it != d_conjAtomMap.end(); ++it) {
const Atom *a = it->second->atom();
d_totalElectrons +=
it->second->oe() - a->getTotalValence() - a->getFormalCharge();
}
return d_totalElectrons;
}
// if the total number of resonance structures exceeds d_maxStructs,
// trim the number of ConjElectrons object for each conjugated group
// to exclude the less likely structures and save memory
// we are going to generate the complete resonance structures
// combining the most likely ConjElectrons objects in a breadth-first
// fashion
void ResonanceMolSupplier::trimCeVect2() {
if (d_length == d_maxStructs) {
std::vector<unsigned int> s(d_nConjGrp, 0);
std::vector<unsigned int> t(d_nConjGrp, 0);
unsigned int currSize = 0;
while (currSize < d_length) {
currSize = 1;
for (unsigned int conjGrpIdx = 0;
(currSize < d_length) && (conjGrpIdx < d_nConjGrp); ++conjGrpIdx) {
if (s[conjGrpIdx] < d_ceVect3[conjGrpIdx]->depth()) {
t[conjGrpIdx] += d_ceVect3[conjGrpIdx]->ceCountAtDepth(s[conjGrpIdx]);
++s[conjGrpIdx];
}
currSize *= t[conjGrpIdx];
}
}
for (unsigned int conjGrpIdx = 0; conjGrpIdx < d_nConjGrp; ++conjGrpIdx) {
for (unsigned int d = s[conjGrpIdx]; d < d_ceVect3[conjGrpIdx]->depth();
++d) {
for (unsigned int w = 0; w < d_ceVect3[conjGrpIdx]->ceCountAtDepth(d);
++w)
delete (d_ceVect3[conjGrpIdx]->getCE(d, w));
}
d_ceVect3[conjGrpIdx]->resize(s[conjGrpIdx]);
}
}
}
// get the ConjElectrons indices to be combined given
// the complete resonance structure index
void ResonanceMolSupplier::idxToCEPerm(unsigned int idx,
std::vector<unsigned int> &c) const {
// the c vector holds a pair of values for each ConjGrp,
// namely depth and width where the ConjElectrons
// object lies in the CEVect2 vector
c.resize(d_nConjGrp * 2);
unsigned int g = d_nConjGrp;
while (g) {
--g;
unsigned int gt2 = g * 2;
unsigned int d = 1;
for (unsigned int j = 0; j < g; ++j) {
d *= d_ceVect3[j]->ceCount();
}
d_ceVect3[g]->idxToDepthWidth(idx / d, c[gt2], c[gt2 + 1]);
idx %= d;
}
}
// sort the vectors of ConjElectrons indices in such a way that we
// generate resonance structures out of the most likely ConjElectrons
// objects in a breadth-first fashion
bool ResonanceMolSupplier::cePermCompare(const CEPerm *a, const CEPerm *b) {
unsigned int aSum = 0;
unsigned int bSum = 0;
for (unsigned int i = 0; i < a->v.size(); i += 2) {
aSum += a->v[i];
bSum += b->v[i];
}
if (aSum != bSum) return (aSum < bSum);
unsigned int aMax = 0;
unsigned int bMax = 0;
for (unsigned int i = 0; i < a->v.size(); i += 2) {
if (!i || (a->v[i] > aMax)) aMax = a->v[i];
if (!i || (b->v[i] > bMax)) bMax = b->v[i];
}
if (aMax != bMax) return (aMax < bMax);
for (unsigned int i = 0; i < a->v.size(); i += 2) {
if (a->v[i] != b->v[i]) return (a->v[i] < b->v[i]);
}
// if the other criteria didn't discriminate,
// sort based on degenerate resonance structures
for (unsigned int i = 1; i < a->v.size(); i += 2) {
if (a->v[i] != b->v[i]) return (a->v[i] < b->v[i]);
}
// we'll never get here, this it is just to silence a warning
return false;
}
// enumerate upfront all the d_length indices for complete resonance
// structures and sort them to privilege the most likely
// ConjElectrons index combinations in a breadth-first fashion
void ResonanceMolSupplier::prepEnumIdxVect() {
d_enumIdx.resize(d_length);
std::vector<CEPerm *> cePermVect(d_length);
for (unsigned int i = 0; i < d_length; ++i) {
cePermVect[i] = new CEPerm;
cePermVect[i]->idx = i;
idxToCEPerm(i, cePermVect[i]->v);
}
std::sort(cePermVect.begin(), cePermVect.end(), cePermCompare);
for (unsigned int i = 0; i < d_length; ++i) {
d_enumIdx[i] = cePermVect[i]->idx;
delete cePermVect[i];
}
}
// object constructor
ResonanceMolSupplier::ResonanceMolSupplier(ROMol &mol, unsigned int flags,
unsigned int maxStructs)
: d_nConjGrp(0),
d_flags(flags),
d_idx(0),
d_numThreads(1),
d_isEnumerated(false) {
const unsigned int MAX_STRUCTS = 1000000;
d_maxStructs = std::min(maxStructs, MAX_STRUCTS);
d_length = std::min(1U, d_maxStructs);
d_mol = new ROMol(mol);
MolOps::Kekulize((RWMol &)*d_mol, false);
// identify conjugate substructures
assignConjGrpIdx();
}
// object destructor
ResonanceMolSupplier::~ResonanceMolSupplier() {
for (CEVect3::const_iterator ceVect3It = d_ceVect3.begin();
ceVect3It != d_ceVect3.end(); ++ceVect3It) {
if (!(*ceVect3It)) continue;
for (unsigned int d = 0; d < (*ceVect3It)->depth(); ++d) {
for (unsigned int w = 0; w < (*ceVect3It)->ceCountAtDepth(d); ++w)
delete ((*ceVect3It)->getCE(d, w));
}
delete (*ceVect3It);
}
if (d_mol) delete d_mol;
}
void ResonanceMolSupplier::setNumThreads(int numThreads) {
d_numThreads = std::min(d_nConjGrp, getNumThreadsToUse(numThreads));
}
void ResonanceMolSupplier::enumerate() {
if (d_isEnumerated) return;
resizeCeVect();
if (d_numThreads == 1) mainLoop(0, 1);
#ifdef RDK_THREADSAFE_SSS
else {
std::vector<std::future<void>> tg;
auto functor = [this](unsigned int ti, unsigned int d_numThreads) -> void {
mainLoop(ti, d_numThreads);
};
for (unsigned int ti = 0; ti < d_numThreads; ++ti) {
tg.emplace_back(
std::async(std::launch::async, functor, ti, d_numThreads));
}
for (auto &fut : tg) {
fut.get();
}
}
#endif
setResonanceMolSupplierLength();
trimCeVect2();
prepEnumIdxVect();
d_isEnumerated = true;
}
void ResonanceMolSupplier::mainLoop(unsigned int ti, unsigned int nt) {
for (unsigned int conjGrpIdx = 0; conjGrpIdx < d_nConjGrp; ++conjGrpIdx) {
if ((conjGrpIdx % nt) != ti) continue;
CEMap ceMap;
buildCEMap(ceMap, conjGrpIdx);
storeCEMap(ceMap, conjGrpIdx);
}
}
// each bond an atom is assigned an index representing the conjugated
// group it belongs to; such indices are stored in two vectors
// (d_bondConjGrpIdx and d_atomConjGrpIdx, respectively)
// atoms and bonds which do not belong to a conjugated group are given
// index -1
void ResonanceMolSupplier::assignConjGrpIdx() {
unsigned int nb = d_mol->getNumBonds();
d_bondConjGrpIdx.resize(nb, -1);
unsigned int na = d_mol->getNumAtoms();
d_atomConjGrpIdx.resize(na, -1);
for (unsigned int i = 0; i < nb; ++i) {
const Bond *bi = d_mol->getBondWithIdx(i);
unsigned int biBeginIdx = bi->getBeginAtomIdx();
unsigned int biEndIdx = bi->getEndAtomIdx();
if (bi->getIsConjugated() && (d_bondConjGrpIdx[i] == -1)) {
// assign this conjugate bond to the matching group, if any
for (unsigned int j = 0; (d_bondConjGrpIdx[i] == -1) && (j < nb); ++j) {
if ((i == j) || (d_bondConjGrpIdx[j] == -1)) continue;
const Bond *bj = d_mol->getBondWithIdx(j);
if ((bj->getBeginAtomIdx() == biBeginIdx) ||
(bj->getBeginAtomIdx() == biEndIdx) ||
(bj->getEndAtomIdx() == biBeginIdx) ||
(bj->getEndAtomIdx() == biEndIdx))
d_bondConjGrpIdx[i] = d_bondConjGrpIdx[j];
}
// no existing group matches: create a new group
if (d_bondConjGrpIdx[i] == -1) d_bondConjGrpIdx[i] = d_nConjGrp++;
}
}
for (unsigned int i = 0; i < nb; ++i) {
if (d_bondConjGrpIdx[i] != -1) {
const Bond *bi = d_mol->getBondWithIdx(i);
unsigned int biBeginIdx = bi->getBeginAtomIdx();
unsigned int biEndIdx = bi->getEndAtomIdx();
d_atomConjGrpIdx[biBeginIdx] = d_bondConjGrpIdx[i];
d_atomConjGrpIdx[biEndIdx] = d_bondConjGrpIdx[i];
}
}
}
// enumerateNonBonded() is called for each ConjElectrons object
// retrieved from ceMapTmp; the resulting ConjElectrons
// objects are collected in ceMap
void ResonanceMolSupplier::enumerateNbArrangements(CEMap &ceMap,
CEMap &ceMapTmp) {
for (auto &it : ceMapTmp) it.second->enumerateNonBonded(ceMap);
}
void ResonanceMolSupplier::pruneStructures(CEMap &ceMap) {
unsigned int minNbMissing = 0;
bool first = true;
bool haveNoCationsRightOfN = false;
bool haveNoChargeSeparation = false;
for (CEMap::const_iterator it = ceMap.begin(); (it != ceMap.end()); ++it) {
if (first || (it->second->nbMissing() < minNbMissing)) {
first = false;
minNbMissing = it->second->nbMissing();
}
}
for (CEMap::const_iterator it = ceMap.begin(); (it != ceMap.end()); ++it) {
if (!(d_flags & ALLOW_INCOMPLETE_OCTETS) &&
(it->second->nbMissing() > minNbMissing))
continue;
if (!it->second->hasCationRightOfN()) haveNoCationsRightOfN = true;
if (!it->second->hasChargeSeparation()) haveNoChargeSeparation = true;
}
for (CEMap::iterator it = ceMap.begin(); it != ceMap.end();) {
// if the flag ALLOW_INCOMPLETE_OCTETS is not set, ConjElectrons
// objects having less electrons than the most electron-complete
// structure (which most often will have all complete octets) are
// discarded
if ((!(d_flags & ALLOW_INCOMPLETE_OCTETS) &&
(it->second->nbMissing() > minNbMissing)) ||
(!(d_flags & UNCONSTRAINED_CATIONS) &&
it->second->hasCationRightOfN() && haveNoCationsRightOfN) ||
(!(d_flags & ALLOW_CHARGE_SEPARATION) &&
it->second->hasChargeSeparation() && haveNoChargeSeparation)) {
CEMap::iterator toBeDeleted = it;
++it;
delete (toBeDeleted->second);
ceMap.erase(toBeDeleted);
} else
++it;
}
}
// function which enumerates all possible multiple bond arrangements
// for each conjugated group, stores each arrangement in a ConjElectrons
// object ans stores the latter in a map (ceMapTmp), keyed with its
// fingerprints. Depending on whether the KEKULE_ALL flag is set, the FP
// computation will be based either on the bond arrangement or on atom
// valences; this provides a convenient mechanism to remove degenerate
// Kekule structures upfront. In a subsequent step, ConjElectrons objects
// stored in ceMapTmp are further enumerated for their non-bonded
// electron arrangements, and the final ConjElectrons objects are stored
// in ceMap. Depending on whether the KEKULE_ALL flag is set, the FP
// computation will involve or not bond arrangement in addition to atom
// valences
void ResonanceMolSupplier::buildCEMap(CEMap &ceMap, unsigned int conjGrpIdx) {
const unsigned int BEGIN_POS = 0;
const unsigned int END_POS = 1;
const unsigned int fpFlags =
ConjElectrons::FP_ATOMS |
((d_flags & KEKULE_ALL) ? ConjElectrons::FP_BONDS : 0);
const unsigned int fpFlagsTmp =
((d_flags & KEKULE_ALL) ? ConjElectrons::FP_BONDS
: ConjElectrons::FP_ATOMS);
unsigned int nb = d_mol->getNumBonds();
unsigned int na = d_mol->getNumAtoms();
CEMap ceMapTmp;
// There are two stacks in this algorithm:
// 1) ConjElectrons stack (ceStack, unique). It stores partial bond
// arrangements whenever multiple paths arise. Partial bond
// arrangements are then popped from the stack until the latter is
// empty
// 2) atom index stack (d_beginAIStack, associated to each
// ConjElectrons object). It stores a stack of atom indices to
// start from to complete the bond arrangement for each
// ConjElectrons object
std::stack<ConjElectrons *> ceStack;
auto *ce = new ConjElectrons(this, conjGrpIdx);
auto *ceCopy = new ConjElectrons(*ce);
// the first ConjElectrons object has the user-supplied bond
// and formal charge arrangement and is stored as such
ce->initCeFromMol();
// we ignore the result of the call to checkCharges()
// but we need to call it so that the HAVE_CATION_RIGHT_OF_N flag
// may eventually be set
ce->checkCharges();
ce->computeMetrics();
ce->storeFP(ceMap, fpFlags);
ce = ceCopy;
// initialize ceStack
ceStack.push(ce);
// loop until ceStack is empty
while (!ceStack.empty()) {
ce = ceStack.top();
ceStack.pop();
unsigned int aiBegin = 0;
// if the atom index stack is empty, initialize it with a primer;
// any atom index belonging to this conjugated group will do
if (ce->isBeginStackEmpty()) {
bool aiFound = false;
while (aiBegin < na) {
aiFound = (d_atomConjGrpIdx[aiBegin] == static_cast<int>(conjGrpIdx));
if (aiFound) break;
++aiBegin;
}
if (!aiFound) continue;
ce->pushToBeginStack(aiBegin);
}
// loop until the atom index stack is empty
while (ce && ce->popFromBeginStack(aiBegin)) {
// aiBegin holds the atom index just popped from stack
unsigned int ai[2] = {aiBegin, na};
AtomElectrons *ae[2] = {ce->getAtomElectronsWithIdx(ai[BEGIN_POS]),
nullptr};
unsigned int bi = nb;
BondElectrons *be = nullptr;
// loop over neighbors of the atom popped from the
// atom index stack
ROMol::ADJ_ITER nbrIdx, endNbrs;
boost::tie(nbrIdx, endNbrs) =
d_mol->getAtomNeighbors(ae[BEGIN_POS]->atom());
for (; nbrIdx != endNbrs; ++nbrIdx) {
unsigned int aiNbr = (*d_mol)[*nbrIdx]->getIdx();
// if this neighbor is not part of the conjugated group,
// ignore it
if (ce->parent()->getAtomConjGrpIdx(aiNbr) !=
static_cast<int>(conjGrpIdx))
continue;
AtomElectrons *aeNbr = ce->getAtomElectronsWithIdx(aiNbr);
// if we've already dealt with this neighbor before, ignore it
if (aeNbr->isDefinitive()) continue;
unsigned int biNbr =
d_mol->getBondBetweenAtoms(ai[BEGIN_POS], aiNbr)->getIdx();
BondElectrons *beNbr = ce->getBondElectronsWithIdx(biNbr);
// if we have already assigned the bond order to this bond,
// ignore it
if (beNbr->isDefinitive()) continue;
// if this is the first neighbor we find, process it
if (!ae[END_POS]) {
bi = biNbr;
be = beNbr;
ai[END_POS] = aiNbr;
ae[END_POS] = aeNbr;
}
// otherwise, if there are multiple neighbors, process the first
// and store the rest to the atom index stack
else
ce->pushToBeginStack(aiNbr);
}
// if no neighbors were found, move on to the next atom index
// in the stack
if (!be) continue;
boost::uint8_t allowedBondsPerAtom[2];
// loop over the two atoms that need be bonded
for (unsigned int i = 0; i < 2; ++i) {
// for each atom, find which bond orders are allowed
allowedBondsPerAtom[i] = ae[i]->findAllowedBonds(bi);
// if for either atom this is the last bond, mark the
// atom as definitive, otherwise push the atom index
// to the stack
if (ae[i]->isLastBond()) {
ae[i]->setDefinitive();
} else
ce->pushToBeginStack(ai[i]);
}
// logical AND between allowed bond masks for the two atoms
boost::uint8_t allowedBonds =
allowedBondsPerAtom[BEGIN_POS] & allowedBondsPerAtom[END_POS];
bool isAnyBondAllowed = false;
bool needToFork = false;
// make a copy of the current ConjElectrons object
ceCopy = new ConjElectrons(*ce);
// consider single, double and triple bond alternatives in turn
for (unsigned int i = 0; i < 3; ++i) {
unsigned int t = i * 2;
ConjElectrons *ceToSet = nullptr;
boost::uint8_t orderMask = (1 << t);
boost::uint8_t chgMask = (1 << (t + 1));
unsigned int bo = i + 1;
// if the currently available electrons are enough for this
// bond type and both atoms can accept this bond type
// and we are not in a situation where both atoms are left
// of N and both need a charge to accept this bond type,
// then this bond type is feasible
if ((ce->currElectrons() >= (bo * 2)) && (allowedBonds & orderMask) &&
!((allowedBonds & chgMask) &&
((ae[BEGIN_POS]->oe() < 5) || (ae[END_POS]->oe() < 5)))) {
isAnyBondAllowed = true;
// if another bond type will be possible, then we'll
// need to save that to ceStack and keep on with the current
// ConjElectrons object
if (!needToFork) {
needToFork = true;
ceToSet = ce;
} else {
auto *ceFork = new ConjElectrons(*ceCopy);
ceStack.push(ceFork);
ceToSet = ceFork;
}
}
if (ceToSet) {
// set bond orders and finalize atoms as needed
ceToSet->getBondElectronsWithIdx(bi)->setOrder(bo);
for (unsigned int j = 0; j < 2; ++j) {
if (ae[j]->isLastBond())
ceToSet->getAtomElectronsWithIdx(ai[j])->finalizeAtom();
}
}
}
delete ceCopy;
// if a dead end was hit, discard this ConjElectrons object
if (!isAnyBondAllowed) {
delete ce;
ce = nullptr;
}
}
if (ce) {
// if this bond arrangement was already stored previously,
// discard it
if (!ce->storeFP(ceMapTmp, fpFlagsTmp)) delete ce;
}
}
// for each bond arrangement in ceMapTmp, enumerate possible
// non-bonded electron arrangements, amd store them in ceMap
enumerateNbArrangements(ceMap, ceMapTmp);
// prune structures depending on how flags were set
pruneStructures(ceMap);
}
// getter function which returns the bondConjGrpIdx for a given
// bond index, or -1 if the bond is not conjugated
int ResonanceMolSupplier::getBondConjGrpIdx(unsigned int bi) const {
if (bi >= d_bondConjGrpIdx.size()) {
std::stringstream ss;
ss << "d_bondConjGrpIdx.size() = " << d_bondConjGrpIdx.size()
<< ", bi = " << bi;
throw std::runtime_error(ss.str());
}
return d_bondConjGrpIdx[bi];
}
// getter function which returns the atomConjGrpIdx for a given
// atom index, or -1 if the atom is not conjugated
int ResonanceMolSupplier::getAtomConjGrpIdx(unsigned int ai) const {
if (ai >= d_atomConjGrpIdx.size()) {
std::stringstream ss;
ss << "d_atomConjGrpIdx.size() = " << d_atomConjGrpIdx.size()
<< ", ai = " << ai;
throw std::runtime_error(ss.str());
}
return d_atomConjGrpIdx[ai];
}
// resizes d_ceVect3 vector
inline void ResonanceMolSupplier::resizeCeVect() {
d_ceVect3.resize(d_nConjGrp, nullptr);
}
// stores the ConjElectrons pointers currently stored in ceMap
// in the d_ceVect3 vector
inline void ResonanceMolSupplier::storeCEMap(CEMap &ceMap,
unsigned int conjGrpIdx) {
d_ceVect3[conjGrpIdx] = new CEVect2(ceMap);
}
void ResonanceMolSupplier::setResonanceMolSupplierLength() {
for (unsigned int i = 0; (d_length < d_maxStructs) && (i < d_ceVect3.size());
++i) {
boost::uint64_t p = d_length * d_ceVect3[i]->ceCount();
d_length =
((p < d_maxStructs) ? static_cast<unsigned int>(p) : d_maxStructs);
}
}
// Returns the number of resonance structures in the
// ResonanceMolSupplier
unsigned int ResonanceMolSupplier::length() {
enumerate();
return d_length;
}
// Resets the ResonanceMolSupplier index
void ResonanceMolSupplier::reset() {
enumerate();
d_idx = 0;
}
// Returns true if there are no more resonance structures left
bool ResonanceMolSupplier::atEnd() {
enumerate();
return (d_idx == d_length);
}
// Returns a pointer to the next resonance structure as a ROMol,
// or NULL if there are no more resonance structures left.
// The caller is responsible for freeing memory associated to
// the pointer
ROMol *ResonanceMolSupplier::next() {
enumerate();
return (atEnd() ? nullptr : (*this)[d_idx++]);
}
// sets the ResonanceMolSupplier index to idx
void ResonanceMolSupplier::moveTo(unsigned int idx) {
enumerate();
if (idx >= d_length) {
std::stringstream ss;
ss << "d_length = " << d_length << ", idx = " << idx;
throw std::runtime_error(ss.str());
}
d_idx = idx;
}
// returns the resonance structure with index idx as a ROMol *
// the index returns resonance structures combining ConjElectrons
// objects in a breadth-first fashion, in order to return the most
// likely complete resonance structures first
ROMol *ResonanceMolSupplier::operator[](unsigned int idx) {
enumerate();
if (idx >= d_length) {
std::stringstream ss;
ss << "d_length = " << d_length << ", idx = " << idx;
throw std::runtime_error(ss.str());
}
std::vector<unsigned int> c;
idxToCEPerm(d_enumIdx[idx], c);
return assignBondsFormalCharges(c);
}
// helper function to assign bond orders and formal charges to the
// mol passed as reference out of the ConjElectrons objects whose
// indices are passed with the c vector
void ResonanceMolSupplier::assignBondsFormalChargesHelper(
ROMol &mol, std::vector<unsigned int> &c) const {
for (unsigned int conjGrpIdx = 0; conjGrpIdx < d_nConjGrp; ++conjGrpIdx) {
unsigned int i = conjGrpIdx * 2;
ConjElectrons *ce = d_ceVect3[conjGrpIdx]->getCE(c[i], c[i + 1]);
ce->assignBondsFormalChargesToMol(mol);
}
}
// returns a pointer to a ROMol with bond orders and formal charges
// assigned out of the ConjElectrons objects whose indices are passed
// with the c vector
ROMol *ResonanceMolSupplier::assignBondsFormalCharges(
std::vector<unsigned int> &c) const {
auto *mol = new ROMol(this->mol());
assignBondsFormalChargesHelper(*mol, c);
ResonanceUtils::fixExplicitImplicitHs(*mol);
ResonanceUtils::sanitizeMol((RWMol &)*mol);
return mol;
}
}
|