File: SLNAttribs.cpp

package info (click to toggle)
rdkit 201809.1%2Bdfsg-6
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 123,688 kB
  • sloc: cpp: 230,509; python: 70,501; java: 6,329; ansic: 5,427; sql: 1,899; yacc: 1,739; lex: 1,243; makefile: 445; xml: 229; fortran: 183; sh: 123; cs: 93
file content (516 lines) | stat: -rw-r--r-- 19,998 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
// $Id$
//
//  Copyright (c) 2008, Novartis Institutes for BioMedical Research Inc.
//  All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
//     * Redistributions of source code must retain the above copyright
//       notice, this list of conditions and the following disclaimer.
//     * Redistributions in binary form must reproduce the above
//       copyright notice, this list of conditions and the following
//       disclaimer in the documentation and/or other materials provided
//       with the distribution.
//     * Neither the name of Novartis Institutes for BioMedical Research Inc.
//       nor the names of its contributors may be used to endorse or promote
//       products derived from this software without specific prior
//       written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
//  Created by Greg Landrum, Sept. 2006
//

#include <GraphMol/SLNParse/SLNParse.h>
#include <GraphMol/SLNParse/SLNAttribs.h>
#include <GraphMol/RDKitBase.h>
#include <GraphMol/RDKitQueries.h>
#include <RDGeneral/RDLog.h>
#include <RDGeneral/Invariant.h>

#include <boost/algorithm/string.hpp>
#include <boost/lexical_cast.hpp>

namespace RDKit {
namespace SLNParse {
namespace {
int parseIntAttribVal(std::string attribName, std::string attribVal,
                      int (*defaultFunc)(Atom const *at) = nullptr,
                      Atom *atom = nullptr) {
  PRECONDITION((!defaultFunc) || atom,
               "If a default func is provided, an atom must be as well.");
  int iVal;
  boost::to_lower(attribVal);

  if (defaultFunc && attribVal == "f") {
    iVal = defaultFunc(atom);
  } else {
    try {
      iVal = boost::lexical_cast<int>(attribVal);
    } catch (boost::bad_lexical_cast &) {
      std::stringstream err;
      err << "SLN Parser error: bad integer value (" << attribVal
          << ") provided for property: " << attribName;
      throw SLNParseException(err.str());
    }
  }
  return iVal;
}
}  // end of anonymous namespace

QueryAtom::QUERYATOM_QUERY *makeQueryFromOp(const std::string &op, int val,
                                            int (*func)(Atom const *at),
                                            std::string description) {
  PRECONDITION(func, "bad query function");
  QueryAtom::QUERYATOM_QUERY *res = nullptr;
  if (op == "=") {
    auto *tmp = new ATOM_EQUALS_QUERY;
    tmp->setVal(val);
    tmp->setDataFunc(func);
    tmp->setDescription(description);
    res = tmp;
  } else if (op == "!=") {
    auto *tmp = new ATOM_EQUALS_QUERY;
    tmp->setVal(val);
    tmp->setDataFunc(func);
    tmp->setDescription(description);
    tmp->setNegation(true);
    res = tmp;
  } else if (op == ">") {
    // don't be alarmed by this use of the LessEqual query for >, it's not a
    // bug.
    // The RD GreaterQuery(tgt) returns true if tgt is greater than the thing
    // you
    // compare to. In this case we need to reverse that because we're interested
    // in
    // seeing if the value is greater than the target; this is equiv to asking
    // if
    // the target is < the value.
    auto *tmp = new ATOM_LESS_QUERY;
    tmp->setVal(val);
    tmp->setDataFunc(func);
    tmp->setDescription(description);
    res = tmp;
  } else if (op == ">=") {
    auto *tmp = new ATOM_LESSEQUAL_QUERY;
    tmp->setVal(val);
    tmp->setDataFunc(func);
    tmp->setDescription(description);
    res = tmp;
  } else if (op == "<") {
    auto *tmp = new ATOM_GREATER_QUERY;
    tmp->setVal(val);
    tmp->setDataFunc(func);
    tmp->setDescription(description);
    res = tmp;
  } else if (op == "<=") {
    auto *tmp = new ATOM_GREATEREQUAL_QUERY;
    tmp->setVal(val);
    tmp->setDataFunc(func);
    tmp->setDescription(description);
    res = tmp;
  } else {
    std::stringstream err;
    err << "SLN Parser error: bad attribute operator (" << op << ") provided.";
    throw SLNParseException(err.str());
  }

  POSTCONDITION(res, "bad query");
  return res;
}

void parseAtomAttribs(Atom *atom, AttribListType attribs, bool doingQuery) {
  QueryAtom::QUERYATOM_QUERY *atomQuery = nullptr;
  bool lastWasLowPriAnd = false;
  for (AttribListType::const_iterator it = attribs.begin(); it != attribs.end();
       ++it) {
    QueryAtom::QUERYATOM_QUERY *query = nullptr;
    AttribCombineOp how = it->first;

    boost::shared_ptr<AttribType> attribPtr = it->second;
    std::string attribName = attribPtr->first;
    boost::to_lower(attribName);
    std::string attribVal = attribPtr->second;
    if (attribName == "charge") {
      int chg = 0;
      if (attribVal == "-") {
        chg = -1;
      } else if (attribVal == "+") {
        chg = +1;
      } else {
        chg = parseIntAttribVal(attribName, attribVal);
      }
      if (!doingQuery) {
        atom->setFormalCharge(chg);
      } else {
        query = makeQueryFromOp(attribPtr->op, chg, queryAtomFormalCharge,
                                "AtomFormalCharge");
      }
    } else if (attribName == "i") {
      int val = parseIntAttribVal(attribName, attribVal);
      if (!doingQuery) {
        atom->setIsotope(static_cast<unsigned int>(val));
      } else {
        query = makeQueryFromOp(attribPtr->op, val, queryAtomIsotope,
                                "AtomIsotope");
      }
    } else if (attribName == "r") {
      if (attribVal != "") {
        BOOST_LOG(rdWarningLog) << "Query value '" << attribVal
                                << "' ignored for r query\n";
      }
      if (!doingQuery) {
        BOOST_LOG(rdWarningLog) << "Query property '" << attribName
                                << "' ignored on non-query atom\n";
      } else {
        query = makeAtomInRingQuery();
      }
    } else if (attribName == "is") {
      // recursive queries:
      if (!attribPtr->structQuery) {
        throw SLNParseException("failed recursive query");
      }
      query = static_cast<QueryAtom::QUERYATOM_QUERY *>(attribPtr->structQuery);
    } else if (attribName == "s") {
      if (attribPtr->op != "=") {
        std::stringstream err;
        err << "SLN Parser error: comparison operator '" << attribPtr->op
            << "' not supported for chiral attributes.\n";
        throw SLNParseException(err.str());
      }
      boost::to_lower(attribVal);

      if (attribVal[0] == 'i' || attribVal[0] == 'n') {
        if (attribVal.size() > 1 && attribVal[1] == '*') {
          BOOST_LOG(rdWarningLog) << "Chiral modifier * ignored, chiral spec "
                                  << attribVal[0] << " will be used\n";
        }
        if (attribVal.size() > 1 && attribVal[1] == 'm') {
          BOOST_LOG(rdWarningLog) << "Chiral modifier m ignored, chiral spec "
                                  << attribVal[0] << " will be used\n";
        }
#if 0
          } else if(attribVal=="r"){
          } else if(attribVal=="r*"){
          } else if(attribVal=="rm"){
          } else if(attribVal=="s"){
          } else if(attribVal=="s*"){
          } else if(attribVal=="sm"){
#endif
      } else {
        BOOST_LOG(rdWarningLog) << "Unsupported stereochemistry specifier '"
                                << attribVal << "' ignored.\n";
      }
    } else {
      // a block of properties that can have "f" values, and so need special
      // handling:
      std::string fTag = "";
      int val = 0;
      if (attribVal == "f" || attribName == "f") {
        fTag = "_SLN_";
        atom->setProp(common_properties::_Unfinished_SLN_, 1);
        val = -666;
      }
      if (attribName == "rbc") {
        if (fTag == "") val = parseIntAttribVal(attribName, attribVal);
        query = makeQueryFromOp(attribPtr->op, val, queryAtomRingBondCount,
                                fTag + "AtomRingBondCount");
      } else if (attribName == "tbo") {
        if (fTag == "") val = parseIntAttribVal(attribName, attribVal);
        query = makeQueryFromOp(attribPtr->op, val, queryAtomTotalValence,
                                fTag + "AtomTotalValence");
      } else if (attribName == "tac") {
        if (fTag == "") val = parseIntAttribVal(attribName, attribVal);
        query = makeQueryFromOp(attribPtr->op, val, queryAtomTotalDegree,
                                fTag + "AtomTotalDegree");
      } else if (attribName == "hc") {
        if (fTag == "") val = parseIntAttribVal(attribName, attribVal);
        query = makeQueryFromOp(attribPtr->op, val, queryAtomHCount,
                                fTag + "AtomHCount");
      } else if (attribName == "hac") {
        if (fTag == "") val = parseIntAttribVal(attribName, attribVal);
        query = makeQueryFromOp(attribPtr->op, val, queryAtomNonHydrogenDegree,
                                fTag + "AtomHeavyAtomDegree");
      } else if (attribName == "f") {
        if (fTag == "") val = parseIntAttribVal(attribName, attribVal);
        query = makeQueryFromOp(
            "=", val, (int (*)(const RDKit::Atom *))(queryAtomAllBondProduct),
            fTag + "AtomBondEnvironment");
      } else {
        // anything we don't know how to deal with we'll just store in raw form:
        atom->setProp(attribName, attribVal);
      }
    }

    // if we've constructed a query from all that, then we need to add it to the
    // atomQuery:
    if (query) {
      if (!doingQuery) {
        BOOST_LOG(rdWarningLog) << "Query property '" << attribName
                                << "' ignored on non-query atom\n";
        delete query;
      } else {
        if (attribPtr->negated) query->setNegation(!query->getNegation());
        if (!atomQuery) {
          // first one is easy:
          atomQuery = query;
        } else {
          QueryAtom::QUERYATOM_QUERY *tQuery;
          switch (how) {
            case AttribAnd:
              // high-priority and:
              tQuery = new ATOM_AND_QUERY;
              tQuery->setDescription("AtomAnd");
              tQuery->addChild(
                  QueryAtom::QUERYATOM_QUERY::CHILD_TYPE(atomQuery));
              tQuery->addChild(QueryAtom::QUERYATOM_QUERY::CHILD_TYPE(query));
              atomQuery = tQuery;
              lastWasLowPriAnd = false;
              break;
            case AttribLowPriAnd:
              tQuery = new ATOM_AND_QUERY;
              tQuery->setDescription("AtomAnd");
              tQuery->addChild(
                  QueryAtom::QUERYATOM_QUERY::CHILD_TYPE(atomQuery));
              tQuery->addChild(QueryAtom::QUERYATOM_QUERY::CHILD_TYPE(query));
              atomQuery = tQuery;
              lastWasLowPriAnd = true;
              break;
            case AttribOr:
              if (lastWasLowPriAnd) {
                // if the last query was a low-priority AND, we need to
                // restructure
                // the tree a bit:
                QueryAtom::QUERYATOM_QUERY *newAndQuery;
                newAndQuery = new ATOM_AND_QUERY;
                newAndQuery->setDescription("AtomAnd");
                auto andChild = atomQuery->beginChildren();
                newAndQuery->addChild(*andChild);
                ++andChild;

                tQuery = new ATOM_OR_QUERY;
                tQuery->setDescription("AtomOr");
                tQuery->addChild(*andChild);

                newAndQuery->addChild(
                    QueryAtom::QUERYATOM_QUERY::CHILD_TYPE(tQuery));
                delete atomQuery;
                atomQuery = newAndQuery;
              } else {
                // otherwise we just do a normal expansion:
                tQuery = new ATOM_OR_QUERY;
                tQuery->setDescription("AtomOr");
                tQuery->addChild(
                    QueryAtom::QUERYATOM_QUERY::CHILD_TYPE(atomQuery));
                tQuery->addChild(QueryAtom::QUERYATOM_QUERY::CHILD_TYPE(query));
                atomQuery = tQuery;
              }
              lastWasLowPriAnd = false;
              break;
            default:
              throw SLNParseException(
                  "unrecognized query composition operator");
          }
        }
      }
    }  // end of query processing
  }    // end of loop over attribs
  if (atomQuery) {
    atom->expandQuery(atomQuery, Queries::COMPOSITE_AND);
  }
}

void parseFinalAtomAttribs(Atom *atom, bool doingQuery) {
  PRECONDITION(atom, "no atom");
  // we need to loop over the atom's query tree and finalize any
  // attributes that had "f" in the original SLN. We will recognize
  // these by the fact that their names start with "_SLN_"
  if (!doingQuery || !atom->hasQuery() ||
      !atom->hasProp(common_properties::_Unfinished_SLN_))
    return;
  atom->clearProp(common_properties::_Unfinished_SLN_);
  std::list<QueryAtom::QUERYATOM_QUERY *> q;
  q.push_back(atom->getQuery());
  while (!q.empty()) {
    QueryAtom::QUERYATOM_QUERY *query = q.front();
    q.pop_front();

    std::string description = query->getDescription();
    if (description.size() > 5 && description.substr(0, 5) == "_SLN_") {
      boost::erase_head(description, 5);
      query->setDescription(description);
      static_cast<ATOM_EQUALS_QUERY *>(query)->setVal(
          (int)(query->getDataFunc()(atom)));
    }
    // now add the query's children to the queue and continue:
    for (auto cIt = query->beginChildren(); cIt != query->endChildren();
         ++cIt) {
      q.push_back(const_cast<QueryAtom::QUERYATOM_QUERY *>(cIt->get()));
    }
  }
}

void parseBondAttribs(Bond *bond, AttribListType attribs, bool doingQuery) {
  // FIX: need to do the same query tree reordering here as we did above.
  bool seenTypeQuery = false;
  for (AttribListType::const_iterator it = attribs.begin(); it != attribs.end();
       ++it) {
    Queries::CompositeQueryType how;
    switch (it->first) {
      case AttribAnd:
        how = Queries::COMPOSITE_AND;
        break;
      case AttribOr:
        how = Queries::COMPOSITE_OR;
        break;
      case AttribLowPriAnd:
        how = Queries::COMPOSITE_AND;
        break;
      default:
        throw SLNParseException("unrecognized query composition operator");
    }

    boost::shared_ptr<AttribType> attribPtr = it->second;
    std::string attribName = attribPtr->first;
    boost::to_lower(attribName);
    std::string attribVal = attribPtr->second;
    if (attribName == "type") {
      boost::to_lower(attribVal);
      Bond::BondType bondType;
      if (attribVal == "-" || attribVal == "1") {
        bondType = Bond::SINGLE;
      } else if (attribVal == "=" || attribVal == "2") {
        bondType = Bond::DOUBLE;
      } else if (attribVal == "#" || attribVal == "3") {
        bondType = Bond::TRIPLE;
      } else if (attribVal == ":" || attribVal == "aromatic") {
        bondType = Bond::AROMATIC;
      } else {
        bondType = Bond::OTHER;
        bond->setProp("SLN_Type", attribVal);
      }
      if (!doingQuery) {
        bond->setBondType(bondType);
      } else {
        QueryBond::QUERYBOND_QUERY *query = makeBondOrderEqualsQuery(bondType);
        if (attribPtr->negated) query->setNegation(!query->getNegation());
        if (seenTypeQuery) {
          static_cast<RDKit::QueryBond *>(bond)->expandQuery(query, how, true);
        } else {
          // if this is the first type query, we need to replace any existing
          // bond order queries:
          // FIX: this replaces tooo much, ring queries also get blown out
          bond->setQuery(query);
        }
        seenTypeQuery = true;
      }
    } else if (attribName == "r") {
      if (attribVal != "") {
        BOOST_LOG(rdWarningLog) << "Query value '" << attribVal
                                << "' ignored for r query\n";
      }
      if (!doingQuery) {
        BOOST_LOG(rdWarningLog) << "Query property '" << attribName
                                << "' ignored on non-query bond\n";
      } else {
        QueryBond::QUERYBOND_QUERY *query = makeBondIsInRingQuery();
        if (attribPtr->negated) query->setNegation(true);
        static_cast<QueryBond *>(bond)->expandQuery(query, how);
      }
    } else {
      // anything we don't know how to deal with we'll just store in raw form:
      bond->setProp(attribName, attribVal);
    }
  }
}

void parseMolAttribs(ROMol *mol, AttribListType attribs) {
  for (AttribListType::const_iterator it = attribs.begin(); it != attribs.end();
       ++it) {
    CHECK_INVARIANT(it->first == AttribAnd, "bad attrib type");

    boost::shared_ptr<AttribType> attribPtr = it->second;
    std::string attribName = attribPtr->first;
    boost::to_lower(attribName);
    std::string attribVal = attribPtr->second;
    if (attribVal.begin() != attribVal.end() && *(attribVal.begin()) == '"' &&
        *(attribVal.begin()) == *(attribVal.rbegin())) {
      attribVal.erase(attribVal.begin());
      attribVal.erase(--(attribVal.end()));
    }
    if (attribName == "name") {
      mol->setProp(common_properties::_Name, attribVal);
    } else {
      mol->setProp(attribName, attribVal);
    }
  }
}

void adjustAtomChiralities(RWMol *mol) {
  for (RWMol::AtomIterator atomIt = mol->beginAtoms();
       atomIt != mol->endAtoms(); atomIt++) {
    std::string attribVal;
    if ((*atomIt)->getPropIfPresent(common_properties::_SLN_s, attribVal)) {
      // the atom is marked as chiral, translate the sln chirality into
      // RDKit chirality

      // start with a straight map of the chirality value:
      // as a reminder, here are some SLN <-> SMILES pairs
      //      C[s=n]H(Cl)(F)Br  <->  [C@@H](Cl)(F)Br (CHI_TETRAHEDRAL_CW)
      //      ClC[s=n]H(F)Br  <->  Cl[C@H](F)Br (CHI_TETRAHEDRAL_CCW)
      //      FC[1:s=n](Cl)OCH2@1   <->  F[C@@]1(Cl)OC1 (CHI_TETRAHEDRAL_CW)
      if (attribVal[0] == 'n') {
        (*atomIt)->setChiralTag(Atom::CHI_TETRAHEDRAL_CW);
      } else if (attribVal[0] == 'i') {
        (*atomIt)->setChiralTag(Atom::CHI_TETRAHEDRAL_CCW);
      }
      std::list<std::pair<int, int> > neighbors;
      RWMol::ADJ_ITER nbrIdx, endNbrs;
      boost::tie(nbrIdx, endNbrs) = mol->getAtomNeighbors(*atomIt);
      while (nbrIdx != endNbrs) {
        Bond *nbrBond = mol->getBondBetweenAtoms((*atomIt)->getIdx(), *nbrIdx);
        neighbors.push_back(std::make_pair(*nbrIdx, nbrBond->getIdx()));
        ++nbrIdx;
      }

      // std::cerr << "CHIRAL " << (*atomIt)->getIdx();

      // sort by neighbor idx:
      neighbors.sort();
      // figure out the bond ordering:
      std::list<int> bondOrdering;
      for (std::list<std::pair<int, int> >::const_iterator nbrIt =
               neighbors.begin();
           nbrIt != neighbors.end(); ++nbrIt) {
        bondOrdering.push_back(nbrIt->second);
        // std::cerr << " " << nbrIt->second;
      }

      // ok, we now have the ordering of the bonds (used for RDKit chirality),
      // figure out the permutation order relative to the atom numbering
      // (sln chirality):
      int nSwaps = (*atomIt)->getPerturbationOrder(bondOrdering);

      if (nSwaps % 2) {
        (*atomIt)->setChiralTag((*atomIt)->getChiralTag() ==
                                        Atom::CHI_TETRAHEDRAL_CW
                                    ? Atom::CHI_TETRAHEDRAL_CCW
                                    : Atom::CHI_TETRAHEDRAL_CW);
      }
    }
  }
}
}  // end of SLNParse namespace
}  // end of RDKit namespace