1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239
|
// $Id$
//
// Copyright (C) 2005-2006 Rational Discovery LLC
//
// @@ All Rights Reserved @@
// This file is part of the RDKit.
// The contents are covered by the terms of the BSD license
// which is included in the file license.txt, found at the root
// of the RDKit source tree.
//
#include "ShapeUtils.h"
#include "ShapeEncoder.h"
#include <Geometry/UniformGrid3D.h>
#include <GraphMol/RDKitBase.h>
#include <Geometry/Transform3D.h>
#include <GraphMol/MolTransforms/MolTransforms.h>
#include <Geometry/GridUtils.h>
namespace RDKit {
namespace MolShapes {
void computeConfBox(const Conformer &conf, RDGeom::Point3D &leftBottom,
RDGeom::Point3D &rightTop, const RDGeom::Transform3D *trans,
double padding) {
double xmin, xmax, ymin, ymax, zmin, zmax;
xmin = ymin = zmin = 1.e8;
xmax = ymax = zmax = -1.e8;
unsigned int i, nAtms = conf.getNumAtoms();
for (i = 0; i < nAtms; ++i) {
RDGeom::Point3D loc = conf.getAtomPos(i);
if (trans) {
trans->TransformPoint(loc);
}
xmax = std::max(xmax, loc.x);
xmin = std::min(xmin, loc.x);
ymax = std::max(ymax, loc.y);
ymin = std::min(ymin, loc.y);
zmax = std::max(zmax, loc.z);
zmin = std::min(zmin, loc.z);
}
RDGeom::Point3D padPt(padding, padding, padding);
leftBottom.x = xmin;
leftBottom.y = ymin;
leftBottom.z = zmin;
rightTop.x = xmax;
rightTop.y = ymax;
rightTop.z = zmax;
leftBottom -= padPt;
rightTop += padPt;
}
void computeConfDimsAndOffset(const Conformer &conf, RDGeom::Point3D &dims,
RDGeom::Point3D &offSet,
const RDGeom::Transform3D *trans,
double padding) {
// RDGeom::Point3D lb, rb;
computeConfBox(conf, offSet, dims, trans, padding);
dims -= offSet;
}
std::vector<double> getConfDimensions(const Conformer &conf, double padding,
const RDGeom::Point3D *center,
bool ignoreHs) {
RDGeom::Point3D lb, rb;
computeConfBox(conf, lb, rb, nullptr, padding);
if (!center) {
RDGeom::Point3D cpt = MolTransforms::computeCentroid(conf, ignoreHs);
rb -= cpt;
lb -= cpt;
} else {
rb -= (*center);
lb -= (*center);
}
lb *= -1.0;
double dimX = 2.0 * std::max(rb.x, lb.x);
double dimY = 2.0 * std::max(rb.y, lb.y);
double dimZ = 2.0 * std::max(rb.z, lb.z);
std::vector<double> res;
res.reserve(3);
res.push_back(dimX);
res.push_back(dimY);
res.push_back(dimZ);
return res;
}
void computeUnionBox(const RDGeom::Point3D &leftBottom1,
const RDGeom::Point3D &rightTop1,
const RDGeom::Point3D &leftBottom2,
const RDGeom::Point3D &rightTop2,
RDGeom::Point3D &uLeftBottom, RDGeom::Point3D &uRightTop) {
uLeftBottom.x = std::min(leftBottom1.x, leftBottom2.x);
uLeftBottom.y = std::min(leftBottom1.y, leftBottom2.y);
uLeftBottom.z = std::min(leftBottom1.z, leftBottom2.z);
uRightTop.x = std::max(rightTop1.x, rightTop2.x);
uRightTop.y = std::max(rightTop1.y, rightTop2.y);
uRightTop.z = std::max(rightTop1.z, rightTop2.z);
}
double tverskyIndex(const ROMol &mol1, const ROMol &mol2, double alpha, double beta, int confId1,
int confId2, double gridSpacing,
DiscreteValueVect::DiscreteValueType bitsPerPoint,
double vdwScale, double stepSize, int maxLayers,
bool ignoreHs) {
const Conformer &conf1 = mol1.getConformer(confId1);
const Conformer &conf2 = mol2.getConformer(confId2);
return tverskyIndex(conf1, conf2, alpha, beta, gridSpacing, bitsPerPoint,
vdwScale, stepSize, maxLayers, ignoreHs);
}
double tverskyIndex(const Conformer &conf1, const Conformer &conf2, double alpha, double beta,
double gridSpacing,
DiscreteValueVect::DiscreteValueType bitsPerPoint,
double vdwScale, double stepSize, int maxLayers,
bool ignoreHs) {
RDGeom::Transform3D *trans = MolTransforms::computeCanonicalTransform(conf1);
// now use this transform and figure out what size grid we will need
// find the lower-left and upper-right corners for each of the conformers
// and take a union of these boxes - we will use this fo grid dimensions
RDGeom::Point3D leftBottom1, rightTop1, leftBottom2, rightTop2, uLeftBottom,
uRightTop;
computeConfBox(conf1, leftBottom1, rightTop1, trans);
computeConfBox(conf2, leftBottom2, rightTop2, trans);
computeUnionBox(leftBottom1, rightTop1, leftBottom2, rightTop2, uLeftBottom,
uRightTop);
// make the grid object to store the encoding
uRightTop -= uLeftBottom; // uRightTop now has grid dimensions
RDGeom::UniformGrid3D grd1(uRightTop.x, uRightTop.y, uRightTop.z, gridSpacing,
bitsPerPoint, &uLeftBottom);
RDGeom::UniformGrid3D grd2(uRightTop.x, uRightTop.y, uRightTop.z, gridSpacing,
bitsPerPoint, &uLeftBottom);
EncodeShape(conf1, grd1, trans, vdwScale, stepSize, maxLayers, ignoreHs);
EncodeShape(conf2, grd2, trans, vdwScale, stepSize, maxLayers, ignoreHs);
return RDGeom::tverskyIndex(grd1, grd2, alpha, beta);
}
double tanimotoDistance(const ROMol &mol1, const ROMol &mol2, int confId1,
int confId2, double gridSpacing,
DiscreteValueVect::DiscreteValueType bitsPerPoint,
double vdwScale, double stepSize, int maxLayers,
bool ignoreHs) {
const Conformer &conf1 = mol1.getConformer(confId1);
const Conformer &conf2 = mol2.getConformer(confId2);
return tanimotoDistance(conf1, conf2, gridSpacing = 0.5, bitsPerPoint,
vdwScale, stepSize, maxLayers, ignoreHs);
}
double tanimotoDistance(const Conformer &conf1, const Conformer &conf2,
double gridSpacing,
DiscreteValueVect::DiscreteValueType bitsPerPoint,
double vdwScale, double stepSize, int maxLayers,
bool ignoreHs) {
RDGeom::Transform3D *trans = MolTransforms::computeCanonicalTransform(conf1);
// now use this transform and figure out what size grid we will need
// find the lower-left and upper-right corners for each of the conformers
// and take a union of these boxes - we will use this fo grid dimensions
RDGeom::Point3D leftBottom1, rightTop1, leftBottom2, rightTop2, uLeftBottom,
uRightTop;
computeConfBox(conf1, leftBottom1, rightTop1, trans);
computeConfBox(conf2, leftBottom2, rightTop2, trans);
computeUnionBox(leftBottom1, rightTop1, leftBottom2, rightTop2, uLeftBottom,
uRightTop);
// make the grid object to store the encoding
uRightTop -= uLeftBottom; // uRightTop now has grid dimensions
RDGeom::UniformGrid3D grd1(uRightTop.x, uRightTop.y, uRightTop.z, gridSpacing,
bitsPerPoint, &uLeftBottom);
RDGeom::UniformGrid3D grd2(uRightTop.x, uRightTop.y, uRightTop.z, gridSpacing,
bitsPerPoint, &uLeftBottom);
EncodeShape(conf1, grd1, trans, vdwScale, stepSize, maxLayers, ignoreHs);
EncodeShape(conf2, grd2, trans, vdwScale, stepSize, maxLayers, ignoreHs);
return RDGeom::tanimotoDistance(grd1, grd2);
}
double protrudeDistance(const ROMol &mol1, const ROMol &mol2, int confId1,
int confId2, double gridSpacing,
DiscreteValueVect::DiscreteValueType bitsPerPoint,
double vdwScale, double stepSize, int maxLayers,
bool ignoreHs, bool allowReordering) {
const Conformer &conf1 = mol1.getConformer(confId1);
const Conformer &conf2 = mol2.getConformer(confId2);
return protrudeDistance(conf1, conf2, gridSpacing = 0.5, bitsPerPoint,
vdwScale, stepSize, maxLayers, ignoreHs,
allowReordering);
}
double protrudeDistance(const Conformer &conf1, const Conformer &conf2,
double gridSpacing,
DiscreteValueVect::DiscreteValueType bitsPerPoint,
double vdwScale, double stepSize, int maxLayers,
bool ignoreHs, bool allowReordering) {
//
// FIX: all this duplicated code needs to be refactored out.
//
RDGeom::Transform3D *trans = MolTransforms::computeCanonicalTransform(conf1);
// now use this transform and figure out what size grid we will need
// find the lower-left and upper-right corners for each of the conformers
// and take a union of these boxes - we will use this fo grid dimensions
RDGeom::Point3D leftBottom1, rightTop1, leftBottom2, rightTop2, uLeftBottom,
uRightTop;
computeConfBox(conf1, leftBottom1, rightTop1, trans);
computeConfBox(conf2, leftBottom2, rightTop2, trans);
computeUnionBox(leftBottom1, rightTop1, leftBottom2, rightTop2, uLeftBottom,
uRightTop);
// make the grid object to store the encoding
uRightTop -= uLeftBottom; // uRightTop now has grid dimensions
RDGeom::UniformGrid3D grd1(uRightTop.x, uRightTop.y, uRightTop.z, gridSpacing,
bitsPerPoint, &uLeftBottom);
RDGeom::UniformGrid3D grd2(uRightTop.x, uRightTop.y, uRightTop.z, gridSpacing,
bitsPerPoint, &uLeftBottom);
EncodeShape(conf1, grd1, trans, vdwScale, stepSize, maxLayers, ignoreHs);
EncodeShape(conf2, grd2, trans, vdwScale, stepSize, maxLayers, ignoreHs);
double res;
if (allowReordering && (grd2.getOccupancyVect()->getTotalVal() <
grd1.getOccupancyVect()->getTotalVal())) {
res = RDGeom::protrudeDistance(grd2, grd1);
} else {
res = RDGeom::protrudeDistance(grd1, grd2);
}
return res;
}
}
}
|