File: Stereo.cpp.bak

package info (click to toggle)
rdkit 201809.1%2Bdfsg-6
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 123,688 kB
  • sloc: cpp: 230,509; python: 70,501; java: 6,329; ansic: 5,427; sql: 1,899; yacc: 1,739; lex: 1,243; makefile: 445; xml: 229; fortran: 183; sh: 123; cs: 93
file content (862 lines) | stat: -rw-r--r-- 31,234 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
//
//  Copyright (C) 2016 Novartis Institutes for BioMedical Research
//
//   @@ All Rights Reserved @@
//  This file is part of the RDKit.
//  The contents are covered by the terms of the BSD license
//  which is included in the file license.txt, found at the root
//  of the RDKit source tree.
//
#include <math.h>
#include "../RDKitBase.h"
#include "../../RDGeneral/types.h"
#include "../../Geometry/point.h"
#include "StructChecker.h"
#include "Utilites.h"
#include "Stereo.h"

namespace RDKit {
namespace StructureCheck {

static const double PI = 3.14159265359;
static const double ANGLE_EPSILON = (5.0 * PI / 180.);  // 5 degrees
static const double EPS = 0.0000001;  // float type precision ???
                                      /*
                                          // constants for bond definitions
                                      //#define  CIS_TRANS_EITHER  0x03
                                      //#define  CIS_TRANS_SWAPPED 0x08
                                      */
struct npoint_t {
  double x, y, z;
  int number;
};

static double Angle(double x1, double y1, double x2, double y2) {
  // Returns the angle between the two vectors (x1,y1) and (x2,y2) at (0,0).
  double l1, l2;
  double cos_alpha, sin_alpha;
  double result;

  l1 = sqrt(x1 * x1 + y1 * y1);
  l2 = sqrt(x2 * x2 + y2 * y2);
  if (l1 < 0.00001 || l2 < 0.00001) return (0.0);

  cos_alpha = (x1 * x2 + y1 * y2) / (l1 * l2);
  if (cos_alpha > 1.0)  // safeguard against round off erros
    cos_alpha = 1.0;
  else if (cos_alpha < -1.0)
    cos_alpha = -1.0;
  sin_alpha = (x1 * y2 - x2 * y1) / (l1 * l2);

  result = acos(cos_alpha);
  if (sin_alpha < 0.0) result = 2 * PI - result;
  return result;
}

static double Volume(struct npoint_t tetra[4]) {
  // Computes the signed volume of the tetrahedron defined by the four points in
  // tetra[].

  double ax, ay, az, bx, by, bz, cx, cy, cz;

  ax = tetra[1].x - tetra[0].x;
  ay = tetra[1].y - tetra[0].y;
  az = tetra[1].z - tetra[0].z;
  bx = tetra[2].x - tetra[0].x;
  by = tetra[2].y - tetra[0].y;
  bz = tetra[2].z - tetra[0].z;
  cx = tetra[3].x - tetra[0].x;
  cy = tetra[3].y - tetra[0].y;
  cz = tetra[3].z - tetra[0].z;

  return (ax * (by * cz - bz * cy) + ay * (bz * cx - bx * cz) +
          az * (bx * cy - by * cx));
}

int DubiousStereochemistry(RWMol &mol) {
  /*
  * Checks if there is some ill-defined stereochemistry in the
  * molecule *mp. The function returns a bit set integer which defines
  * the problems encountered.
  */

  int result = 0;
  //   int is_allene, ndb, jatom;

  std::vector<Neighbourhood> neighbour_array;

  SetupNeighbourhood(mol, neighbour_array);

  // look for EITHER bonds
  for (unsigned i = 0; i < mol.getNumBonds(); i++) {
    const Bond &bond = *mol.getBondWithIdx(i);
    if (RDKit::Bond::UNKNOWN == bond.getBondDir() || bond.hasProp(common_properties::_UnknownStereo))  //== EITHER
    {
      result |= EITHER_BOND_FOUND;
    }
  }
  // look for stereo bonds to non-stereogenic atoms
  for (unsigned i = 0; i < neighbour_array.size(); i++) {
    const Neighbourhood &nbp = neighbour_array[i];
    unsigned nmulti = 0;
    bool is_allene = false;
    for (unsigned j = 0; j < nbp.Bonds.size(); j++) {
      const Bond &bond = *mol.getBondWithIdx(nbp.Bonds[j]);
      if (RDKit::Bond::SINGLE != bond.getBondType()) {
        unsigned ndb = 0;
        nmulti++;
        if (RDKit::Bond::DOUBLE == bond.getBondType()) {
          unsigned jatom = nbp.Atoms[j];
          for (unsigned jj = 0; jj < neighbour_array[jatom].Bonds.size(); jj++)
            if (RDKit::Bond::DOUBLE ==
                mol.getBondWithIdx(neighbour_array[jatom].Bonds[jj])
                    ->getBondType())
              ndb++;
        }
        if (2 == ndb) is_allene = true;
      }
    }
    unsigned element = mol.getAtomWithIdx(i)->getAtomicNum();
    unsigned n_ligands = (unsigned)nbp.Bonds.size();
    if (!((6 == element &&  // "C"
           n_ligands > 2 && n_ligands <= 4 && nmulti == 0) ||
          (6 == element &&  // "C"
           n_ligands >= 2 && n_ligands <= 3 && nmulti == 1 && is_allene) ||
          (16 == element &&  // "S"
           n_ligands > 2 && n_ligands <= 4) ||
          (7 == element &&  // "N"
           n_ligands > 3 && n_ligands <= 4 && nmulti == 0) ||
          (15 == element &&  // "P"
           n_ligands > 2 && n_ligands <= 4) ||
          (14 == element &&  // "Si"
           n_ligands > 2 && n_ligands <= 4) &&
              nmulti == 0))

      for (unsigned j = 0; j < n_ligands; j++) {
        const Bond &bj = *mol.getBondWithIdx(nbp.Bonds[j]);
        if (bj.getBeginAtomIdx() == i + 1 &&
            (RDKit::Bond::BEGINWEDGE == bj.getBondDir() ||  // == UP
             RDKit::Bond::BEGINDASH == bj.getBondDir())) {  // == DOWN))
          result |= STEREO_BOND_AT_NON_STEREO_ATOM;
        }
      }
  }
  return result;
}

int FixDubious3DMolecule(RWMol &mol) {
  /*
  * Checks if the structure has 3D coordinates and/or flat sp3-carbons with
  * stereo-bonds and
  * converts the designation to 2D, clearing away any Z-component of the
  * coordinates.
  * Real 3D structures without stereo designations go through untouched.
  */

  int result = 0;
  bool non_zero_z = false;
  unsigned nstereo = 0;
  std::vector<Neighbourhood> neighbour_array;
  std::vector<RDGeom::Point3D> atomPoint(
      mol.getNumAtoms());  // X,Y,Z coordinates of each atom

  // X,Y,Z coordinates of each atom
  non_zero_z = getMolAtomPoints(mol, atomPoint);
  // At first check if this is a trivial case i.e. designated '2D'
  // and count the number of stereo bonds
  if (!non_zero_z)  // check Z coordinate of each atom
    return 0;

  nstereo = 0;
  for (unsigned i = 0; i < mol.getNumBonds(); i++) {
    const Bond *bond = mol.getBondWithIdx(i);
    if (RDKit::Bond::BEGINWEDGE == bond->getBondDir() ||
        RDKit::Bond::BEGINDASH == bond->getBondDir()
        //???    || RDKit::Bond::STEREOANY == bond->getBondDir()
        )
      nstereo++;
  }
  if (0 == nstereo) return 0;

  // compute average bond length to use in Volume significance testing
  double length = 0.0;
  for (unsigned i = 0; i < mol.getNumBonds(); i++) {
    const Bond *bond = mol.getBondWithIdx(i);
    unsigned a0 = bond->getBeginAtomIdx();
    unsigned a1 = bond->getEndAtomIdx();

    length += (atomPoint[a0].x - atomPoint[a1].x) *
                  (atomPoint[a0].x - atomPoint[a1].x) +
              (atomPoint[a0].y - atomPoint[a1].y) *
                  (atomPoint[a0].y - atomPoint[a1].y) +
              (atomPoint[a0].z - atomPoint[a1].z) *
                  (atomPoint[a0].z - atomPoint[a1].z);
  }
  length = sqrt(length / mol.getNumBonds());

  // check if there is a flat sp3 carbon
  SetupNeighbourhood(mol, neighbour_array);
  int nflat_sp3 = 0;
  for (unsigned i = 0; i < neighbour_array.size(); i++) {
    if (neighbour_array[i].Atoms.size() < 3) continue;
    RDKit::Atom *atom = mol.getAtomWithIdx(i);
    unsigned element = atom->getAtomicNum();
    if (6 != element &&   // "C"
        7 == element &&   // "N"
        15 == element &&  // "P"
        16 == element)    // "S"
      continue;

    unsigned j;
    for (j = 0; j < mol.getNumBonds(); j++) {
      const Bond *bond = mol.getBondWithIdx(j);
      if (RDKit::Bond::BEGINWEDGE == bond->getBondDir() ||
          RDKit::Bond::BEGINDASH == bond->getBondDir() &&
              (i + 1) == bond->getBeginAtomIdx())
        break;
    }
    if (j < mol.getNumBonds()) continue;  // no stereo designation

    double vol = 0.0;
    int stereo_triple;
    const Neighbourhood &nbp = neighbour_array[i];
    unsigned n_ligands = (unsigned)nbp.Bonds.size();
    unsigned i1;
    struct npoint_t tetra[4];
    tetra[0].x = atomPoint[i].x;
    tetra[0].y = atomPoint[i].y;
    tetra[0].z = atomPoint[i].z;
    for (i1 = 0; i1 < n_ligands; i1++)
      if (mol.getBondWithIdx(nbp.Bonds[i1])->getBondType() !=
              RDKit::Bond::SINGLE &&
          16 != element && 15 != element)  // "S" "P"
        break;
    if (i1 >= n_ligands) continue;  // multiple bond found => no sp3 carbon
    stereo_triple = 0;
    for (i1 = 0; i1 < n_ligands; i1++) {
      tetra[1].x = atomPoint[i1].x;
      tetra[1].y = atomPoint[i1].y;
      tetra[1].z = atomPoint[i1].z;
      if (mol.getBondWithIdx(nbp.Bonds[i1])->getBondDir() ==
              RDKit::Bond::BEGINWEDGE ||
          mol.getBondWithIdx(nbp.Bonds[i1])->getBondDir() ==
              RDKit::Bond::BEGINDASH)  // UP DOWN
        stereo_triple |= 1;
      unsigned i2;
      for (i2 = i1 + 1; i2 < n_ligands; i2++) {
        tetra[2].x = atomPoint[i2].x;
        tetra[2].y = atomPoint[i2].y;
        tetra[2].z = atomPoint[i2].z;
        if (mol.getBondWithIdx(nbp.Bonds[i2])->getBondDir() ==
                RDKit::Bond::BEGINWEDGE ||
            mol.getBondWithIdx(nbp.Bonds[i2])->getBondDir() ==
                RDKit::Bond::BEGINDASH)  // UP DOWN
          stereo_triple |= 2;
        unsigned i3;
        for (i3 = i2 + 1; i3 < n_ligands; i3++) {
          tetra[3].x = atomPoint[i3].x;
          tetra[3].y = atomPoint[i3].y;
          tetra[3].z = atomPoint[i3].z;
          if (mol.getBondWithIdx(nbp.Bonds[i3])->getBondDir() ==
                  RDKit::Bond::BEGINWEDGE ||
              mol.getBondWithIdx(nbp.Bonds[i3])->getBondDir() ==
                  RDKit::Bond::BEGINDASH)  // UP DOWN
            stereo_triple |= 4;
          vol = Volume(tetra);
          if (vol < 0.) vol = -vol;
          if (!stereo_triple) continue;
          if (vol < 0.01 * length * length * length) {
            nflat_sp3++;
            break;
          }
          stereo_triple &= ~4;
        }
        stereo_triple &= ~2;
        if (i3 >= n_ligands) break;
      }
      stereo_triple &= ~1;
      if (i2 >= n_ligands) break;
    }
  }

  if (non_zero_z && 0 == mol.getConformer().is3D())  // && mol dim is 2D
    for (unsigned i = 0; i < mol.getNumAtoms(); i++)
      // TODO: ???
      atomPoint[i].z = 0.0;  // set in mol !!!
  result |= ZEROED_Z_COORDINATES;
  // Cleared z-coordinates in 2D MOL file
  if (non_zero_z && nstereo > 0 && nflat_sp3 > 0) {
    RDKit::MolOps::removeStereochemistry(mol);
    result |= CONVERTED_TO_2D;
  }
  return result;
}

void RemoveDubiousStereochemistry(RWMol &mol) {
  // Removes ill-defined stereodescriptors.
  std::vector<Neighbourhood> neighbour_array;
  SetupNeighbourhood(mol, neighbour_array);

  // remove EITHER marks
  for (unsigned i = 0; i < mol.getNumBonds(); i++) {
    Bond *bond = mol.getBondWithIdx(i);
    if (RDKit::Bond::NONE == bond->getBondDir() || bond->hasProp(common_properties::_UnknownStereo))  //== EITHER
      bond->setBondDir(RDKit::Bond::NONE);
  }
  // remove stereo marks to non-stereogenic atoms
  for (unsigned i = 0; i < neighbour_array.size(); i++) {
    const Neighbourhood &nbp = neighbour_array[i];
    unsigned nmulti = 0;
    for (unsigned j = 0; j < nbp.Atoms.size(); j++) {
      const Bond &bond = *mol.getBondWithIdx(nbp.Bonds[j]);
      if (RDKit::Bond::SINGLE != bond.getBondType()) nmulti++;
    }

    unsigned element = mol.getAtomWithIdx(i)->getAtomicNum();
    unsigned n_ligands = (unsigned)nbp.Bonds.size();
    if (!((6 == element &&  // "C"
           n_ligands > 2 && n_ligands <= 4 && nmulti == 0) ||
          (16 == element &&  // "S"
           n_ligands > 2 && n_ligands <= 4) ||
          (7 == element &&  // "N"
           n_ligands > 3 && n_ligands <= 4 && nmulti == 0) ||
          (15 == element &&  // "P"
           n_ligands > 2 && n_ligands <= 4) ||
          (14 == element &&  // "Si"
           n_ligands > 2 && n_ligands <= 4) &&
              nmulti == 0)) {
      for (unsigned j = 0; j < n_ligands; j++) {
        Bond &bj = *mol.getBondWithIdx(nbp.Bonds[j]);
        if (bj.getBeginAtomIdx() == i + 1 &&
            (RDKit::Bond::BEGINWEDGE == bj.getBondDir()      // == UP
             || RDKit::Bond::BEGINDASH == bj.getBondDir()))  // == DOWN))
          bj.setBondDir(RDKit::Bond::NONE);
      }
    }
  }
}

//----------------------------------------------------------------------
// CheckStereo():
//----------------------------------------------------------------------

struct stereo_bond_t {
  double x, y;                  // relative 2D coordinates
  RDKit::Bond::BondDir symbol;  // stereo symbol
  int number;                   // atom number of ligand atom
  double angle;                 // angle in radiants rel. to first bond
                                // in array (counted counter clockwise)
};

static int Atom3Parity(struct stereo_bond_t ligands[3]) {
  // Computes the stereo parity defined by three ligands.
  int a, b;
  int reference;
  struct npoint_t tetrahedron[4], h;
  double angle;
  int maxnum;

  maxnum = ligands[0].number;
  for (unsigned i = 1; i < 3; i++)
    if (maxnum < ligands[i].number) maxnum = ligands[i].number;

  reference = (-1);
  for (unsigned i = 0; i < 3; i++)
    if (ligands[i].symbol != RDKit::Bond::NONE)
      if (reference == (-1))
        reference = i;
      else {
        // stereo_error = "three attachments with more than 2 stereobonds";
        std::cerr << "three attachments with more than 2 stereobonds"
                  << std::endl;
        return (ILLEGAL_REPRESENTATION);
      }

  if (reference == (-1)) return (UNDEFINED_PARITY);

  if (reference == 0) {
    a = 1;
    b = 2;
  } else if (reference == 1) {
    a = 0;
    b = 2;
  } else {
    a = 0;
    b = 1;
  }

  angle = Angle(ligands[a].x, ligands[a].y, ligands[b].x, ligands[b].y);

  if (angle < ANGLE_EPSILON || fabs(PI - angle) < ANGLE_EPSILON) {
    // stereo_error = "three attachments: colinearity violation";
    std::cerr << "three attachments colinearity violation" << std::endl;

    return (ILLEGAL_REPRESENTATION);
  }

  tetrahedron[0].x = 0.0;
  tetrahedron[0].y = 0.0;
  tetrahedron[0].z = 0.0;
  tetrahedron[0].number = maxnum + 1;
  for (unsigned i = 0; i < 3; i++) {
    tetrahedron[i + 1].x = ligands[i].x;
    tetrahedron[i + 1].y = ligands[i].y;
    if (ligands[i].symbol == RDKit::Bond::BEGINWEDGE)  // UP)
      tetrahedron[i + 1].z = 1.0;
    else if (ligands[i].symbol == RDKit::Bond::BEGINDASH)  // DOWN)
      tetrahedron[i + 1].z = -1.0;
    else if (ligands[i].symbol == RDKit::Bond::NONE)
      tetrahedron[i + 1].z = 0.0;
    else {
      // stereo_error = "three attachments: illegal bond symbol";
      std::cerr << "three attachments illegal bond symbol" << std::endl;
      return (ILLEGAL_REPRESENTATION);
    }
    tetrahedron[i + 1].number = ligands[i].number;
  }

  for (unsigned i = 1; i < 4; i++)
    for (unsigned j = i; j > 0; j--)
      if (tetrahedron[j].number < tetrahedron[j - 1].number) {
        h = tetrahedron[j];
        tetrahedron[j] = tetrahedron[j - 1];
        tetrahedron[j - 1] = h;
      } else
        break;

  return (Volume(tetrahedron) > 0.0 ? EVEN_PARITY : ODD_PARITY);
}

static int Atom4Parity(struct stereo_bond_t ligands[4]) {
  /*
  * Computes the stereo parity defined by four ligands.
  * Assumes central atom at 0/0/0.
  */
  struct npoint_t tetrahedron[4], h;
  int nup, ndown, nopposite;
  double angle;

  nup = ndown = 0;
  for (unsigned i = 0; i < 4; i++) {
    tetrahedron[i].x = ligands[i].x;
    tetrahedron[i].y = ligands[i].y;
    tetrahedron[i].z = 0.0;
    tetrahedron[i].number = ligands[i].number;
    if (ligands[i].symbol == RDKit::Bond::BEGINWEDGE) {  // UP
      nup++;
      tetrahedron[i].z = 1.0;
    } else if (ligands[i].symbol == RDKit::Bond::BEGINDASH) {  // DOWN
      ndown++;
      tetrahedron[i].z = (-1.0);
    } else if (ligands[i].symbol != RDKit::Bond::NONE) {
      // stereo_error = "illegal bond symbol";
      std::cerr << "illegal bond symbol" << std::endl;

      return (ILLEGAL_REPRESENTATION);
    }
  }

  if (nup == 0 && ndown == 0) return (UNDEFINED_PARITY);

  if (nup > 2 || ndown > 2) {
    // stereo_error = "too many stereobonds";
    std::cerr << "too many stereobonds" << std::endl;
    return (ILLEGAL_REPRESENTATION);
  }

  if (nup + ndown == 1)  // check for 'umbrellas'
  {
    unsigned ij;
    for (ij = 0; ij < 4; ij++)
      if (ligands[ij].symbol == RDKit::Bond::BEGINWEDGE ||
          ligands[ij].symbol == RDKit::Bond::BEGINDASH)
        break;
    nopposite = 0;
    for (unsigned j = 0; j < 4; j++)
      if (ij == j)
        continue;
      else if (ligands[ij].x * ligands[j].x + ligands[ij].y * ligands[j].y < 0)
        nopposite++;
    if (nopposite > 2) {
      // stereo_error = "UMBRELLA: all non-stereo bonds opposite to single
      // stereo bond";
      std::cerr << "umbrella" << std::endl;
      return (ILLEGAL_REPRESENTATION);
    }
  }

  for (unsigned i = 0; i < 2; i++)
    if ((ligands[i].symbol == RDKit::Bond::BEGINWEDGE &&
         ligands[i + 2].symbol == RDKit::Bond::BEGINDASH) ||
        (ligands[i].symbol == RDKit::Bond::BEGINDASH &&
         ligands[i + 2].symbol == RDKit::Bond::BEGINWEDGE)) {
      // stereo_error = "UP/DOWN opposition";
      std::cerr << "up/down" << std::endl;
      return (ILLEGAL_REPRESENTATION);
    }

  for (unsigned i = 0; i < 4; i++)
    if ((ligands[i].symbol == RDKit::Bond::BEGINWEDGE &&
         ligands[(i + 1) % 4].symbol == RDKit::Bond::BEGINWEDGE)  // UP
        || (ligands[i].symbol == RDKit::Bond::BEGINDASH           // DOWN
            && ligands[(i + 1) % 4].symbol == RDKit::Bond::BEGINDASH)) {
      // stereo_error = "Adjacent like stereobonds";
      std::cerr << "adjacent like" << std::endl;
      return (ILLEGAL_REPRESENTATION);
    }

  for (unsigned i = 0; i < 4; i++)
    if (ligands[i].symbol == RDKit::Bond::NONE &&
        ligands[(i + 1) % 4].symbol == RDKit::Bond::NONE &&
        ligands[(i + 2) % 4].symbol == RDKit::Bond::NONE) {
      angle = Angle(ligands[i].x - ligands[(i + 1) % 4].x,
                    ligands[i].y - ligands[(i + 1) % 4].y,
                    ligands[(i + 2) % 4].x - ligands[(i + 1) % 4].x,
                    ligands[(i + 2) % 4].y - ligands[(i + 1) % 4].y);
      if (angle < (185 * PI / 180)) {
        // stereo_error = "colinearity or triangle rule violation";
        std::cerr << "colinearity or triangle rule" << std::endl;
        return (ILLEGAL_REPRESENTATION);
      }
    }

  for (unsigned i = 1; i < 4; i++)
    for (unsigned j = i; j > 0; j--)
      if (tetrahedron[j].number < tetrahedron[j - 1].number) {
        h = tetrahedron[j];
        tetrahedron[j] = tetrahedron[j - 1];
        tetrahedron[j - 1] = h;
      } else
        break;

  return (Volume(tetrahedron) > 0.0 ? EVEN_PARITY : ODD_PARITY);
}

int AtomParity(const ROMol &mol, unsigned iatom, const Neighbourhood &nbp) {
  /*
  * Computes the stereo parity of atom number iatom in *mp relative
  * to its numbering. The immediate neighbours are defined by *nbp
  * to speed up processing.
  */
  struct stereo_bond_t stereo_ligands[4], h;
  bool multiple = false, allene = false, stereo = false;

  if (nbp.Atoms.size() < 3 || nbp.Atoms.size() > 4)
    return ILLEGAL_REPRESENTATION;

  std::vector<RDGeom::Point3D> atomPoint(
      mol.getNumAtoms());  // X,Y,Z coordinates of each atom
  getMolAtomPoints(mol, atomPoint);

  for (unsigned i = 0; i < nbp.Bonds.size(); i++) {
    const Bond &bi = *mol.getBondWithIdx(nbp.Bonds[i]);
    if (bi.getBondType() != RDKit::Bond::SINGLE) {
      multiple = true;
      // check if the multiple bond is part of an allene
      unsigned jatom = nbp.Atoms[i] + 1;
      unsigned ndb = 0;
      for (unsigned j = 0; j < mol.getNumBonds(); j++) {
        const Bond &bond = *mol.getBondWithIdx(j);
        if (bond.getBeginAtomIdx() == jatom || bond.getEndAtomIdx() == jatom)
          if (bond.getBondType() == RDKit::Bond::DOUBLE) ndb++;
      }
      if (ndb == 2) allene = true;
    }

    stereo_ligands[i].x = atomPoint[i].x - atomPoint[iatom - 1].x;
    stereo_ligands[i].y = atomPoint[i].y - atomPoint[iatom - 1].y;
    stereo_ligands[i].number = nbp.Atoms[i] + 1;
    if (bi.getBeginAtomIdx() == iatom) {
      stereo_ligands[i].symbol = bi.getBondDir();
      if (stereo_ligands[i].symbol == RDKit::Bond::BEGINWEDGE ||  // UP ||
          stereo_ligands[i].symbol == RDKit::Bond::BEGINDASH)     // DOWN
        stereo = true;
    } else
      stereo_ligands[i].symbol = RDKit::Bond::NONE;
  }
  unsigned element = mol.getAtomWithIdx(iatom - 1)->getAtomicNum();
  if (multiple && stereo && 15 != element && 16 != element) {  // "P" && "S"
    if (allene)
      return (ALLENE_PARITY);
    else {
      // stereo_error = "AtomParity: Stereobond at unsaturated atom";
      std::cerr << "stereobond at unsaturated atom" << std::endl;
      return (ILLEGAL_REPRESENTATION);
    }
  } else if (multiple && 16 != element)  // "S"
    return (UNDEFINED_PARITY);

  stereo_ligands[0].angle = 0.0; /* comp. angle rel. to first ligand */
  for (unsigned i = 1; i < nbp.Atoms.size(); i++)
    stereo_ligands[i].angle = Angle(stereo_ligands[0].x, stereo_ligands[0].y,
                                    stereo_ligands[i].x, stereo_ligands[i].y);
  for (unsigned i = 2; i < nbp.Atoms.size(); i++) /* sort ligands */
    for (unsigned j = i; j > 1; j--)
      if (stereo_ligands[j].angle < stereo_ligands[j - 1].angle) {
        h = stereo_ligands[j];
        stereo_ligands[j] = stereo_ligands[j - 1];
        stereo_ligands[j - 1] = h;
      } else
        break;

  return (nbp.Atoms.size() == 3 ? Atom3Parity(stereo_ligands)
                                : Atom4Parity(stereo_ligands));
}

bool CheckStereo(const ROMol &mol) {
  /*
  * Checks if all potential stereocenters are either completely undefined
  * or attributed with hashes and wedges according to MDL rules.
  */
  bool result = true;
  int parity;
  bool center_defined = false;
  std::vector<Neighbourhood> neighbour_array;

  SetupNeighbourhood(mol, neighbour_array);

  for (unsigned i = 0; i < neighbour_array.size(); i++) {
    const Neighbourhood &nbp = neighbour_array[i];
    unsigned element = mol.getAtomWithIdx(i)->getAtomicNum();
    unsigned n_ligands = (unsigned)nbp.Bonds.size();
    std::cerr << "  check: " << i << " " << n_ligands << " " << element
              << std::endl;
    if ((n_ligands > 2 && n_ligands <= 4) && (6 == element       // "C"
                                              || 16 == element   // "S"
                                              || 7 == element    // "N"
                                              || 8 == element    // "O"
                                              || 15 == element   // "P"
                                              || 14 == element)  // "Si"
        ) {
      parity = AtomParity(mol, i + 1, nbp);
      std::cerr << "parity: " << parity << std::endl;

      if (parity == ILLEGAL_REPRESENTATION) {  // stereo_error
        result = false;
      } else if (parity == EVEN_PARITY || parity == ODD_PARITY ||
                 parity == ALLENE_PARITY)
        center_defined = true;
      else {
        for (unsigned j = 0; j < nbp.Bonds.size(); j++) {
          const Bond &bond = *mol.getBondWithIdx(j);
          if (bond.getBeginAtomIdx() == i + 1 &&
              (RDKit::Bond::BEGINWEDGE == bond.getBondDir()        // == UP
               || RDKit::Bond::BEGINDASH == bond.getBondDir())) {  // == DOWN))
            // stereobond to non-stereogenic atom
            std::cerr << "stereobond to nonstereogenic" << std::endl;
            result = false;
          }
        }
      }
    }
  }
  // TODO: Is it correct check ?
  std::cerr << "  center defined? " << center_defined << std::endl;
  if (!center_defined) {  // no stereocenter defined
    unsigned int chiralFlag = 0;
    if (mol.getPropIfPresent(RDKit::common_properties::_MolFileChiralFlag,
                             chiralFlag))
      ;
    else
      for (unsigned j = 0; j < mol.getNumBonds(); j++) {
        const Bond *bond = mol.getBondWithIdx(j);
        if (bond->getBondDir() == Bond::BEGINWEDGE ||
            bond->getBondDir() == Bond::BEGINDASH) {
          chiralFlag = 1;
          break;
        }
      }
    if (chiralFlag != 0) {  // chiral flag set but no stereocenter defined
      // std::cerr << "chiral flag, no stereocenter" << std::endl;
      result = false;
    }
  }
  return result;
}

bool AtomClash(RWMol &mol, double clash_limit) {
  /*
  * Checks if any two atoms in *mp come closer than 10% of the
  * average bond length or if an atom is too close the line
  * between two bonded atoms.
  */
  double bond_square_median, dist, min_dist;
  double rr, rb, bb, h;
  std::vector<RDGeom::Point3D> atomPoint(
      mol.getNumAtoms());  // X,Y,Z coordinates of each atom

  getMolAtomPoints(mol, atomPoint);

  // compute median of square of bond lenght (quick/dirty)
  if (mol.getNumBonds() == 0) return false;
  std::vector<double> blengths(mol.getNumBonds());
  blengths[0] = 1.0;

  for (unsigned i = 0; i < mol.getNumBonds(); i++) {
    const Bond *bond = mol.getBondWithIdx(i);
    unsigned a1 = bond->getBeginAtomIdx();
    unsigned a2 = bond->getEndAtomIdx();
    blengths[i] = (atomPoint[a1].x - atomPoint[a2].x) *
                      (atomPoint[a1].x - atomPoint[a2].x) +
                  (atomPoint[a1].y - atomPoint[a2].y) *
                      (atomPoint[a1].y - atomPoint[a2].y);
  }
  for (unsigned i = 1; i < mol.getNumBonds(); i++)
    for (unsigned j = i - 1; j >= 0; j--)
      if (blengths[j] > blengths[j + 1]) {
        h = blengths[j];
        blengths[j] = blengths[j + 1];
        blengths[j + 1] = h;
      } else
        break;
  bond_square_median = blengths[mol.getNumBonds() / 2];

  // Check if two atoms get too close to each other
  min_dist = bond_square_median;
  for (unsigned i = 0; i < mol.getNumAtoms(); i++)
    for (unsigned j = i + 1; j < mol.getNumAtoms(); j++) {
      dist =
          (atomPoint[i].x - atomPoint[j].x) *
              (atomPoint[i].x - atomPoint[j].x) +
          (atomPoint[i].y - atomPoint[j].y) * (atomPoint[i].y - atomPoint[j].y);
      if (dist < clash_limit * clash_limit * bond_square_median) {
        std::cerr << "clash 1" << std::endl;

        return true;
      }
      if (dist < min_dist) min_dist = dist;
    }

  // check if atom lies on top of some bond
  for (unsigned i = 0; i < mol.getNumBonds(); i++) {
    const Bond *bond = mol.getBondWithIdx(i);
    unsigned a1 = bond->getBeginAtomIdx();
    unsigned a2 = bond->getEndAtomIdx();
    for (unsigned j = 0; j < mol.getNumAtoms(); j++) {
      if (a1 == j || a2 == j) continue;
      rr = (atomPoint[j].x - atomPoint[a1].x) *
               (atomPoint[j].x - atomPoint[a1].x) +
           (atomPoint[j].y - atomPoint[a1].y) *
               (atomPoint[j].y - atomPoint[a1].y);
      bb = (atomPoint[a2].x - atomPoint[a1].x) *
               (atomPoint[a2].x - atomPoint[a1].x) +
           (atomPoint[a2].y - atomPoint[a1].y) *
               (atomPoint[a2].y - atomPoint[a1].y);
      rb = (atomPoint[j].x - atomPoint[a1].x) *
               (atomPoint[a2].x - atomPoint[a1].x) +
           (atomPoint[j].y - atomPoint[a1].y) *
               (atomPoint[a2].y - atomPoint[a1].y);
      if (0 <= rb &&   // cos alpha > 0
          rb <= bb &&  // projection of r onto b does not exceed b
          (rr * bb - rb * rb) / (bb + EPS) <  // distance from bond < limit
              clash_limit * clash_limit * bond_square_median) {
        std::cerr << "clash 2" << std::endl;
        return true;
      }
    }
  }
  return false;  // no clash
}
//--------------------------------------------------------------------------

/*
* Sets the color field of the defined double bonds in *mp to CIS,
* TRANS, or NONE depending on the ligands with the lowest numbering[].
* It returns the number of defined double bonds found.
*/
int CisTransPerception(const ROMol &mol,
                       const std::vector<RDGeom::Point3D> &points,
                       const std::vector<unsigned> &numbering,
                       std::vector<unsigned> &bondColor) {
  int result = 0;
  int maxnum = 0;
  std::vector<Neighbourhood> nba(mol.getNumAtoms());
  SetupNeighbourhood(mol, nba);

  for (unsigned i = 0; i < bondColor.size(); i++) bondColor[i] = 0;
  for (unsigned i = 0; i < nba.size(); i++)  // n_atoms
    if (numbering[i] > maxnum) maxnum = numbering[i];

  for (unsigned i = 0; i < bondColor.size(); i++)
    if (RDKit::Bond::DOUBLE == mol.getBondWithIdx(i)->getBondType()
        // FIX:         && mol.getBondWithIdx(i)->getBondDir() !=
        // RDKit::Bond::ENDDOWNRIGHT
        // FIX:         && mol.getBondWithIdx(i)->getBondDir() !=
        // RDKit::Bond::ENDUPRIGHT
        &&
        mol.getBondWithIdx(i)->getBondDir() !=
            RDKit::Bond::EITHERDOUBLE) {  // != CIS_TRANS_EITHER
      unsigned j1 = mol.getBondWithIdx(i)->getBeginAtomIdx();
      unsigned j2 = mol.getBondWithIdx(i)->getEndAtomIdx();
      if (6 != mol.getAtomWithIdx(j1)->getAtomicNum())  // C
        continue;
      if (16 != mol.getAtomWithIdx(j1)->getAtomicNum())  // N
        continue;
      if (6 != mol.getAtomWithIdx(j2)->getAtomicNum())  // C
        continue;
      if (16 != mol.getAtomWithIdx(j2)->getAtomicNum())  // N
        continue;
      // n_ligands :
      if (nba[j1].Atoms.size() <= 1 ||  // no subst.
          nba[j2].Atoms.size() <= 1)
        continue;
      if (nba[j1].Atoms.size() > 3 ||  // valence error in mol
          nba[j2].Atoms.size() > 3)
        continue;

      bool equal = false;  // find lowest numbered neighbour of j1
      unsigned at1 = 0;
      for (unsigned k = 0, nmin = maxnum; k < nba[j1].Atoms.size(); k++)
        if (nba[j1].Atoms[k] != j2)  // no loop back
        {
          if (numbering[nba[j1].Atoms[k]] <
              nmin) {  // numbering[nba[j1].atoms[k]]
            at1 = nba[j1].Atoms[k];
            nmin = numbering[at1];
          } else if (numbering[nba[j1].Atoms[k]] == nmin)
            equal = true;
        }
      if (equal)   // identical substituents
        continue;  // no stereochemistry

      equal = false;  // find lowest numbered neighbour of j1
      unsigned at2 = 0;
      for (unsigned k = 0, nmin = maxnum; k < nba[j2].Atoms.size(); k++)  //
        if (nba[j2].Atoms[k] != j1) {  // no loop back
          if (numbering[nba[j2].Atoms[k]] < nmin) {
            at2 = nba[j2].Atoms[k];
            nmin = numbering[at2];
          } else if (numbering[nba[j2].Atoms[k]] == nmin)
            equal = true;
        }
      if (equal)   // identical substituents
        continue;  // no stereochemistry

      // Now, bp points to a double bond, at1 and at2 are the
      // indices (not numbers) of the atoms with lowest numbering
      // attached to each end of the bond, and the bond is
      // guaranteed to be either CIS or TRANS

      double x21, y21;
      double x23, y23;
      double x32, y32;
      double x34, y34;
      double sign;
      x21 = points[at1].x - points[j1].x;
      y21 = points[at1].y - points[j1].y;
      x23 = points[j2].x - points[j1].x;
      y23 = points[j2].y - points[j1].y;
      x32 = (-x23);
      y32 = (-y23);
      x34 = points[at2].x - points[j2].x;
      y34 = points[at2].y - points[j2].y;
      sign = (x21 * y23 - x23 * y21) * (x32 * y34 - x34 * y32);
      if (fabs(sign) < 0.001) continue;
      result++;
      bondColor[i] = (sign > 0.0 ? CIS : TRANS);
    }
  return (result);
}

}  // namespace StructureCheck
}  // namespace RDKit