1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242
|
// $Id$
//
// Copyright (C) 2003-2013 Greg Landrum and Rational Discovery LLC
//
// @@ All Rights Reserved @@
// This file is part of the RDKit.
// The contents are covered by the terms of the BSD license
// which is included in the file license.txt, found at the root
// of the RDKit source tree.
//
#include "SubgraphUtils.h"
#include "Subgraphs.h"
#include <RDGeneral/utils.h>
#include <GraphMol/RDKitBase.h>
#include <GraphMol/QueryAtom.h>
#include <GraphMol/QueryBond.h>
#include <iostream>
#include <algorithm>
#include <map>
#include <boost/tuple/tuple_comparison.hpp>
#include <RDGeneral/hash/hash.hpp>
namespace RDKit {
namespace Subgraphs {
ROMol *pathToSubmol(const ROMol &mol, const PATH_TYPE &path, bool useQuery) {
INT_MAP_INT aIdxMap;
return pathToSubmol(mol, path, useQuery, aIdxMap);
}
ROMol *pathToSubmol(const ROMol &mol, const PATH_TYPE &path, bool useQuery,
INT_MAP_INT &atomIdxMap) {
auto *subMol = new RWMol();
PATH_TYPE::const_iterator pathIter;
atomIdxMap.clear();
if (useQuery) {
// have to do this in two different blocks because of issues with variable
// scopes.
for (pathIter = path.begin(); pathIter != path.end(); ++pathIter) {
QueryBond *bond;
bond = new QueryBond(*(mol.getBondWithIdx(*pathIter)));
int begIdx = bond->getBeginAtomIdx();
int endIdx = bond->getEndAtomIdx();
if (atomIdxMap.find(begIdx) == atomIdxMap.end()) {
auto *atom = new QueryAtom(*(mol.getAtomWithIdx(begIdx)));
int newAtomIdx = subMol->addAtom(atom, false, true);
atomIdxMap[begIdx] = newAtomIdx;
}
begIdx = atomIdxMap.find(begIdx)->second;
if (atomIdxMap.find(endIdx) == atomIdxMap.end()) {
auto *atom = new QueryAtom(*(mol.getAtomWithIdx(endIdx)));
int newAtomIdx = subMol->addAtom(atom, false, true);
atomIdxMap[endIdx] = newAtomIdx;
}
endIdx = atomIdxMap.find(endIdx)->second;
bond->setOwningMol(subMol);
bond->setBeginAtomIdx(begIdx);
bond->setEndAtomIdx(endIdx);
subMol->addBond(bond, true);
}
} else {
for (pathIter = path.begin(); pathIter != path.end(); ++pathIter) {
Bond *bond;
bond = mol.getBondWithIdx(*pathIter)->copy();
int begIdx = bond->getBeginAtomIdx();
int endIdx = bond->getEndAtomIdx();
if (atomIdxMap.find(begIdx) == atomIdxMap.end()) {
Atom *atom = mol.getAtomWithIdx(begIdx)->copy();
int newAtomIdx = subMol->addAtom(atom, false, true);
atomIdxMap[begIdx] = newAtomIdx;
}
begIdx = atomIdxMap.find(begIdx)->second;
if (atomIdxMap.find(endIdx) == atomIdxMap.end()) {
Atom *atom = mol.getAtomWithIdx(endIdx)->copy();
int newAtomIdx = subMol->addAtom(atom, false, true);
atomIdxMap[endIdx] = newAtomIdx;
}
endIdx = atomIdxMap.find(endIdx)->second;
bond->setOwningMol(subMol);
bond->setBeginAtomIdx(begIdx);
bond->setEndAtomIdx(endIdx);
subMol->addBond(bond, true);
}
}
if (mol.getNumConformers()) {
// copy coordinates over:
for (auto confIt = mol.beginConformers(); confIt != mol.endConformers();
++confIt) {
auto *conf = new Conformer(subMol->getNumAtoms());
conf->set3D((*confIt)->is3D());
for (INT_MAP_INT::const_iterator mapIt = atomIdxMap.begin();
mapIt != atomIdxMap.end(); ++mapIt) {
conf->setAtomPos(mapIt->second, (*confIt)->getAtomPos(mapIt->first));
}
conf->setId((*confIt)->getId());
subMol->addConformer(conf, false);
}
}
// clear computed properties
subMol->clearComputedProps(true);
return subMol;
}
PATH_TYPE bondListFromAtomList(const ROMol &mol, const PATH_TYPE &atomIds) {
PATH_TYPE bids;
unsigned int natms = atomIds.size();
if (natms <= 1) {
return bids; // FIX: should probably throw an exception
}
for (unsigned int i = 0; i < natms; i++) {
for (unsigned int j = i + 1; j < natms; j++) {
const Bond *bnd = mol.getBondBetweenAtoms(atomIds[i], atomIds[j]);
if (bnd) {
int bid = bnd->getIdx();
bids.push_back(bid);
}
}
}
return bids;
}
using boost::uint32_t;
using boost::int32_t;
DiscrimTuple calcPathDiscriminators(const ROMol &mol, const PATH_TYPE &path,
bool useBO,
std::vector<boost::uint32_t> *extraInvars) {
if (extraInvars)
CHECK_INVARIANT(extraInvars->size() == mol.getNumAtoms(),
"bad extra invars");
DiscrimTuple res;
// Start by collecting the atoms in the path and their degrees
std::vector<int32_t> atomsUsed(mol.getNumAtoms(),
-1); // map from atom index->path index
std::vector<const Atom *> atoms; // to contain the atoms in the path
std::vector<uint32_t> pathDegrees; // degrees of each atom *in the path*
for (int pathIter : path) {
const Bond *bond = mol.getBondWithIdx(pathIter);
if (atomsUsed[bond->getBeginAtomIdx()] < 0) {
atomsUsed[bond->getBeginAtomIdx()] = static_cast<int>(atoms.size());
atoms.push_back(bond->getBeginAtom());
pathDegrees.push_back(1);
} else {
pathDegrees[atomsUsed[bond->getBeginAtomIdx()]] += 1;
}
if (atomsUsed[bond->getEndAtomIdx()] < 0) {
atomsUsed[bond->getEndAtomIdx()] = static_cast<int>(atoms.size());
atoms.push_back(bond->getEndAtom());
pathDegrees.push_back(1);
} else {
pathDegrees[atomsUsed[bond->getEndAtomIdx()]] += 1;
}
}
// Calculate the atomic invariants
unsigned int nAtoms = atoms.size();
std::vector<uint32_t> invars(nAtoms);
for (unsigned int i = 0; i < nAtoms; ++i) {
const Atom *atom = atoms[i];
uint32_t invar = atom->getAtomicNum();
gboost::hash_combine(invar, pathDegrees[i]);
gboost::hash_combine(invar, atom->getFormalCharge());
int deltaMass = static_cast<int>(
atom->getMass() -
PeriodicTable::getTable()->getAtomicWeight(atom->getAtomicNum()));
gboost::hash_combine(invar, deltaMass);
if (atom->getIsAromatic()) {
gboost::hash_combine(invar, 1);
}
if (extraInvars) {
gboost::hash_combine(invar, (*extraInvars)[atom->getIdx()]);
}
invars[i] = invar;
}
// now do the Morgan iterations:
// the most number of cycles we need for the atoms on the edges
// to feel each other is pathSize/2
// EFF: it may be worth revisiting this at some point to see
// if the iteration count can be even smaller (and if it
// makes a difference in runtime)
unsigned int nCycles = path.size() / 2 + 1;
gboost::hash<std::vector<uint32_t> > vectHasher;
for (unsigned int cycle = 0; cycle < nCycles; ++cycle) {
// let each atom feel it's neighbors:
std::vector<std::vector<uint32_t> > locInvars(nAtoms);
for (int pathIter : path) {
const Bond *bond = mol.getBondWithIdx(pathIter);
uint32_t v1 = invars[atomsUsed[bond->getBeginAtomIdx()]];
uint32_t v2 = invars[atomsUsed[bond->getEndAtomIdx()]];
if (useBO) {
gboost::hash_combine(v1, static_cast<uint32_t>(bond->getBondType()));
gboost::hash_combine(v2, static_cast<uint32_t>(bond->getBondType()));
}
locInvars[atomsUsed[bond->getBeginAtomIdx()]].push_back(v2);
locInvars[atomsUsed[bond->getEndAtomIdx()]].push_back(v1);
}
// we need to sort by the neighbor invariants to be order
// independent:
for (unsigned int i = 0; i < nAtoms; ++i) {
std::sort(locInvars[i].begin(), locInvars[i].end());
invars[i] = vectHasher(locInvars[i]);
}
}
// again, a sort for order independence:
std::sort(invars.begin(), invars.end());
uint32_t pathInvar = vectHasher(invars);
// also include the path size (bond count) and number of atoms
// in the discriminator
return boost::make_tuple(pathInvar, path.size(), nAtoms);
}
//
// This is intended for use on either subgraphs or paths.
// The entries in PATH_LIST should refer to bonds though (not
// atoms)
//
PATH_LIST uniquifyPaths(const ROMol &mol, const PATH_LIST &allPaths,
bool useBO) {
PATH_LIST res;
std::vector<DiscrimTuple> discrimsSeen;
for (const auto &allPath : allPaths) {
DiscrimTuple discrims = calcPathDiscriminators(mol, allPath, useBO);
if (std::find(discrimsSeen.begin(), discrimsSeen.end(), discrims) ==
discrimsSeen.end()) {
discrimsSeen.push_back(discrims);
res.push_back(allPath);
}
}
return res;
}
} // end of namespace Subgraphs
} // end of namespace RDKit
|