File: vf2.hpp

package info (click to toggle)
rdkit 201809.1%2Bdfsg-6
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 123,688 kB
  • sloc: cpp: 230,509; python: 70,501; java: 6,329; ansic: 5,427; sql: 1,899; yacc: 1,739; lex: 1,243; makefile: 445; xml: 229; fortran: 183; sh: 123; cs: 93
file content (665 lines) | stat: -rw-r--r-- 21,107 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
// $Id$
/*
 * This is an extensive modification by Greg Landrum of
 * pieces from several files in the vflib-2.0 distribution
 *
 * The initial version of the modifications was completed
 *   in April 2009.
 *
 * the original author of the vflib files is:
 *    Author: P. Foggia
 *  http://amalfi.dis.unina.it/graph/db/vflib-2.0/doc/vflib.html
 *
 */
#include <boost/graph/adjacency_list.hpp>
#include <vector>
#include <algorithm>
#include <cstring>

#ifndef __BGL_VF2_SUB_STATE_H__
#define __BGL_VF2_SUB_STATE_H__

namespace boost{
  namespace detail {
    typedef unsigned short node_id;
    const node_id NULL_NODE=0xFFFF;
    struct NodeInfo {
      node_id id;
      node_id in;
      node_id out;
    };

    /**
     * The ordering by in/out degree
     */
    static bool nodeInfoComp1(const NodeInfo &a, const NodeInfo &b) {
      if(a.out < b.out) return true;
      if(a.out > b.out) return false;
      if(a.in < b.in) return true;
      if(a.in > b.in) return false;
      return false;
    }

    /**
     * The ordering by frequency/valence.
     * The frequency is in the out field, the valence in `in'.
     */
    static int nodeInfoComp2(const NodeInfo &a, const NodeInfo &b) {
      if (!a.in && b.in ) return 1;
      if (a.in && !b.in) return -1;
      if (a.out < b.out) return -1;
      if (a.out > b.out) return 1;
      if( a.in < b.in ) return -1;
      if (a.in > b.in) return 1;
      return 0;
    }

    template <class Graph,class VertexDescr,class EdgeDescr> 
    VertexDescr getOtherIdx(const Graph &g,const EdgeDescr &edge,const VertexDescr &vertex) {
      VertexDescr tmp=boost::source(edge,g);
      if(tmp==vertex){
        tmp=boost::target(edge,g);
      }
      return tmp;
    }
  
    /*----------------------------------------------------
     * Sorts the nodes of a graphs, returning a 
     * heap-allocated vector (using new) with the node ids
     * in the proper orders.
     * The sorting criterion takes into account:
     *    1 - The number of nodes with the same in/out 
     *        degree.
     *    2 - The valence of the nodes.
     * The nodes at the beginning of the vector are
     * the most singular, from which the matching should
     * start.
     *--------------------------------------------------*/
    template <class Graph>
    node_id* SortNodesByFrequency(const Graph *g) {
      std::vector<NodeInfo> vect;
      vect.reserve(boost::num_vertices(*g));
      typename Graph::vertex_iterator bNode,eNode;
      boost::tie(bNode,eNode) = boost::vertices(*g);
      while(bNode!=eNode){
        NodeInfo t;
        t.id=vect.size();
        t.in=boost::out_degree(*bNode,*g);// <- assuming undirected graph
        t.out=boost::out_degree(*bNode,*g); 
        vect.push_back(t);
        ++bNode;
      }
      std::sort(vect.begin(),vect.end(),nodeInfoComp1);
    
      unsigned int run=1;
      for(unsigned int i=0; i<vect.size(); i+=run){
        for(run=1; i+run<vect.size() && 
              vect[i+run].in==vect[i].in && 
              vect[i+run].out==vect[i].out;
            ++run) 
          ;
        for(unsigned int j=0; j<run; ++j) {
          vect[i+j].in += vect[i+j].out;
          vect[i+j].out=run;
        }
      }
      std::sort(vect.begin(),vect.end(),nodeInfoComp2);
    
      node_id *nodes=new node_id[vect.size()];
      for(unsigned int i=0; i<vect.size(); ++i){
        nodes[i]=vect[i].id;
      }
    
      return nodes;
    }

    /*----------------------------------------------------------
     * class VF2SubState
     * A representation of the SSS current state
     ---------------------------------------------------------*/
    template <class Graph,class VertexCompatible,class EdgeCompatible,class MatchChecking >
    class VF2SubState
    { 
    private:
      Graph *g1, *g2;
      VertexCompatible &vc;
      EdgeCompatible &ec;
      MatchChecking &mc;
      unsigned int n1, n2;

      unsigned int core_len, orig_core_len;
      unsigned int added_node1;
      unsigned int t1both_len, t2both_len;
      unsigned int t1in_len, t1out_len; 
      unsigned int t2in_len, t2out_len; // Core nodes are also counted by these...
      node_id *core_1;
      node_id *core_2;
      node_id *in_1;
      node_id *in_2;
      node_id *out_1;
      node_id *out_2;

      node_id *order;

      long *share_count;
      int *vs_compared;
    
    public:
      VF2SubState(Graph *ag1, Graph *ag2,
                  VertexCompatible &avc,
                  EdgeCompatible &aec,
                  MatchChecking &amc,
                  bool sortNodes=false) : g1(ag1), g2(ag2), vc(avc), ec(aec), mc(amc),
                                          n1(num_vertices(*ag1)),n2(num_vertices(*ag2)) {
        if (sortNodes){
          order = SortNodesByFrequency(ag1);
        } else {
          order = NULL;
        }

        core_len=orig_core_len=0;
        t1both_len=t1in_len=t1out_len=0;
        t2both_len=t2in_len=t2out_len=0;

        added_node1=NULL_NODE;

        core_1=new node_id[n1];
        core_2=new node_id[n2];
        in_1=new node_id[n1];
        in_2=new node_id[n2];
        out_1=new node_id[n1];
        out_2=new node_id[n2];
        share_count = new long;

        for(unsigned int i=0; i<n1; i++){
          core_1[i]=NULL_NODE;
          in_1[i]=0;
          out_1[i]=0;
        }
        for(unsigned int i=0; i<n2; i++){
          core_2[i]=NULL_NODE;
          in_2[i]=0;
          out_2[i]=0;
        }
        vs_compared=0;
        //vs_compared = new int[n1*n2];
        //memset((void *)vs_compared,0,n1*n2*sizeof(int));
        
        //es_compared = new std::map<unsigned int,bool>();
        *share_count = 1;
      };

      VF2SubState(const VF2SubState &state) :
        g1(state.g1), g2(state.g2), vc(state.vc), ec(state.ec), mc(state.mc),
        n1(state.n1),n2(state.n2), order(state.order),vs_compared(state.vs_compared)
        //es_compared(state.es_compared)
      {

        core_len=orig_core_len=state.core_len;
        t1in_len=state.t1in_len;
        t1out_len=state.t1out_len;
        t1both_len=state.t1both_len;
        t2in_len=state.t2in_len;
        t2out_len=state.t2out_len;
        t2both_len=state.t2both_len;

        added_node1=NULL_NODE;

        core_1=state.core_1;
        core_2=state.core_2;
        in_1=state.in_1;
        in_2=state.in_2;
        out_1=state.out_1;
        out_2=state.out_2;
        share_count=state.share_count;

        ++(*share_count);
      };

      ~VF2SubState(){
        if (-- *share_count == 0) {
          delete [] core_1;
          delete [] core_2;
          delete [] in_1;
          delete [] out_1;
          delete [] in_2;
          delete [] out_2;
          delete share_count;
          delete [] order;
          //delete [] vs_compared;
          //delete es_compared;
        }
      }; 

      bool IsGoal() { return core_len==n1 ; };
      bool MatchChecks(const node_id c1[],const node_id c2[]){
        return mc(c1,c2);
      };
      bool IsDead() { return n1>n2  || 
          t1both_len>t2both_len ||
          t1out_len>t2out_len ||
          t1in_len>t2in_len;
      };
      unsigned int CoreLen() { return core_len; }
      Graph *GetGraph1() { return g1; }
      Graph *GetGraph2() { return g2; }

      bool NextPair(node_id *pn1, node_id *pn2,
                    node_id prev_n1=NULL_NODE, node_id prev_n2=NULL_NODE){
        if (prev_n1==NULL_NODE)
          prev_n1=0;
        if (prev_n2==NULL_NODE)
          prev_n2=0;
        else
          prev_n2++;

#if 0
    std::cerr<<" **** np: "<< prev_n1<<","<<prev_n2<<std::endl;
    std::cerr<<"in_1 ";
    for(unsigned int i=0;i<n1;++i){
      std::cerr<<"("<<in_1[i]<<","<<out_1[i]<<"), ";
    } 
    std::cerr<<std::endl;
    std::cerr<<"in_2 ";
    for(unsigned int i=0;i<n2;++i){
      std::cerr<<"("<<in_2[i]<<","<<out_2[i]<<"), ";
    } 
    std::cerr<<std::endl;
#endif
        if (t1both_len>core_len && t2both_len>core_len) {
          while (prev_n1<n1 &&
                 (core_1[prev_n1]!=NULL_NODE || out_1[prev_n1]==0
                  || in_1[prev_n1]==0) ) {
            prev_n1++;    
            prev_n2=0;
          }
        }
        else if (t1out_len>core_len && t2out_len>core_len) {
          while (prev_n1<n1 &&
                 (core_1[prev_n1]!=NULL_NODE || out_1[prev_n1]==0) ){
            prev_n1++;    
            prev_n2=0;
          }
        }
        else if (t1in_len>core_len && t2in_len>core_len) {
          while (prev_n1<n1 &&
                 (core_1[prev_n1]!=NULL_NODE || in_1[prev_n1]==0) ) {
            prev_n1++;    
            prev_n2=0;
          }
        }
        else if (prev_n1==0 && order!=NULL) {
          unsigned int i=0;
          while (i<n1 && core_1[prev_n1=order[i]] != NULL_NODE)
            i++;
          if (i==n1)
            prev_n1=n1;
        }
        else {
          while (prev_n1<n1 && core_1[prev_n1]!=NULL_NODE ){
            prev_n1++;    
            prev_n2=0;
          }
        }

        if (t1both_len>core_len && t2both_len>core_len) {
          while (prev_n2<n2 &&
                 (core_2[prev_n2]!=NULL_NODE || out_2[prev_n2]==0
                  || in_2[prev_n2]==0) ) {
            prev_n2++;    
          }
        }
        else if (t1out_len>core_len && t2out_len>core_len) {
          while (prev_n2<n2 &&
                 (core_2[prev_n2]!=NULL_NODE || out_2[prev_n2]==0) ) {
            prev_n2++;    
          }
        }
        else if (t1in_len>core_len && t2in_len>core_len) {
          while (prev_n2<n2 &&
                 (core_2[prev_n2]!=NULL_NODE || in_2[prev_n2]==0) ) {
            prev_n2++;    
          }
        }
        else {
          while (prev_n2<n2 && core_2[prev_n2]!=NULL_NODE ){
            prev_n2++;    
          }
        }
        //std::cerr<<" "<< prev_n1<<"<"<<n1<<" "<<prev_n2<<"<"<<n2;
        if (prev_n1<n1 && prev_n2<n2) {
          *pn1=prev_n1;
          *pn2=prev_n2;
          //std::cerr<<"  Found"<<std::endl;
          return true;
        }
        //std::cerr<<"  nope"<< std::endl;
        return false;
      };
      bool IsFeasiblePair(node_id node1, node_id node2){
        assert(node1 < n1);
        assert(node2 < n2);
        assert(core_1[node1] == NULL_NODE);
        assert(core_2[node2] == NULL_NODE);

        //std::cerr<<"  ifp:"<<node1<<"-"<<node2<<" "<<vs_compared->size()<<std::endl;
        // int &isCompat=vs_compared[node1*n2+node2];
        // if(isCompat==0){
        //   isCompat=vc(node1,node2)?1:-1;
        // }
        // if( isCompat<0 ){
        //   //std::cerr<<"  short1"<<std::endl;
        //   return false;
        // }
        if(!vc(node1,node2)) return false;

        unsigned int other1, other2;
        unsigned int termout1 = 0, termout2 = 0, termin1 = 0, termin2 = 0;
        unsigned int new1 = 0, new2 = 0;

        // Check the out edges of node1
        typename Graph::out_edge_iterator bNbrs,eNbrs;
        boost::tie(bNbrs,eNbrs) = boost::out_edges(node1,*g1);
        while(bNbrs!=eNbrs){
          other1=getOtherIdx(*g1,*bNbrs,node1);
          if (core_1[other1] != NULL_NODE) {
            other2 = core_1[other1];
            typename Graph::edge_descriptor oEdge;
            bool found;
            boost::tie(oEdge,found) = boost::edge(node2,other2,*g2);
            if(!found || !ec(*bNbrs,oEdge) ){
              //std::cerr<<"  short2"<<std::endl;
              return false;
            }
          } else {
            if (in_1[other1]) ++termin1;
            if (out_1[other1]) ++termout1;
            if (!in_1[other1] && !out_1[other1]) ++new1;
          }
          ++bNbrs;
        }

        // Check the out edges of node2
        boost::tie(bNbrs,eNbrs) = boost::out_edges(node2,*g2);
        while(bNbrs!=eNbrs){
          other2=getOtherIdx(*g2,*bNbrs,node2);
          if (core_2[other2] != NULL_NODE) {
            // do nothing
          } else {
            if (in_2[other2]) ++termin2;
            if (out_2[other2]) ++termout2;
            if (!in_2[other2] && !out_2[other2]) ++new2;
          }
          ++bNbrs;
        }
        //std::cerr<<(termin1 <= termin2 && termout1 <= termout2 && (termin1+termout1+new1)<=(termin2+termout2+new2))<<std::endl;

        return termin1 <= termin2 && termout1 <= termout2 && (termin1+termout1+new1)<=(termin2+termout2+new2);
      };
      void AddPair(node_id node1, node_id node2){
        assert(node1 < n1);
        assert(node2 < n2);
        assert(core_len < n1);
        assert(core_len < n2);

        ++core_len;
        added_node1 = node1;

        if (!in_1[node1]) {
          in_1[node1] = core_len;
          ++t1in_len;
          if (out_1[node1]) ++t1both_len;
        }
        if (!out_1[node1]) {
          out_1[node1] = core_len;
          ++t1out_len;
          if (in_1[node1]) ++t1both_len;
        }

        if (!in_2[node2]) {
          in_2[node2] = core_len;
          ++t2in_len;
          if (out_2[node2]) ++t2both_len;
        }
        if (!out_2[node2]) {
          out_2[node2] = core_len;
          ++t2out_len;
          if (in_2[node2]) ++t2both_len;
        }

        core_1[node1] = node2;
        core_2[node2] = node1;

        typename Graph::out_edge_iterator bNbrs,eNbrs;
        // FIX: this is explicitly ignoring directionality
        boost::tie(bNbrs,eNbrs) = boost::out_edges(node1,*g1);
        while(bNbrs!=eNbrs){
          unsigned int other = getOtherIdx(*g1,*bNbrs,node1);
          if (!in_1[other]) {
            in_1[other] = core_len;
            ++t1in_len;
            if (out_1[other])  ++t1both_len;
          }
          if (!out_1[other]) {
            out_1[other] = core_len;
            ++t1out_len;
            if (in_1[other])  ++t1both_len;
          }
          ++bNbrs;
        }

        // FIX: this is explicitly ignoring directionality
        boost::tie(bNbrs,eNbrs) = boost::out_edges(node2,*g2);
        while(bNbrs!=eNbrs){
          unsigned int other = getOtherIdx(*g2,*bNbrs,node2);
          if (!in_2[other]) {
            in_2[other] = core_len;
            ++t2in_len;
            if (out_2[other]) ++t2both_len;
          }
          if (!out_2[other]) {
            out_2[other] = core_len;
            ++t2out_len;
            if (in_2[other]) ++t2both_len;
          }
          ++bNbrs;
        }
      };
      void GetCoreSet(node_id c1[], node_id c2[]){
        unsigned int i, j;
        for (i = 0, j = 0; i < n1; ++i){
          if (core_1[i] != NULL_NODE) {
            c1[j] = i;
            c2[j] = core_1[i];
            ++j;
          }
        }
    
      };
      VF2SubState *Clone(){
        return new VF2SubState(*this);
      };
      void BackTrack(){
        assert(core_len - orig_core_len <= 1);
        assert(added_node1 != NULL_NODE);

        if (orig_core_len < core_len) {

          if (in_1[added_node1] == core_len) in_1[added_node1] = 0;
          if (out_1[added_node1] == core_len)  out_1[added_node1] = 0;

          typename Graph::out_edge_iterator bNbrs,eNbrs;
          boost::tie(bNbrs,eNbrs) = boost::out_edges(added_node1,*g1);
          while(bNbrs!=eNbrs){
            unsigned int other = getOtherIdx(*g1,*bNbrs,added_node1);
            if (out_1[other] == core_len) out_1[other] = 0;
            if (in_1[other] == core_len) in_1[other] = 0;
            ++bNbrs;
          }

          unsigned int node2 = core_1[added_node1];
          if (in_2[node2] == core_len) in_2[node2] = 0;
          if (out_2[node2] == core_len) out_2[node2] = 0;

          boost::tie(bNbrs,eNbrs) = boost::out_edges(node2,*g2);
          while(bNbrs!=eNbrs){
            unsigned int other = getOtherIdx(*g2,*bNbrs,node2);
            if (out_2[other] == core_len) out_2[other] = 0;
            if (in_2[other] == core_len) in_2[other] = 0;
            ++bNbrs;
          }

          core_1[added_node1] = NULL_NODE;
          core_2[node2] = NULL_NODE;

          core_len = orig_core_len;
          added_node1 = NULL_NODE;
        }
      };
    };

    /*-------------------------------------------------------------
     * static bool match(pn, c1, c2, s)
     * Finds a matching between two graphs, if it exists, starting
     * from state s.
     * Returns true a match has been found.
     * *pn is assigned the numbero of matched nodes, and
     * c1 and c2 will contain the ids of the corresponding nodes 
     * in the two graphs.
     ------------------------------------------------------------*/
    template <class SubState>
    bool match(int *pn, node_id c1[], node_id c2[], SubState &s)
    {
      if (s.IsGoal() ) { 
        s.GetCoreSet(c1, c2);
        if(s.MatchChecks(c1,c2)) {
          *pn=s.CoreLen();
          return true;
        }
      }

      if (s.IsDead())
        return false;
      //std::cerr<<"  > match: "<<*pn<<" "<<&s<<std::endl;
      node_id n1=NULL_NODE, n2=NULL_NODE;
      bool found=false;
      while (!found && s.NextPair(&n1, &n2, n1, n2)) {
        //std::cerr<<"           "<<n1<<","<<n2<<std::endl;
        if (s.IsFeasiblePair(n1, n2)){
          SubState *s1=s.Clone();
          s1->AddPair(n1, n2);
          found=match(pn, c1, c2, *s1);
          s1->BackTrack();
          delete s1;
        }
      }
      //std::cerr<<"  < returning: "<<found<<" "<<*pn<<" "<<&s<<std::endl;
      return found;
    }

    /*-------------------------------------------------------------
     * static bool match(c1, c2, vis, usr_data, pcount)
     * Visits all the matchings between two graphs,  starting
     * from state s.
     * Returns true if the caller must stop the visit.
     * Stops when there are no more matches
     *
     ------------------------------------------------------------*/
    template <class SubState,class DoubleBackInsertionSequence>
    bool match(node_id c1[], node_id c2[], SubState &s, DoubleBackInsertionSequence &res,
               unsigned int max_results) {
      if (s.IsGoal()){
        s.GetCoreSet(c1, c2);
        if(s.MatchChecks(c1,c2)) {
          typename DoubleBackInsertionSequence::value_type newSeq;
          for(unsigned int i=0;i<s.CoreLen();++i){
            newSeq.push_back(std::pair<int,int>(c1[i],c2[i]));
          }
          res.push_back(newSeq);
          if(res.size()>=max_results) return true;
        }
        return false;
      }

      if (s.IsDead())
        return false;

      node_id n1=NULL_NODE, n2=NULL_NODE;
      while (s.NextPair(&n1, &n2, n1, n2)) {
        if (s.IsFeasiblePair(n1, n2)){
          SubState *s1=s.Clone();
          s1->AddPair(n1, n2);
          if (match(c1, c2, *s1,res,max_results)){
            s1->BackTrack(); 
            delete s1;
            return true;
          }
          else {
            s1->BackTrack(); 
            delete s1;
          }
        }
      }
      return false;
    }
  }; //end of namespace detail

  template <  class Graph
              , class VertexLabeling    // binary predicate
              , class EdgeLabeling      // binary predicate
              , class MatchChecking      // binary predicate
              , class BackInsertionSequence   // contains std::pair<vertex_descriptor,vertex_descriptor>
              >
  bool vf2(const Graph &g1,const Graph &g2,
           VertexLabeling& vertex_labeling,
           EdgeLabeling& edge_labeling,
           MatchChecking& match_checking,
           BackInsertionSequence& F){
    detail::VF2SubState<const Graph,VertexLabeling,EdgeLabeling,MatchChecking> s0(&g1,&g2,vertex_labeling,
                                                                                  edge_labeling,match_checking,false);
    detail::node_id *ni1 = new detail::node_id[num_vertices(g1)];
    detail::node_id *ni2 = new detail::node_id[num_vertices(g2)];
    int n=0;
    
    F.clear();
    F.resize(0);
    if(match(&n,ni1,ni2,s0)){
      for(unsigned int i=0;i<num_vertices(g1);i++){
        F.push_back(std::pair<int,int>(ni1[i],ni2[i]));
      }
    }
    delete [] ni1;
    delete [] ni2;
    
    return !F.empty();
  };
  template <  class Graph
              , class VertexLabeling    // binary predicate
              , class EdgeLabeling      // binary predicate
              , class MatchChecking      // binary predicate
              , class DoubleBackInsertionSequence   // contains a back insertion sequence
              >
  bool vf2_all(const Graph& g1, const Graph& g2,
               VertexLabeling& vertex_labeling,
               EdgeLabeling& edge_labeling,
               MatchChecking& match_checking,
               DoubleBackInsertionSequence& F,
               unsigned int max_results=1000) {
    detail::VF2SubState<const Graph,VertexLabeling,EdgeLabeling,MatchChecking> s0(&g1,&g2,vertex_labeling,
                                                                                  edge_labeling,match_checking,false);
    detail::node_id *ni1 = new detail::node_id[num_vertices(g1)];
    detail::node_id *ni2 = new detail::node_id[num_vertices(g2)];
    
    F.clear();
    F.resize(0);

    match(ni1,ni2,s0,F,max_results);

    delete [] ni1;
    delete [] ni2;
    
    return !F.empty();
  };
} // end of namespace boost
#endif