1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248
|
//
// Copyright (C) 2003-2014 Greg Landrum and Rational Discovery LLC
//
// @@ All Rights Reserved @@
// This file is part of the RDKit.
// The contents are covered by the terms of the BSD license
// which is included in the file license.txt, found at the root
// of the RDKit source tree.
//
#define NO_IMPORT_ARRAY
#include "rdmolops.h"
#include <RDBoost/python.h>
#define NPY_NO_DEPRECATED_API NPY_1_7_API_VERSION
#include <numpy/arrayobject.h>
#include <string>
#include <math.h>
#include <DataStructs/ExplicitBitVect.h>
#include <GraphMol/RDKitBase.h>
#include <GraphMol/RDKitQueries.h>
#include <GraphMol/MonomerInfo.h>
#include <GraphMol/Substruct/SubstructMatch.h>
#include <GraphMol/Subgraphs/Subgraphs.h>
#include <GraphMol/Subgraphs/SubgraphUtils.h>
#include <GraphMol/Fingerprints/Fingerprints.h>
#include <GraphMol/FileParsers/MolFileStereochem.h>
#include <GraphMol/ChemTransforms/ChemTransforms.h>
#include <RDBoost/Wrap.h>
#include <RDBoost/python_streambuf.h>
#include <sstream>
#include <GraphMol/MolDraw2D/MolDraw2DSVG.h>
namespace python = boost::python;
using boost_adaptbx::python::streambuf;
namespace RDKit {
std::string molToSVG(const ROMol &mol, unsigned int width, unsigned int height,
python::object pyHighlightAtoms, bool kekulize,
unsigned int lineWidthMult, unsigned int fontSize,
bool includeAtomCircles, int confId) {
RDUNUSED_PARAM(kekulize);
std::unique_ptr<std::vector<int>> highlightAtoms =
pythonObjectToVect(pyHighlightAtoms, static_cast<int>(mol.getNumAtoms()));
std::stringstream outs;
MolDraw2DSVG drawer(width, height, outs);
drawer.setFontSize(fontSize / 24.);
drawer.setLineWidth(drawer.lineWidth() * lineWidthMult);
drawer.drawOptions().circleAtoms = includeAtomCircles;
drawer.drawMolecule(mol, highlightAtoms.get(), nullptr, nullptr, confId);
drawer.finishDrawing();
return outs.str();
}
python::tuple fragmentOnSomeBondsHelper(const ROMol &mol,
python::object pyBondIndices,
unsigned int nToBreak, bool addDummies,
python::object pyDummyLabels,
python::object pyBondTypes,
bool returnCutsPerAtom) {
std::unique_ptr<std::vector<unsigned int>> bondIndices =
pythonObjectToVect(pyBondIndices, mol.getNumBonds());
if (!bondIndices.get()) throw_value_error("empty bond indices");
std::vector<std::pair<unsigned int, unsigned int>> *dummyLabels = nullptr;
if (pyDummyLabels) {
unsigned int nVs =
python::extract<unsigned int>(pyDummyLabels.attr("__len__")());
dummyLabels = new std::vector<std::pair<unsigned int, unsigned int>>(nVs);
for (unsigned int i = 0; i < nVs; ++i) {
unsigned int v1 = python::extract<unsigned int>(pyDummyLabels[i][0]);
unsigned int v2 = python::extract<unsigned int>(pyDummyLabels[i][1]);
(*dummyLabels)[i] = std::make_pair(v1, v2);
}
}
std::vector<Bond::BondType> *bondTypes = nullptr;
if (pyBondTypes) {
unsigned int nVs =
python::extract<unsigned int>(pyBondTypes.attr("__len__")());
if (nVs != bondIndices->size()) {
throw_value_error("bondTypes shorter than bondIndices");
}
bondTypes = new std::vector<Bond::BondType>(nVs);
for (unsigned int i = 0; i < nVs; ++i) {
(*bondTypes)[i] = python::extract<Bond::BondType>(pyBondTypes[i]);
}
}
std::vector<std::vector<unsigned int>> *cutsPerAtom = nullptr;
if (returnCutsPerAtom) {
cutsPerAtom = new std::vector<std::vector<unsigned int>>;
}
std::vector<ROMOL_SPTR> frags;
MolFragmenter::fragmentOnSomeBonds(mol, *bondIndices, frags, nToBreak,
addDummies, dummyLabels, bondTypes,
cutsPerAtom);
python::list res;
for (auto &frag : frags) {
res.append(frag);
}
delete dummyLabels;
delete bondTypes;
if (cutsPerAtom) {
python::list pyCutsPerAtom;
for (auto &cut : *cutsPerAtom) {
python::list localL;
for (unsigned int j = 0; j < mol.getNumAtoms(); ++j) {
localL.append(cut[j]);
}
pyCutsPerAtom.append(python::tuple(localL));
}
delete cutsPerAtom;
python::list tres;
tres.append(python::tuple(res));
tres.append(python::tuple(pyCutsPerAtom));
return python::tuple(tres);
} else {
return python::tuple(res);
}
}
python::tuple getShortestPathHelper(const ROMol &mol, int aid1, int aid2) {
if (aid1 < 0 || aid1 >= rdcast<int>(mol.getNumAtoms()) || aid2 < 0 ||
aid2 >= rdcast<int>(mol.getNumAtoms())) {
throw_value_error("bad atom index");
}
return static_cast<python::tuple>(MolOps::getShortestPath(mol, aid1, aid2));
}
ROMol *fragmentOnBondsHelper(const ROMol &mol, python::object pyBondIndices,
bool addDummies, python::object pyDummyLabels,
python::object pyBondTypes,
python::list pyCutsPerAtom) {
std::unique_ptr<std::vector<unsigned int>> bondIndices =
pythonObjectToVect(pyBondIndices, mol.getNumBonds());
if (!bondIndices.get()) throw_value_error("empty bond indices");
std::vector<std::pair<unsigned int, unsigned int>> *dummyLabels = nullptr;
if (pyDummyLabels) {
unsigned int nVs =
python::extract<unsigned int>(pyDummyLabels.attr("__len__")());
dummyLabels = new std::vector<std::pair<unsigned int, unsigned int>>(nVs);
for (unsigned int i = 0; i < nVs; ++i) {
unsigned int v1 = python::extract<unsigned int>(pyDummyLabels[i][0]);
unsigned int v2 = python::extract<unsigned int>(pyDummyLabels[i][1]);
(*dummyLabels)[i] = std::make_pair(v1, v2);
}
}
std::vector<Bond::BondType> *bondTypes = nullptr;
if (pyBondTypes) {
unsigned int nVs =
python::extract<unsigned int>(pyBondTypes.attr("__len__")());
if (nVs != bondIndices->size()) {
throw_value_error("bondTypes shorter than bondIndices");
}
bondTypes = new std::vector<Bond::BondType>(nVs);
for (unsigned int i = 0; i < nVs; ++i) {
(*bondTypes)[i] = python::extract<Bond::BondType>(pyBondTypes[i]);
}
}
std::vector<unsigned int> *cutsPerAtom = nullptr;
if (pyCutsPerAtom) {
cutsPerAtom = new std::vector<unsigned int>;
unsigned int nAts =
python::extract<unsigned int>(pyCutsPerAtom.attr("__len__")());
if (nAts < mol.getNumAtoms()) {
throw_value_error("cutsPerAtom shorter than the number of atoms");
}
cutsPerAtom->resize(nAts);
}
ROMol *res = MolFragmenter::fragmentOnBonds(
mol, *bondIndices, addDummies, dummyLabels, bondTypes, cutsPerAtom);
if (cutsPerAtom) {
for (unsigned int i = 0; i < mol.getNumAtoms(); ++i) {
pyCutsPerAtom[i] = (*cutsPerAtom)[i];
}
delete cutsPerAtom;
}
delete dummyLabels;
delete bondTypes;
return res;
}
ROMol *renumberAtomsHelper(const ROMol &mol, python::object &pyNewOrder) {
if (python::extract<unsigned int>(pyNewOrder.attr("__len__")()) <
mol.getNumAtoms()) {
throw_value_error("atomCounts shorter than the number of atoms");
}
std::unique_ptr<std::vector<unsigned int>> newOrder =
pythonObjectToVect(pyNewOrder, mol.getNumAtoms());
ROMol *res = MolOps::renumberAtoms(mol, *newOrder);
return res;
}
namespace {
std::string getResidue(const ROMol &m, const Atom *at) {
RDUNUSED_PARAM(m);
if (at->getMonomerInfo()->getMonomerType() != AtomMonomerInfo::PDBRESIDUE)
return "";
return static_cast<const AtomPDBResidueInfo *>(at->getMonomerInfo())
->getResidueName();
}
std::string getChainId(const ROMol &m, const Atom *at) {
RDUNUSED_PARAM(m);
if (at->getMonomerInfo()->getMonomerType() != AtomMonomerInfo::PDBRESIDUE)
return "";
return static_cast<const AtomPDBResidueInfo *>(at->getMonomerInfo())
->getChainId();
}
} // namespace
python::dict splitMolByPDBResidues(const ROMol &mol, python::object pyWhiteList,
bool negateList) {
std::vector<std::string> *whiteList = nullptr;
if (pyWhiteList) {
unsigned int nVs =
python::extract<unsigned int>(pyWhiteList.attr("__len__")());
whiteList = new std::vector<std::string>(nVs);
for (unsigned int i = 0; i < nVs; ++i) {
(*whiteList)[i] = python::extract<std::string>(pyWhiteList[i]);
}
}
std::map<std::string, boost::shared_ptr<ROMol>> res =
MolOps::getMolFragsWithQuery(mol, getResidue, false, whiteList,
negateList);
delete whiteList;
python::dict pyres;
for (std::map<std::string, boost::shared_ptr<ROMol>>::const_iterator iter =
res.begin();
iter != res.end(); ++iter) {
pyres[iter->first] = iter->second;
}
return pyres;
}
python::dict splitMolByPDBChainId(const ROMol &mol, python::object pyWhiteList,
bool negateList) {
std::vector<std::string> *whiteList = nullptr;
if (pyWhiteList) {
unsigned int nVs =
python::extract<unsigned int>(pyWhiteList.attr("__len__")());
whiteList = new std::vector<std::string>(nVs);
for (unsigned int i = 0; i < nVs; ++i) {
(*whiteList)[i] = python::extract<std::string>(pyWhiteList[i]);
}
}
std::map<std::string, boost::shared_ptr<ROMol>> res =
MolOps::getMolFragsWithQuery(mol, getChainId, false, whiteList,
negateList);
delete whiteList;
python::dict pyres;
for (std::map<std::string, boost::shared_ptr<ROMol>>::const_iterator iter =
res.begin();
iter != res.end(); ++iter) {
pyres[iter->first] = iter->second;
}
return pyres;
}
python::dict parseQueryDefFileHelper(python::object &input, bool standardize,
std::string delimiter, std::string comment,
unsigned int nameColumn,
unsigned int smartsColumn) {
python::extract<std::string> get_filename(input);
std::map<std::string, ROMOL_SPTR> queryDefs;
if (get_filename.check()) {
parseQueryDefFile(get_filename(), queryDefs, standardize, delimiter,
comment, nameColumn, smartsColumn);
} else {
auto *sb = new streambuf(input);
std::istream *istr = new streambuf::istream(*sb);
parseQueryDefFile(istr, queryDefs, standardize, delimiter, comment,
nameColumn, smartsColumn);
delete istr;
delete sb;
}
python::dict res;
for (std::map<std::string, ROMOL_SPTR>::const_iterator iter =
queryDefs.begin();
iter != queryDefs.end(); ++iter) {
res[iter->first] = iter->second;
}
return res;
}
void addRecursiveQueriesHelper(ROMol &mol, python::dict replDict,
std::string propName) {
std::map<std::string, ROMOL_SPTR> replacements;
for (unsigned int i = 0;
i < python::extract<unsigned int>(replDict.keys().attr("__len__")());
++i) {
ROMol *m = python::extract<ROMol *>(replDict.values()[i]);
ROMOL_SPTR nm(new ROMol(*m));
std::string k = python::extract<std::string>(replDict.keys()[i]);
replacements[k] = nm;
}
addRecursiveQueries(mol, replacements, propName);
}
ROMol *addHs(const ROMol &orig, bool explicitOnly, bool addCoords,
python::object onlyOnAtoms, bool addResidueInfo) {
std::unique_ptr<std::vector<unsigned int>> onlyOn;
if (onlyOnAtoms) {
onlyOn = pythonObjectToVect(onlyOnAtoms, orig.getNumAtoms());
}
ROMol *res = MolOps::addHs(orig, explicitOnly, addCoords, onlyOn.get(),
addResidueInfo);
return res;
}
int getSSSR(ROMol &mol) {
VECT_INT_VECT rings;
int nr = MolOps::findSSSR(mol, rings);
return nr;
}
PyObject *replaceSubstructures(const ROMol &orig, const ROMol &query,
const ROMol &replacement,
bool replaceAll = false,
unsigned int replacementConnectionPoint = 0,
bool useChirality = false) {
std::vector<ROMOL_SPTR> v =
replaceSubstructs(orig, query, replacement, replaceAll,
replacementConnectionPoint, useChirality);
PyObject *res = PyTuple_New(v.size());
for (unsigned int i = 0; i < v.size(); ++i) {
PyTuple_SetItem(res, i, python::converter::shared_ptr_to_python(v[i]));
}
return res;
}
void addRecursiveQuery(ROMol &mol, const ROMol &query, unsigned int atomIdx,
bool preserveExistingQuery) {
if (atomIdx >= mol.getNumAtoms()) {
throw_value_error("atom index exceeds mol.GetNumAtoms()");
}
auto *q = new RecursiveStructureQuery(new ROMol(query));
Atom *oAt = mol.getAtomWithIdx(atomIdx);
if (!oAt->hasQuery()) {
QueryAtom qAt(*oAt);
static_cast<RWMol &>(mol).replaceAtom(atomIdx, &qAt);
oAt = mol.getAtomWithIdx(atomIdx);
}
if (!preserveExistingQuery) {
oAt->setQuery(q);
} else {
oAt->expandQuery(q, Queries::COMPOSITE_AND);
}
}
MolOps::SanitizeFlags sanitizeMol(ROMol &mol, boost::uint64_t sanitizeOps,
bool catchErrors) {
RWMol &wmol = static_cast<RWMol &>(mol);
unsigned int operationThatFailed;
if (catchErrors) {
try {
MolOps::sanitizeMol(wmol, operationThatFailed, sanitizeOps);
} catch (const MolSanitizeException &e) {
// this really should not be necessary, but at some point it
// started to be required with VC++17. Doesn't seem like it does
// any harm.
} catch (...) {
}
} else {
MolOps::sanitizeMol(wmol, operationThatFailed, sanitizeOps);
}
return static_cast<MolOps::SanitizeFlags>(operationThatFailed);
}
RWMol *getEditable(const ROMol &mol) {
RWMol *res = static_cast<RWMol *>(new ROMol(mol, false));
return res;
}
ROMol *getNormal(const RWMol &mol) {
ROMol *res = static_cast<ROMol *>(new RWMol(mol));
return res;
}
void kekulizeMol(ROMol &mol, bool clearAromaticFlags = false) {
RWMol &wmol = static_cast<RWMol &>(mol);
MolOps::Kekulize(wmol, clearAromaticFlags);
}
void cleanupMol(ROMol &mol) {
RWMol &rwmol = static_cast<RWMol &>(mol);
MolOps::cleanUp(rwmol);
}
void setAromaticityMol(ROMol &mol, MolOps::AromaticityModel model) {
RWMol &wmol = static_cast<RWMol &>(mol);
MolOps::setAromaticity(wmol, model);
}
void setConjugationMol(ROMol &mol) {
RWMol &wmol = static_cast<RWMol &>(mol);
MolOps::setConjugation(wmol);
}
void assignRadicalsMol(ROMol &mol) {
RWMol &wmol = static_cast<RWMol &>(mol);
MolOps::assignRadicals(wmol);
}
void setHybridizationMol(ROMol &mol) {
RWMol &wmol = static_cast<RWMol &>(mol);
MolOps::setHybridization(wmol);
}
VECT_INT_VECT getSymmSSSR(ROMol &mol) {
VECT_INT_VECT rings;
MolOps::symmetrizeSSSR(mol, rings);
return rings;
}
PyObject *getDistanceMatrix(ROMol &mol, bool useBO = false,
bool useAtomWts = false, bool force = false,
const char *prefix = nullptr) {
int nats = mol.getNumAtoms();
npy_intp dims[2];
dims[0] = nats;
dims[1] = nats;
double *distMat;
distMat = MolOps::getDistanceMat(mol, useBO, useAtomWts, force, prefix);
PyArrayObject *res = (PyArrayObject *)PyArray_SimpleNew(2, dims, NPY_DOUBLE);
memcpy(PyArray_DATA(res), static_cast<void *>(distMat),
nats * nats * sizeof(double));
return PyArray_Return(res);
}
PyObject *get3DDistanceMatrix(ROMol &mol, int confId = -1,
bool useAtomWts = false, bool force = false,
const char *prefix = nullptr) {
int nats = mol.getNumAtoms();
npy_intp dims[2];
dims[0] = nats;
dims[1] = nats;
double *distMat;
distMat = MolOps::get3DDistanceMat(mol, confId, useAtomWts, force, prefix);
PyArrayObject *res = (PyArrayObject *)PyArray_SimpleNew(2, dims, NPY_DOUBLE);
memcpy(PyArray_DATA(res), static_cast<void *>(distMat),
nats * nats * sizeof(double));
if (prefix == nullptr || std::string(prefix) == "") {
delete[] distMat;
}
return PyArray_Return(res);
}
PyObject *getAdjacencyMatrix(ROMol &mol, bool useBO = false, int emptyVal = 0,
bool force = false, const char *prefix = nullptr) {
int nats = mol.getNumAtoms();
npy_intp dims[2];
dims[0] = nats;
dims[1] = nats;
double *tmpMat =
MolOps::getAdjacencyMatrix(mol, useBO, emptyVal, force, prefix);
PyArrayObject *res;
if (useBO) {
// if we're using valence, the results matrix is made up of doubles
res = (PyArrayObject *)PyArray_SimpleNew(2, dims, NPY_DOUBLE);
memcpy(PyArray_DATA(res), static_cast<void *>(tmpMat),
nats * nats * sizeof(double));
} else {
res = (PyArrayObject *)PyArray_SimpleNew(2, dims, NPY_INT);
int *data = static_cast<int *>(PyArray_DATA(res));
for (int i = 0; i < nats; i++) {
for (int j = 0; j < nats; j++) {
data[i * nats + j] = (int)round(tmpMat[i * nats + j]);
}
}
}
return PyArray_Return(res);
}
python::tuple GetMolFragsWithMapping(
const ROMol &mol, bool asMols, bool sanitizeFrags,
python::object frags = python::object(),
python::object fragsMolAtomMapping = python::object()) {
python::list res;
if (!asMols) {
VECT_INT_VECT fragsVec;
MolOps::getMolFrags(mol, fragsVec);
for (unsigned int i = 0; i < fragsVec.size(); ++i) {
python::list tpl;
for (unsigned int j = 0; j < fragsVec[i].size(); ++j) {
tpl.append(fragsVec[i][j]);
}
res.append(python::tuple(tpl));
}
} else {
std::vector<std::vector<int>> fragsMolAtomMappingVec;
std::vector<int> fragsVec;
std::vector<boost::shared_ptr<ROMol>> molFrags;
python::list &fragsList = reinterpret_cast<python::list &>(frags);
python::list &fragsMolAtomMappingList =
reinterpret_cast<python::list &>(fragsMolAtomMapping);
bool hasFrags = fragsList != python::object();
bool hasFragsMolAtomMapping = fragsMolAtomMappingList != python::object();
molFrags =
hasFrags || hasFragsMolAtomMapping
? MolOps::getMolFrags(
mol, sanitizeFrags, hasFrags ? &fragsVec : NULL,
hasFragsMolAtomMapping ? &fragsMolAtomMappingVec : NULL)
: MolOps::getMolFrags(mol, sanitizeFrags);
if (hasFrags) {
for (unsigned int i = 0; i < fragsVec.size(); ++i)
fragsList.append(fragsVec[i]);
}
if (hasFragsMolAtomMapping) {
for (unsigned int i = 0; i < fragsMolAtomMappingVec.size(); ++i) {
python::list perFragMolAtomMappingTpl;
for (unsigned int j = 0; j < fragsMolAtomMappingVec[i].size(); ++j)
perFragMolAtomMappingTpl.append(fragsMolAtomMappingVec[i][j]);
fragsMolAtomMappingList.append(python::tuple(perFragMolAtomMappingTpl));
}
}
for (unsigned int i = 0; i < molFrags.size(); ++i) res.append(molFrags[i]);
}
return python::tuple(res);
}
python::tuple GetMolFrags(const ROMol &mol, bool asMols, bool sanitizeFrags) {
return GetMolFragsWithMapping(mol, asMols, sanitizeFrags);
}
ExplicitBitVect *wrapLayeredFingerprint(
const ROMol &mol, unsigned int layerFlags, unsigned int minPath,
unsigned int maxPath, unsigned int fpSize, python::list atomCounts,
ExplicitBitVect *includeOnlyBits, bool branchedPaths,
python::object fromAtoms) {
std::unique_ptr<std::vector<unsigned int>> lFromAtoms =
pythonObjectToVect(fromAtoms, mol.getNumAtoms());
std::vector<unsigned int> *atomCountsV = nullptr;
if (atomCounts) {
atomCountsV = new std::vector<unsigned int>;
unsigned int nAts =
python::extract<unsigned int>(atomCounts.attr("__len__")());
if (nAts < mol.getNumAtoms()) {
throw_value_error("atomCounts shorter than the number of atoms");
}
atomCountsV->resize(nAts);
for (unsigned int i = 0; i < nAts; ++i) {
(*atomCountsV)[i] = python::extract<unsigned int>(atomCounts[i]);
}
}
ExplicitBitVect *res;
res = RDKit::LayeredFingerprintMol(mol, layerFlags, minPath, maxPath, fpSize,
atomCountsV, includeOnlyBits,
branchedPaths, lFromAtoms.get());
if (atomCountsV) {
for (unsigned int i = 0; i < atomCountsV->size(); ++i) {
atomCounts[i] = (*atomCountsV)[i];
}
delete atomCountsV;
}
return res;
}
ExplicitBitVect *wrapPatternFingerprint(const ROMol &mol, unsigned int fpSize,
python::list atomCounts,
ExplicitBitVect *includeOnlyBits) {
std::vector<unsigned int> *atomCountsV = nullptr;
if (atomCounts) {
atomCountsV = new std::vector<unsigned int>;
unsigned int nAts =
python::extract<unsigned int>(atomCounts.attr("__len__")());
if (nAts < mol.getNumAtoms()) {
throw_value_error("atomCounts shorter than the number of atoms");
}
atomCountsV->resize(nAts);
for (unsigned int i = 0; i < nAts; ++i) {
(*atomCountsV)[i] = python::extract<unsigned int>(atomCounts[i]);
}
}
ExplicitBitVect *res;
res = RDKit::PatternFingerprintMol(mol, fpSize, atomCountsV, includeOnlyBits);
if (atomCountsV) {
for (unsigned int i = 0; i < atomCountsV->size(); ++i) {
atomCounts[i] = (*atomCountsV)[i];
}
delete atomCountsV;
}
return res;
}
ExplicitBitVect *wrapRDKFingerprintMol(
const ROMol &mol, unsigned int minPath, unsigned int maxPath,
unsigned int fpSize, unsigned int nBitsPerHash, bool useHs,
double tgtDensity, unsigned int minSize, bool branchedPaths,
bool useBondOrder, python::object atomInvariants, python::object fromAtoms,
python::object atomBits, python::object bitInfo) {
std::unique_ptr<std::vector<unsigned int>> lAtomInvariants =
pythonObjectToVect<unsigned int>(atomInvariants);
std::unique_ptr<std::vector<unsigned int>> lFromAtoms =
pythonObjectToVect(fromAtoms, mol.getNumAtoms());
std::vector<std::vector<boost::uint32_t>> *lAtomBits = nullptr;
std::map<boost::uint32_t, std::vector<std::vector<int>>> *lBitInfo = nullptr;
// if(!(atomBits.is_none())){
if (atomBits != python::object()) {
lAtomBits =
new std::vector<std::vector<boost::uint32_t>>(mol.getNumAtoms());
}
if (bitInfo != python::object()) {
lBitInfo = new std::map<boost::uint32_t, std::vector<std::vector<int>>>;
}
ExplicitBitVect *res;
res = RDKit::RDKFingerprintMol(mol, minPath, maxPath, fpSize, nBitsPerHash,
useHs, tgtDensity, minSize, branchedPaths,
useBondOrder, lAtomInvariants.get(),
lFromAtoms.get(), lAtomBits, lBitInfo);
if (lAtomBits) {
python::list &pyl = static_cast<python::list &>(atomBits);
for (unsigned int i = 0; i < mol.getNumAtoms(); ++i) {
python::list tmp;
BOOST_FOREACH (boost::uint32_t v, (*lAtomBits)[i]) { tmp.append(v); }
pyl.append(tmp);
}
delete lAtomBits;
}
if (lBitInfo) {
python::dict &pyd = static_cast<python::dict &>(bitInfo);
for (auto &it : (*lBitInfo)) {
python::list temp;
std::vector<std::vector<int>>::iterator itset;
for (itset = it.second.begin(); itset != it.second.end(); ++itset) {
python::list temp2;
for (int &i : *itset) {
temp2.append(i);
}
temp.append(temp2);
}
if (!pyd.has_key(it.first)) {
pyd[it.first] = temp;
}
}
delete lBitInfo;
}
return res;
}
SparseIntVect<boost::uint64_t> *wrapUnfoldedRDKFingerprintMol(
const ROMol &mol, unsigned int minPath, unsigned int maxPath, bool useHs,
bool branchedPaths, bool useBondOrder, python::object atomInvariants,
python::object fromAtoms, python::object atomBits, python::object bitInfo) {
std::unique_ptr<std::vector<unsigned int>> lAtomInvariants =
pythonObjectToVect<unsigned int>(atomInvariants);
std::unique_ptr<std::vector<unsigned int>> lFromAtoms =
pythonObjectToVect(fromAtoms, mol.getNumAtoms());
std::vector<std::vector<boost::uint64_t>> *lAtomBits = nullptr;
std::map<boost::uint64_t, std::vector<std::vector<int>>> *lBitInfo = nullptr;
// if(!(atomBits.is_none())){
if (atomBits != python::object()) {
lAtomBits =
new std::vector<std::vector<boost::uint64_t>>(mol.getNumAtoms());
}
if (bitInfo != python::object()) {
lBitInfo = new std::map<boost::uint64_t, std::vector<std::vector<int>>>;
}
SparseIntVect<boost::uint64_t> *res;
res = getUnfoldedRDKFingerprintMol(
mol, minPath, maxPath, useHs, branchedPaths, useBondOrder,
lAtomInvariants.get(), lFromAtoms.get(), lAtomBits, lBitInfo);
if (lAtomBits) {
python::list &pyl = static_cast<python::list &>(atomBits);
for (unsigned int i = 0; i < mol.getNumAtoms(); ++i) {
python::list tmp;
BOOST_FOREACH (boost::uint64_t v, (*lAtomBits)[i]) { tmp.append(v); }
pyl.append(tmp);
}
delete lAtomBits;
}
if (lBitInfo) {
python::dict &pyd = static_cast<python::dict &>(bitInfo);
for (auto &it : (*lBitInfo)) {
python::list temp;
std::vector<std::vector<int>>::iterator itset;
for (itset = it.second.begin(); itset != it.second.end(); ++itset) {
python::list temp2;
for (int &i : *itset) {
temp2.append(i);
}
temp.append(temp2);
}
if (!pyd.has_key(it.first)) {
pyd[it.first] = temp;
}
}
delete lBitInfo;
}
return res;
}
python::object findAllSubgraphsOfLengthsMtoNHelper(const ROMol &mol,
unsigned int lowerLen,
unsigned int upperLen,
bool useHs = false,
int rootedAtAtom = -1) {
if (lowerLen > upperLen) {
throw_value_error("lowerLen > upperLen");
}
INT_PATH_LIST_MAP oMap = findAllSubgraphsOfLengthsMtoN(
mol, lowerLen, upperLen, useHs, rootedAtAtom);
python::list res;
for (unsigned int i = lowerLen; i <= upperLen; ++i) {
python::list tmp;
const PATH_LIST &pth = oMap[i];
for (const auto &pthit : pth) {
tmp.append(python::tuple(pthit));
}
res.append(tmp);
}
return python::tuple(res);
};
ROMol *pathToSubmolHelper(const ROMol &mol, python::object &path, bool useQuery,
python::object atomMap) {
ROMol *result;
PATH_TYPE pth;
for (unsigned int i = 0;
i < python::extract<unsigned int>(path.attr("__len__")()); ++i) {
pth.push_back(python::extract<unsigned int>(path[i]));
}
std::map<int, int> mapping;
result = Subgraphs::pathToSubmol(mol, pth, useQuery, mapping);
if (atomMap != python::object()) {
// make sure the optional argument actually was a dictionary
python::dict typecheck = python::extract<python::dict>(atomMap);
atomMap.attr("clear")();
for (std::map<int, int>::const_iterator mIt = mapping.begin();
mIt != mapping.end(); ++mIt) {
atomMap[mIt->first] = mIt->second;
}
}
return result;
}
ROMol *adjustQueryPropertiesHelper(const ROMol &mol, python::object pyparams) {
MolOps::AdjustQueryParameters params;
if (pyparams != python::object()) {
params = python::extract<MolOps::AdjustQueryParameters>(pyparams);
}
return MolOps::adjustQueryProperties(mol, ¶ms);
}
ROMol *replaceCoreHelper(const ROMol &mol, const ROMol &core,
python::object match, bool replaceDummies,
bool labelByIndex, bool requireDummyMatch = false) {
// convert input to MatchVect
MatchVectType matchVect;
unsigned int length = python::extract<unsigned int>(match.attr("__len__")());
for (unsigned int i = 0; i < length; ++i) {
int sz = 1;
if (PyObject_HasAttrString(static_cast<python::object>(match[i]).ptr(),
"__len__")) {
sz = python::extract<unsigned int>(match[i].attr("__len__")());
}
int v1, v2;
switch (sz) {
case 1:
if (length != core.getNumAtoms()) {
std::string entries = core.getNumAtoms() == 1 ? " entry" : " entries";
std::stringstream ss;
ss << std::string(
"When using input vector of type (molecule_atom_idx,...) "
"supplied core requires ")
<< core.getNumAtoms() << entries;
throw ValueErrorException(ss.str());
}
v1 = (int)i;
v2 = python::extract<int>(match[i]);
break;
case 2:
v1 = python::extract<int>(match[i][0]);
v2 = python::extract<int>(match[i][1]);
break;
default:
throw ValueErrorException(
"Input not a vector of (core_atom_idx,molecule_atom_idx) or "
"(molecule_atom_idx,...) entries");
}
matchVect.push_back(std::make_pair(v1, v2));
}
return replaceCore(mol, core, matchVect, replaceDummies, labelByIndex,
requireDummyMatch);
}
struct molops_wrapper {
static void wrap() {
std::string docString;
python::enum_<MolOps::SanitizeFlags>("SanitizeFlags")
.value("SANITIZE_NONE", MolOps::SANITIZE_NONE)
.value("SANITIZE_CLEANUP", MolOps::SANITIZE_CLEANUP)
.value("SANITIZE_PROPERTIES", MolOps::SANITIZE_PROPERTIES)
.value("SANITIZE_SYMMRINGS", MolOps::SANITIZE_SYMMRINGS)
.value("SANITIZE_KEKULIZE", MolOps::SANITIZE_KEKULIZE)
.value("SANITIZE_FINDRADICALS", MolOps::SANITIZE_FINDRADICALS)
.value("SANITIZE_SETAROMATICITY", MolOps::SANITIZE_SETAROMATICITY)
.value("SANITIZE_SETCONJUGATION", MolOps::SANITIZE_SETCONJUGATION)
.value("SANITIZE_SETHYBRIDIZATION", MolOps::SANITIZE_SETHYBRIDIZATION)
.value("SANITIZE_CLEANUPCHIRALITY", MolOps::SANITIZE_CLEANUPCHIRALITY)
.value("SANITIZE_ADJUSTHS", MolOps::SANITIZE_ADJUSTHS)
.value("SANITIZE_ALL", MolOps::SANITIZE_ALL)
.export_values();
;
// ------------------------------------------------------------------------
docString =
"Assign stereochemistry to bonds based on coordinates and a conformer.\n\
DEPRECATED: Please use the version that takes a conformer ID instead.\n\
\n\
ARGUMENTS:\n\
\n\
- mol: the molecule to be modified\n\
- conformer: Conformer providing the coordinates\n\
\n";
python::def("DetectBondStereoChemistry", DetectBondStereoChemistry,
(python::arg("mol"), python::arg("conformer")),
docString.c_str());
docString =
"Assign stereochemistry to bonds based on coordinates.\n\
\n\
ARGUMENTS:\n\
\n\
- mol: the molecule to be modified\n\
- confId: Conformer to use for the coordinates\n\
\n";
python::def("DetectBondStereochemistry", MolOps::detectBondStereochemistry,
(python::arg("mol"), python::arg("confId") = -1),
docString.c_str());
// ------------------------------------------------------------------------
docString =
"Kekulize, check valencies, set aromaticity, conjugation and hybridization\n\
\n\
- The molecule is modified in place.\n\
\n\
- If sanitization fails, an exception will be thrown unless catchErrors is set\n\
\n\
ARGUMENTS:\n\
\n\
- mol: the molecule to be modified\n\
- sanitizeOps: (optional) sanitization operations to be carried out\n\
these should be constructed by or'ing together the\n\
operations in rdkit.Chem.SanitizeFlags\n\
- catchErrors: (optional) if provided, instead of raising an exception\n\
when sanitization fails (the default behavior), the \n\
first operation that failed (as defined in rdkit.Chem.SanitizeFlags)\n\
is returned. Zero is returned on success.\n\
\n";
python::def(
"SanitizeMol", sanitizeMol,
(python::arg("mol"), python::arg("sanitizeOps") = MolOps::SANITIZE_ALL,
python::arg("catchErrors") = false),
docString.c_str());
// ------------------------------------------------------------------------
docString =
"Get the smallest set of simple rings for a molecule.\n\
\n\
ARGUMENTS:\n\
\n\
- mol: the molecule to use.\n\
\n\
RETURNS: a sequence of sequences containing the rings found as atom ids\n\
The length of this will be equal to NumBonds-NumAtoms+1 for single-fragment molecules.\n\
\n";
python::def("GetSSSR", getSSSR, docString.c_str());
// ------------------------------------------------------------------------
docString =
"Get a symmetrized SSSR for a molecule.\n\
\n\
The symmetrized SSSR is at least as large as the SSSR for a molecule.\n\
In certain highly-symmetric cases (e.g. cubane), the symmetrized SSSR can be\n\
a bit larger (i.e. the number of symmetrized rings is >= NumBonds-NumAtoms+1).\n\
\n\
ARGUMENTS:\n\
\n\
- mol: the molecule to use.\n\
\n\
RETURNS: a sequence of sequences containing the rings found as atom ids\n\
\n";
python::def("GetSymmSSSR", getSymmSSSR, docString.c_str());
// ------------------------------------------------------------------------
docString =
"Does a non-SSSR ring finding for a molecule.\n\
\n\
ARGUMENTS:\n\
\n\
- mol: the molecule to use.\n\
\n\
RETURNS: Nothing\n\
\n";
python::def("FastFindRings", MolOps::fastFindRings, docString.c_str());
// ------------------------------------------------------------------------
docString =
"Adds hydrogens to the graph of a molecule.\n\
\n\
ARGUMENTS:\n\
\n\
- mol: the molecule to be modified\n\
\n\
- explicitOnly: (optional) if this toggle is set, only explicit Hs will\n\
be added to the molecule. Default value is 0 (add implicit and explicit Hs).\n\
\n\
- addCoords: (optional) if this toggle is set, The Hs will have 3D coordinates\n\
set. Default value is 0 (no 3D coords).\n\
\n\
- onlyOnAtoms: (optional) if this sequence is provided, only these atoms will be\n\
considered to have Hs added to them\n\
\n\
- addResidueInfo: (optional) if this is true, add residue info to\n\
hydrogen atoms (useful for PDB files).\n\
\n\
RETURNS: a new molecule with added Hs\n\
\n\
NOTES:\n\
\n\
- The original molecule is *not* modified.\n\
\n\
- Much of the code assumes that Hs are not included in the molecular\n\
topology, so be *very* careful with the molecule that comes back from\n\
this function.\n\
\n";
python::def("AddHs", addHs,
(python::arg("mol"), python::arg("explicitOnly") = false,
python::arg("addCoords") = false,
python::arg("onlyOnAtoms") = python::object(),
python::arg("addResidueInfo") = false),
docString.c_str(),
python::return_value_policy<python::manage_new_object>());
// ------------------------------------------------------------------------
docString =
"Removes any hydrogens from the graph of a molecule.\n\
\n\
ARGUMENTS:\n\
\n\
- mol: the molecule to be modified\n\
\n\
- implicitOnly: (optional) if this toggle is set, only implicit Hs will\n\
be removed from the graph. Default value is 0 (remove implicit and explicit Hs).\n\
\n\
- updateExplicitCount: (optional) if this toggle is set, the explicit H count on atoms with \n\
Hs will be updated. Default value is 0 (do not update explicit H count).\n\
\n\
- sanitize: (optional) if this toggle is set, the molecule will be sanitized after the Hs\n\
are removed. Default value is 1 (do sanitize).\n\
\n\
RETURNS: a new molecule with the Hs removed\n\
\n\
NOTES:\n\
\n\
- The original molecule is *not* modified.\n\
- Hydrogens which aren't connected to a heavy atom will not be\n\
removed. This prevents molecules like [H][H] from having\n\
all atoms removed.\n\
- Labelled hydrogen (e.g. atoms with atomic number=1, but isotope > 1),\n\
will not be removed.\n\
- two coordinate Hs, like the central H in C[H-]C, will not be removed\n\
- Hs connected to dummy atoms will not be removed\n\
- Hs that are part of the definition of double bond Stereochemistry\n\
will not be removed\n\
- Hs that are not connected to anything else will not be removed\n\
\n ";
python::def("RemoveHs",
(ROMol * (*)(const ROMol &, bool, bool, bool)) MolOps::removeHs,
(python::arg("mol"), python::arg("implicitOnly") = false,
python::arg("updateExplicitCount") = false,
python::arg("sanitize") = true),
docString.c_str(),
python::return_value_policy<python::manage_new_object>());
python::def("MergeQueryHs",
(ROMol * (*)(const ROMol &, bool)) & MolOps::mergeQueryHs,
(python::arg("mol"), python::arg("mergeUnmappedOnly") = false),
"merges hydrogens into their neighboring atoms as queries",
python::return_value_policy<python::manage_new_object>());
// ------------------------------------------------------------------------
docString =
"Removes atoms matching a substructure query from a molecule\n\
\n\
ARGUMENTS:\n\
\n\
- mol: the molecule to be modified\n\
\n\
- query: the molecule to be used as a substructure query\n\
\n\
- onlyFrags: (optional) if this toggle is set, atoms will only be removed if\n\
the entire fragment in which they are found is matched by the query.\n\
See below for examples.\n\
Default value is 0 (remove the atoms whether or not the entire fragment matches)\n\
\n\
- useChirality: (optional) match the substructure query using chirality\n\
\n\
RETURNS: a new molecule with the substructure removed\n\
\n\
NOTES:\n\
\n\
- The original molecule is *not* modified.\n\
\n\
EXAMPLES:\n\
\n\
The following examples substitute SMILES/SMARTS strings for molecules, you'd have\n\
to actually use molecules:\n\
\n\
- DeleteSubstructs('CCOC','OC') -> 'CC'\n\
\n\
- DeleteSubstructs('CCOC','OC',1) -> 'CCOC'\n\
\n\
- DeleteSubstructs('CCOCCl.Cl','Cl',1) -> 'CCOCCl'\n\
\n\
- DeleteSubstructs('CCOCCl.Cl','Cl') -> 'CCOC'\n\
\n";
python::def(
"DeleteSubstructs", deleteSubstructs,
(python::arg("mol"), python::arg("query"),
python::arg("onlyFrags") = false, python::arg("useChirality") = false),
docString.c_str(),
python::return_value_policy<python::manage_new_object>());
docString = "Do a Murcko decomposition and return the scaffold";
python::def("MurckoDecompose", MurckoDecompose, (python::arg("mol")),
docString.c_str(),
python::return_value_policy<python::manage_new_object>());
docString = "Combine the atoms from two molecules to produce a third";
python::def("CombineMols", combineMols,
(python::arg("mol1"), python::arg("mol2"),
python::arg("offset") = RDGeom::Point3D(0, 0, 0)),
docString.c_str(),
python::return_value_policy<python::manage_new_object>());
// ------------------------------------------------------------------------
docString =
"Replaces atoms matching a substructure query in a molecule\n\
\n\
ARGUMENTS:\n\
\n\
- mol: the molecule to be modified\n\
\n\
- query: the molecule to be used as a substructure query\n\
\n\
- replacement: the molecule to be used as the replacement\n\
\n\
- replaceAll: (optional) if this toggle is set, all substructures matching\n\
the query will be replaced in a single result, otherwise each result will\n\
contain a separate replacement.\n\
Default value is False (return multiple replacements)\n\
- replacementConnectionPoint: (optional) index of the atom in the replacement that\n\
the bond should be made to.\n\
- useChirality: (optional) match the substructure query using chirality\n\
\n\
RETURNS: a tuple of new molecules with the substructures replaced removed\n\
\n\
NOTES:\n\
\n\
- The original molecule is *not* modified.\n\
\n\
EXAMPLES:\n\
\n\
The following examples substitute SMILES/SMARTS strings for molecules, you'd have\n\
to actually use molecules:\n\
\n\
- ReplaceSubstructs('CCOC','OC','NC') -> ('CCNC',)\n\
\n\
- ReplaceSubstructs('COCCOC','OC','NC') -> ('COCCNC','CNCCOC')\n\
\n\
- ReplaceSubstructs('COCCOC','OC','NC',True) -> ('CNCCNC',)\n\
\n\
- ReplaceSubstructs('COCCOC','OC','CN',True,1) -> ('CNCCNC',)\n\
\n";
python::def("ReplaceSubstructs", replaceSubstructures,
(python::arg("mol"), python::arg("query"),
python::arg("replacement"), python::arg("replaceAll") = false,
python::arg("replacementConnectionPoint") = 0,
python::arg("useChirality") = false),
docString.c_str());
// ------------------------------------------------------------------------
docString = "Adds named recursive queries to atoms\n";
python::def(
"MolAddRecursiveQueries", addRecursiveQueriesHelper,
(python::arg("mol"), python::arg("queries"), python::arg("propName")),
docString.c_str());
docString = "reads query definitions from a simply formatted file\n";
python::def(
"ParseMolQueryDefFile", parseQueryDefFileHelper,
(python::arg("fileobj"), python::arg("standardize") = true,
python::arg("delimiter") = "\t", python::arg("comment") = "//",
python::arg("nameColumn") = 0, python::arg("smartsColumn") = 1),
docString.c_str());
// ------------------------------------------------------------------------
docString =
"Returns the molecule's topological distance matrix.\n\
\n\
ARGUMENTS:\n\
\n\
- mol: the molecule to use\n\
\n\
- useBO: (optional) toggles use of bond orders in calculating the distance matrix.\n\
Default value is 0.\n\
\n\
- useAtomWts: (optional) toggles using atom weights for the diagonal elements of the\n\
matrix (to return a \"Balaban\" distance matrix).\n\
Default value is 0.\n\
\n\
- force: (optional) forces the calculation to proceed, even if there is a cached value.\n\
Default value is 0.\n\
\n\
- prefix: (optional, internal use) sets the prefix used in the property cache\n\
Default value is "
".\n\
\n\
RETURNS: a Numeric array of floats with the distance matrix\n\
\n";
python::def("GetDistanceMatrix", getDistanceMatrix,
(python::arg("mol"), python::arg("useBO") = false,
python::arg("useAtomWts") = false,
python::arg("force") = false, python::arg("prefix") = ""),
docString.c_str());
// ------------------------------------------------------------------------
docString =
"Returns the molecule's 3D distance matrix.\n\
\n\
ARGUMENTS:\n\
\n\
- mol: the molecule to use\n\
\n\
- confId: (optional) chooses the conformer Id to use\n\
Default value is -1.\n\
\n\
- useAtomWts: (optional) toggles using atom weights for the diagonal elements of the\n\
matrix (to return a \"Balaban\" distance matrix).\n\
Default value is 0.\n\
\n\
- force: (optional) forces the calculation to proceed, even if there is a cached value.\n\
Default value is 0.\n\
\n\
- prefix: (optional, internal use) sets the prefix used in the property cache\n\
Default value is "
".\n\
\n\
RETURNS: a Numeric array of floats with the distance matrix\n\
\n";
python::def("Get3DDistanceMatrix", get3DDistanceMatrix,
(python::arg("mol"), python::arg("confId") = -1,
python::arg("useAtomWts") = false,
python::arg("force") = false, python::arg("prefix") = ""),
docString.c_str());
// ------------------------------------------------------------------------
docString =
"Returns the molecule's adjacency matrix.\n\
\n\
ARGUMENTS:\n\
\n\
- mol: the molecule to use\n\
\n\
- useBO: (optional) toggles use of bond orders in calculating the matrix.\n\
Default value is 0.\n\
\n\
- emptyVal: (optional) sets the elements of the matrix between non-adjacent atoms\n\
Default value is 0.\n\
\n\
- force: (optional) forces the calculation to proceed, even if there is a cached value.\n\
Default value is 0.\n\
\n\
- prefix: (optional, internal use) sets the prefix used in the property cache\n\
Default value is "
".\n\
\n\
RETURNS: a Numeric array of floats containing the adjacency matrix\n\
\n";
python::def("GetAdjacencyMatrix", getAdjacencyMatrix,
(python::arg("mol"), python::arg("useBO") = false,
python::arg("emptyVal") = 0, python::arg("force") = false,
python::arg("prefix") = ""),
docString.c_str());
// ------------------------------------------------------------------------
docString =
"Kekulizes the molecule\n\
\n\
ARGUMENTS:\n\
\n\
- mol: the molecule to use\n\
\n\
- clearAromaticFlags: (optional) if this toggle is set, all atoms and bonds in the \n\
molecule will be marked non-aromatic following the kekulization.\n\
Default value is 0.\n\
\n\
NOTES:\n\
\n\
- The molecule is modified in place.\n\
\n";
python::def("Kekulize", kekulizeMol,
(python::arg("mol"), python::arg("clearAromaticFlags") = false),
docString.c_str());
// ------------------------------------------------------------------------
docString =
"cleans up certain common bad functionalities in the molecule\n\
\n\
ARGUMENTS:\n\
\n\
- mol: the molecule to use\n\
\n\
NOTES:\n\
\n\
- The molecule is modified in place.\n\
\n";
python::def("Cleanup", cleanupMol, (python::arg("mol")), docString.c_str());
python::enum_<MolOps::AromaticityModel>("AromaticityModel")
.value("AROMATICITY_DEFAULT", MolOps::AROMATICITY_DEFAULT)
.value("AROMATICITY_RDKIT", MolOps::AROMATICITY_RDKIT)
.value("AROMATICITY_SIMPLE", MolOps::AROMATICITY_SIMPLE)
.value("AROMATICITY_MDL", MolOps::AROMATICITY_MDL)
.value("AROMATICITY_CUSTOM", MolOps::AROMATICITY_CUSTOM)
.export_values();
// ------------------------------------------------------------------------
docString =
"does aromaticity perception\n\
\n\
ARGUMENTS:\n\
\n\
- mol: the molecule to use\n\
- model: the model to use\n\
\n\
NOTES:\n\
\n\
- The molecule is modified in place.\n\
\n";
python::def("SetAromaticity", setAromaticityMol,
(python::arg("mol"),
python::arg("model") = MolOps::AROMATICITY_DEFAULT),
docString.c_str());
docString =
"finds conjugated bonds\n\
\n\
ARGUMENTS:\n\
\n\
- mol: the molecule to use\n\
\n\
NOTES:\n\
\n\
- The molecule is modified in place.\n\
\n";
python::def("SetConjugation", setConjugationMol, (python::arg("mol")),
docString.c_str());
docString =
"Assigns hybridization states to atoms\n\
\n\
ARGUMENTS:\n\
\n\
- mol: the molecule to use\n\
\n\
NOTES:\n\
\n\
- The molecule is modified in place.\n\
\n";
python::def("SetHybridization", setHybridizationMol, (python::arg("mol")),
docString.c_str());
docString =
"Assigns radical counts to atoms\n\
\n\
ARGUMENTS:\n\
\n\
- mol: the molecule to use\n\
\n\
NOTES:\n\
\n\
- The molecule is modified in place.\n\
\n";
python::def("AssignRadicals", assignRadicalsMol, (python::arg("mol")),
docString.c_str());
// ------------------------------------------------------------------------
docString =
"Finds all subgraphs of a particular length in a molecule\n\
\n\
ARGUMENTS:\n\
\n\
- mol: the molecule to use\n\
\n\
- length: an integer with the target number of bonds for the subgraphs.\n\
\n\
- useHs: (optional) toggles whether or not bonds to Hs that are part of the graph\n\
should be included in the results.\n\
Defaults to 0.\n\
\n\
- rootedAtAtom: (optional) if nonzero, only subgraphs from the specified\n\
atom will be returned.\n\
\n\
RETURNS: a tuple of 2-tuples with bond IDs\n\
\n\
NOTES: \n\
\n\
- Difference between _subgraphs_ and _paths_ :: \n\
\n\
Subgraphs are potentially branched, whereas paths (in our \n\
terminology at least) cannot be. So, the following graph: \n\
\n\
C--0--C--1--C--3--C\n\
|\n\
2\n\
|\n\
C\n\
has 3 _subgraphs_ of length 3: (0,1,2),(0,1,3),(2,1,3)\n\
but only 2 _paths_ of length 3: (0,1,3),(2,1,3)\n\
\n";
python::def(
"FindAllSubgraphsOfLengthN", &findAllSubgraphsOfLengthN,
(python::arg("mol"), python::arg("length"),
python::arg("useHs") = false, python::arg("rootedAtAtom") = -1),
docString.c_str());
// ------------------------------------------------------------------------
docString =
"Finds all subgraphs of a particular length in a molecule\n\
See documentation for FindAllSubgraphsOfLengthN for definitions\n\
\n";
python::def(
"FindAllSubgraphsOfLengthMToN", &findAllSubgraphsOfLengthsMtoNHelper,
(python::arg("mol"), python::arg("min"), python::arg("max"),
python::arg("useHs") = false, python::arg("rootedAtAtom") = -1),
docString.c_str());
// ------------------------------------------------------------------------
docString =
"Finds unique subgraphs of a particular length in a molecule\n\
\n\
ARGUMENTS:\n\
\n\
- mol: the molecule to use\n\
\n\
- length: an integer with the target number of bonds for the subgraphs.\n\
\n\
- useHs: (optional) toggles whether or not bonds to Hs that are part of the graph\n\
should be included in the results.\n\
Defaults to 0.\n\
\n\
- useBO: (optional) Toggles use of bond orders in distinguishing one subgraph from\n\
another.\n\
Defaults to 1.\n\
\n\
- rootedAtAtom: (optional) if nonzero, only subgraphs from the specified\n\
atom will be returned.\n\
\n\
RETURNS: a tuple of tuples with bond IDs\n\
\n\
\n";
python::def("FindUniqueSubgraphsOfLengthN", &findUniqueSubgraphsOfLengthN,
(python::arg("mol"), python::arg("length"),
python::arg("useHs") = false, python::arg("useBO") = true,
python::arg("rootedAtAtom") = -1),
docString.c_str());
// ------------------------------------------------------------------------
docString =
"Finds all paths of a particular length in a molecule\n\
\n\
ARGUMENTS:\n\
\n\
- mol: the molecule to use\n\
\n\
- length: an integer with the target length for the paths.\n\
\n\
- useBonds: (optional) toggles the use of bond indices in the paths.\n\
Otherwise atom indices are used. *Note* this behavior is different\n\
from that for subgraphs.\n\
Defaults to 1.\n\
\n\
- rootedAtAtom: (optional) if nonzero, only paths from the specified\n\
atom will be returned.\n\
\n\
RETURNS: a tuple of tuples with IDs for the bonds.\n\
\n\
NOTES: \n\
\n\
- Difference between _subgraphs_ and _paths_ :: \n\
\n\
Subgraphs are potentially branched, whereas paths (in our \n\
terminology at least) cannot be. So, the following graph: \n\
\n\
C--0--C--1--C--3--C\n\
|\n\
2\n\
|\n\
C\n\
\n\
has 3 _subgraphs_ of length 3: (0,1,2),(0,1,3),(2,1,3)\n\
but only 2 _paths_ of length 3: (0,1,3),(2,1,3)\n\
\n";
python::def("FindAllPathsOfLengthN", &findAllPathsOfLengthN,
(python::arg("mol"), python::arg("length"),
python::arg("useBonds") = true, python::arg("useHs") = false,
python::arg("rootedAtAtom") = -1),
docString.c_str());
// ------------------------------------------------------------------------
docString =
"Finds the bonds within a certain radius of an atom in a molecule\n\
\n\
ARGUMENTS:\n\
\n\
- mol: the molecule to use\n\
\n\
- radius: an integer with the target radius for the environment.\n\
\n\
- rootedAtAtom: the atom to consider\n\
\n\
- useHs: (optional) toggles whether or not bonds to Hs that are part of the graph\n\
should be included in the results.\n\
Defaults to 0.\n\
\n\
RETURNS: a vector of bond IDs\n\
\n\
\n";
python::def("FindAtomEnvironmentOfRadiusN", &findAtomEnvironmentOfRadiusN,
(python::arg("mol"), python::arg("radius"),
python::arg("rootedAtAtom"), python::arg("useHs") = false),
docString.c_str());
python::def("PathToSubmol", pathToSubmolHelper,
(python::arg("mol"), python::arg("path"),
python::arg("useQuery") = false,
python::arg("atomMap") = python::object()),
"", python::return_value_policy<python::manage_new_object>());
// ------------------------------------------------------------------------
docString =
"Finds the disconnected fragments from a molecule.\n\
\n\
For example, for the molecule 'CC(=O)[O-].[NH3+]C' GetMolFrags() returns\n\
((0, 1, 2, 3), (4, 5))\n\
\n\
ARGUMENTS:\n\
\n\
- mol: the molecule to use\n\
- asMols: (optional) if this is provided and true, the fragments\n\
will be returned as molecules instead of atom ids.\n\
- sanitizeFrags: (optional) if this is provided and true, the fragments\n\
molecules will be sanitized before returning them.\n\
- frags: (optional, defaults to None) if this is provided as an empty list,\n\
the result will be mol.GetNumAtoms() long on return and will contain the\n\
fragment assignment for each Atom\n\
- fragsMolAtomMapping: (optional, defaults to None) if this is provided as\n\
an empty list, the result will be a a numFrags long list on return, and\n\
each entry will contain the indices of the Atoms in that fragment:\n\
[(0, 1, 2, 3), (4, 5)]\n\
\n\
RETURNS: a tuple of tuples with IDs for the atoms in each fragment\n\
or a tuple of molecules.\n\
\n";
python::def("GetMolFrags", &GetMolFragsWithMapping,
(python::arg("mol"), python::arg("asMols") = false,
python::arg("sanitizeFrags") = true,
python::arg("frags") = python::object(),
python::arg("fragsMolAtomMapping") = python::object()),
docString.c_str());
// ------------------------------------------------------------------------
docString =
"Splits a molecule into pieces based on PDB residue information.\n\
\n\
ARGUMENTS:\n\
\n\
- mol: the molecule to use\n\
- whiteList: only residues in this list will be returned\n\
- negateList: if set, negates the white list inclusion logic\n\
\n\
RETURNS: a dictionary keyed by residue name with molecules as the values\n\
\n";
python::def(
"SplitMolByPDBResidues", &splitMolByPDBResidues,
(python::arg("mol"), python::arg("whiteList") = python::object(),
python::arg("negateList") = false),
docString.c_str());
// ------------------------------------------------------------------------
docString =
"Splits a molecule into pieces based on PDB chain information.\n\
\n\
ARGUMENTS:\n\
\n\
- mol: the molecule to use\n\
- whiteList: only residues in this list will be returned\n\
- negateList: if set, negates the white list inclusion logic\n\
\n\
RETURNS: a dictionary keyed by chain id with molecules as the values\n\
\n";
python::def(
"SplitMolByPDBChainId", &splitMolByPDBChainId,
(python::arg("mol"), python::arg("whiteList") = python::object(),
python::arg("negateList") = false),
docString.c_str());
// ------------------------------------------------------------------------
docString =
"Returns the formal charge for the molecule.\n\
\n\
ARGUMENTS:\n\
\n\
- mol: the molecule to use\n\
\n";
python::def("GetFormalCharge", &MolOps::getFormalCharge, docString.c_str());
// ------------------------------------------------------------------------
docString =
"Find the shortest path between two atoms using the Bellman-Ford algorithm.\n\
\n\
ARGUMENTS:\n\
\n\
- mol: the molecule to use\n\
- idx1: index of the first atom\n\
- idx2: index of the second atom\n\
\n";
python::def("GetShortestPath", getShortestPathHelper, docString.c_str());
// ------------------------------------------------------------------------
docString =
"Does the CIP stereochemistry assignment \n\
for the molecule's atoms (R/S) and double bond (Z/E).\n\
Chiral atoms will have a property '_CIPCode' indicating\n\
their chiral code.\n\
\n\
ARGUMENTS:\n\
\n\
- mol: the molecule to use\n\
- cleanIt: (optional) if provided, atoms with a chiral specifier that aren't\n\
actually chiral (e.g. atoms with duplicate substituents or only 2 substituents,\n\
etc.) will have their chiral code set to CHI_UNSPECIFIED. Bonds with \n\
STEREOCIS/STEREOTRANS specified that have duplicate substituents based upon the CIP \n\
atom ranks will be marked STEREONONE. \n\
- force: (optional) causes the calculation to be repeated, even if it has already\n\
been done\n\
- flagPossibleStereoCenters (optional) set the _ChiralityPossible property on\n\
atoms that are possible stereocenters\n\
\n";
python::def("AssignStereochemistry", MolOps::assignStereochemistry,
(python::arg("mol"), python::arg("cleanIt") = false,
python::arg("force") = false,
python::arg("flagPossibleStereoCenters") = false),
docString.c_str());
// ------------------------------------------------------------------------
docString =
"Uses a conformer (should be 3D) to assign ChiralTypes to a molecule's atoms\n\
and stereo flags to its bonds\n\
\n\
ARGUMENTS:\n\
\n\
- mol: the molecule to use\n\
- confId: (optional) the conformation to use \n\
- replaceExistingTags: (optional) replace any existing information about stereochemistry\n\
\n";
python::def("AssignStereochemistryFrom3D",
MolOps::assignStereochemistryFrom3D,
(python::arg("mol"), python::arg("confId") = -1,
python::arg("replaceExistingTags") = true),
docString.c_str());
// ------------------------------------------------------------------------
docString =
"Find bonds than can be cis/trans in a molecule and mark them as 'any'.\n\
This function finds any double bonds that can potentially be part\n\
of a cis/trans system. No attempt is made here to mark them cis or trans\n\
\n\
ARGUMENTS:\n\
\n\
- mol: the molecule to use\n\
- cleanIt: (optional) if this option is set to true, any previous marking of _CIPCode\n\
on the bond is cleared - otherwise it is left untouched\n\
\n";
python::def("FindPotentialStereoBonds", MolOps::findPotentialStereoBonds,
(python::arg("mol"), python::arg("cleanIt") = false),
docString.c_str());
// ------------------------------------------------------------------------
docString =
"Removes all stereochemistry info from the molecule.\n\
\n";
python::def("RemoveStereochemistry", MolOps::removeStereochemistry,
(python::arg("mol")), docString.c_str());
// ------------------------------------------------------------------------
docString =
"Sets the chiral tags on a molecule's atoms based on \n\
a 3D conformation.\n\
\n\
ARGUMENTS:\n\
\n\
- mol: the molecule to use\n\
- confId: the conformer id to use, -1 for the default \n\
- replaceExistingTags: if True, existing stereochemistry information will be cleared \n\
before running the calculation. \n\
\n";
python::def("AssignAtomChiralTagsFromStructure",
MolOps::assignChiralTypesFrom3D,
(python::arg("mol"), python::arg("confId") = -1,
python::arg("replaceExistingTags") = true),
docString.c_str());
// ------------------------------------------------------------------------
docString =
"Returns an RDKit topological fingerprint for a molecule\n\
\n\
Explanation of the algorithm below.\n\
\n\
ARGUMENTS:\n\
\n\
- mol: the molecule to use\n\
\n\
- minPath: (optional) minimum number of bonds to include in the subgraphs\n\
Defaults to 1.\n\
\n\
- maxPath: (optional) maximum number of bonds to include in the subgraphs\n\
Defaults to 7.\n\
\n\
- fpSize: (optional) number of bits in the fingerprint\n\
Defaults to 2048.\n\
\n\
- nBitsPerHash: (optional) number of bits to set per path\n\
Defaults to 2.\n\
\n\
- useHs: (optional) include paths involving Hs in the fingerprint if the molecule\n\
has explicit Hs.\n\
Defaults to True.\n\
\n\
- tgtDensity: (optional) fold the fingerprint until this minimum density has\n\
been reached\n\
Defaults to 0.\n\
\n\
- minSize: (optional) the minimum size the fingerprint will be folded to when\n\
trying to reach tgtDensity\n\
Defaults to 128.\n\
\n\
- branchedPaths: (optional) if set both branched and unbranched paths will be\n\
used in the fingerprint.\n\
Defaults to True.\n\
\n\
- useBondOrder: (optional) if set both bond orders will be used in the path hashes\n\
Defaults to True.\n\
\n\
- atomInvariants: (optional) a sequence of atom invariants to use in the path hashes\n\
Defaults to empty.\n\
\n\
- fromAtoms: (optional) a sequence of atom indices. If provided, only paths/subgraphs \n\
starting from these atoms will be used.\n\
Defaults to empty.\n\
\n\
- atomBits: (optional) an empty list. If provided, the result will contain a list \n\
containing the bits each atom sets.\n\
Defaults to empty.\n\
\n\
- bitInfo: (optional) an empty dict. If provided, the result will contain a dict \n\
with bits as keys and corresponding bond paths as values.\n\
Defaults to empty.\n\
\n\
RETURNS: a DataStructs.ExplicitBitVect with _fpSize_ bits\n\
\n\
ALGORITHM:\n\
\n\
This algorithm functions by find all subgraphs between minPath and maxPath in\n\
length. For each subgraph:\n\
\n\
1) A hash is calculated.\n\
\n\
2) The hash is used to seed a random-number generator\n\
\n\
3) _nBitsPerHash_ random numbers are generated and used to set the corresponding\n\
bits in the fingerprint\n\
\n\
\n";
python::def(
"RDKFingerprint", wrapRDKFingerprintMol,
(python::arg("mol"), python::arg("minPath") = 1,
python::arg("maxPath") = 7, python::arg("fpSize") = 2048,
python::arg("nBitsPerHash") = 2, python::arg("useHs") = true,
python::arg("tgtDensity") = 0.0, python::arg("minSize") = 128,
python::arg("branchedPaths") = true,
python::arg("useBondOrder") = true, python::arg("atomInvariants") = 0,
python::arg("fromAtoms") = 0,
python::arg("atomBits") = python::object(),
python::arg("bitInfo") = python::object()),
docString.c_str(),
python::return_value_policy<python::manage_new_object>());
python::scope().attr("_RDKFingerprint_version") =
RDKit::RDKFingerprintMolVersion;
docString =
"Returns an unfolded count-based version of the RDKit fingerprint for a molecule\n\
\n\
ARGUMENTS:\n\
\n\
- mol: the molecule to use\n\
\n\
- minPath: (optional) minimum number of bonds to include in the subgraphs\n\
Defaults to 1.\n\
\n\
- maxPath: (optional) maximum number of bonds to include in the subgraphs\n\
Defaults to 7.\n\
\n\
- useHs: (optional) include paths involving Hs in the fingerprint if the molecule\n\
has explicit Hs.\n\
Defaults to True.\n\
\n\
- branchedPaths: (optional) if set both branched and unbranched paths will be\n\
used in the fingerprint.\n\
Defaults to True.\n\
\n\
- useBondOrder: (optional) if set both bond orders will be used in the path hashes\n\
Defaults to True.\n\
\n\
- atomInvariants: (optional) a sequence of atom invariants to use in the path hashes\n\
Defaults to empty.\n\
\n\
- fromAtoms: (optional) a sequence of atom indices. If provided, only paths/subgraphs \n\
starting from these atoms will be used.\n\
Defaults to empty.\n\
\n\
- atomBits: (optional) an empty list. If provided, the result will contain a list \n\
containing the bits each atom sets.\n\
Defaults to empty.\n\
\n\
- bitInfo: (optional) an empty dict. If provided, the result will contain a dict \n\
with bits as keys and corresponding bond paths as values.\n\
Defaults to empty.\n\
\n\
\n";
python::def(
"UnfoldedRDKFingerprintCountBased", wrapUnfoldedRDKFingerprintMol,
(python::arg("mol"), python::arg("minPath") = 1,
python::arg("maxPath") = 7, python::arg("useHs") = true,
python::arg("branchedPaths") = true,
python::arg("useBondOrder") = true, python::arg("atomInvariants") = 0,
python::arg("fromAtoms") = 0,
python::arg("atomBits") = python::object(),
python::arg("bitInfo") = python::object()),
docString.c_str(),
python::return_value_policy<python::manage_new_object>());
// ------------------------------------------------------------------------
docString =
"Returns a layered fingerprint for a molecule\n\
\n\
NOTE: This function is experimental. The API or results may change from\n\
release to release.\n\
\n\
Explanation of the algorithm below.\n\
\n\
ARGUMENTS:\n\
\n\
- mol: the molecule to use\n\
\n\
- layerFlags: (optional) which layers to include in the fingerprint\n\
See below for definitions. Defaults to all.\n\
\n\
- minPath: (optional) minimum number of bonds to include in the subgraphs\n\
Defaults to 1.\n\
\n\
- maxPath: (optional) maximum number of bonds to include in the subgraphs\n\
Defaults to 7.\n\
\n\
- fpSize: (optional) number of bits in the fingerprint\n\
Defaults to 2048.\n\
\n\
- atomCounts: (optional) \n\
if provided, this should be a list at least as long as the number of atoms\n\
in the molecule. It will be used to provide the count of the number \n\
of paths that set bits each atom is involved in.\n\
NOTE: the list is not zeroed out here.\n\
\n\
- setOnlyBits: (optional) \n\
if provided, only bits that are set in this bit vector will be set\n\
in the result. This is essentially the same as doing:\n\
res &= setOnlyBits\n\
but also has an impact on the atomCounts (if being used)\n\
\n\
- branchedPaths: (optional) if set both branched and unbranched paths will be\n\
used in the fingerprint.\n\
Defaults to True.\n\
\n\
- fromAtoms: (optional) a sequence of atom indices. If provided, only paths/subgraphs \n\
starting from these atoms will be used.\n\
Defaults to empty.\n\
\n\
RETURNS: a DataStructs.ExplicitBitVect with _fpSize_ bits\n\
\n\
Layer definitions:\n\
- 0x01: pure topology\n\
- 0x02: bond order\n\
- 0x04: atom types\n\
- 0x08: presence of rings\n\
- 0x10: ring sizes\n\
- 0x20: aromaticity\n\
\n\
\n";
python::def(
"LayeredFingerprint", wrapLayeredFingerprint,
(python::arg("mol"), python::arg("layerFlags") = 0xFFFFFFFF,
python::arg("minPath") = 1, python::arg("maxPath") = 7,
python::arg("fpSize") = 2048,
python::arg("atomCounts") = python::list(),
python::arg("setOnlyBits") = (ExplicitBitVect *)nullptr,
python::arg("branchedPaths") = true, python::arg("fromAtoms") = 0),
docString.c_str(),
python::return_value_policy<python::manage_new_object>());
python::scope().attr("_LayeredFingerprint_version") =
RDKit::LayeredFingerprintMolVersion;
python::scope().attr("LayeredFingerprint_substructLayers") =
RDKit::substructLayers;
// ------------------------------------------------------------------------
docString =
"A fingerprint using SMARTS patterns \n\
\n\
NOTE: This function is experimental. The API or results may change from\n\
release to release.\n";
python::def("PatternFingerprint", wrapPatternFingerprint,
(python::arg("mol"), python::arg("fpSize") = 2048,
python::arg("atomCounts") = python::list(),
python::arg("setOnlyBits") = (ExplicitBitVect *)nullptr),
docString.c_str(),
python::return_value_policy<python::manage_new_object>());
docString =
"Set the wedging on single bonds in a molecule.\n\
The wedging scheme used is that from Mol files.\n\
\n\
ARGUMENTS:\n\
\n\
- molecule: the molecule to update\n\
- conformer: the conformer to use to determine wedge direction\n\
\n\
\n";
python::def("WedgeMolBonds", WedgeMolBonds, docString.c_str());
docString =
"Set the wedging on an individual bond from a molecule.\n\
The wedging scheme used is that from Mol files.\n\
\n\
ARGUMENTS:\n\
\n\
- bond: the bond to update\n\
- atom ID: the atom from which to do the wedging\n\
- conformer: the conformer to use to determine wedge direction\n\
\n\
\n";
python::def("WedgeBond", WedgeBond, docString.c_str());
// ------------------------------------------------------------------------
docString =
"Replaces sidechains in a molecule with dummy atoms for their attachment points.\n\
\n\
ARGUMENTS:\n\
\n\
- mol: the molecule to be modified\n\
\n\
- coreQuery: the molecule to be used as a substructure query for recognizing the core\n\
\n\
- useChirality: (optional) match the substructure query using chirality\n\
\n\
RETURNS: a new molecule with the sidechains removed\n\
\n\
NOTES:\n\
\n\
- The original molecule is *not* modified.\n\
\n\
EXAMPLES:\n\
\n\
The following examples substitute SMILES/SMARTS strings for molecules, you'd have\n\
to actually use molecules:\n\
\n\
- ReplaceSidechains('CCC1CCC1','C1CCC1') -> '[Xa]C1CCC1'\n\
\n\
- ReplaceSidechains('CCC1CC1','C1CCC1') -> ''\n\
\n\
- ReplaceSidechains('C1CC2C1CCC2','C1CCC1') -> '[Xa]C1CCC1[Xb]'\n\
\n";
python::def("ReplaceSidechains", replaceSidechains,
(python::arg("mol"), python::arg("coreQuery"),
python::arg("useChirality") = false),
docString.c_str(),
python::return_value_policy<python::manage_new_object>());
// ------------------------------------------------------------------------
docString =
"Removes the core of a molecule and labels the sidechains with dummy atoms based on\n\
The matches indices given in the matching vector matches.\n\
Calling:\n\
ReplaceCore(mol,core,mol.GetSubstructMatch(core))\n\
\n\
ARGUMENTS:\n\
\n\
- mol: the molecule to be modified\n\
\n\
- coreQuery: the molecule to be used as a substructure query for recognizing the core\n\
\n\
- matches: a matching vector of the type returned by mol.GetSubstructMatch(...)\n\
\n\
- replaceDummies: toggles replacement of atoms that match dummies in the query\n\
\n\
- labelByIndex: toggles labeling the attachment point dummy atoms with \n\
the index of the core atom they're attached to.\n\
\n\
- requireDummyMatch: if the molecule has side chains that attach at points not\n\
flagged with a dummy, it will be rejected (None is returned)\n\
\n\
RETURNS: a new molecule with the core removed\n\
\n\
NOTES:\n\
\n\
- The original molecule is *not* modified.\n\
EXAMPLES:\n\
>>> from rdkit.Chem import MolToSmiles, MolFromSmiles, ReplaceCore\n\
>>> mol = MolFromSmiles('C1ONNCC1')\n\
>>> core = MolFromSmiles('NN')\n\
\n\
Note: Using isomericSmiles is necessary to see the labels.\n\
>>> MolToSmiles(ReplaceCore(mol, core, mol.GetSubstructMatch(core)), isomericSmiles=True)\n\
'[1*]OCCC[2*]'\n\
\n\
Since NN is symmetric, we should actually get two matches here if we don't\n\
uniquify the matches.\n\
>>> [MolToSmiles(ReplaceCore(mol, core, match), isomericSmiles=True)\n\
... for match in mol.GetSubstructMatches(core, uniquify=False)]\n\
['[1*]OCCC[2*]', '[1*]CCCO[2*]']\n\
\n\
";
python::def("ReplaceCore", replaceCoreHelper,
(python::arg("mol"), python::arg("core"),
python::arg("matches"), python::arg("replaceDummies") = true,
python::arg("labelByIndex") = false,
python::arg("requireDummyMatch") = false),
docString.c_str(),
python::return_value_policy<python::manage_new_object>());
// ------------------------------------------------------------------------
docString =
"Removes the core of a molecule and labels the sidechains with dummy atoms.\n\
\n\
ARGUMENTS:\n\
\n\
- mol: the molecule to be modified\n\
\n\
- coreQuery: the molecule to be used as a substructure query for recognizing the core\n\
\n\
- replaceDummies: toggles replacement of atoms that match dummies in the query\n\
\n\
- labelByIndex: toggles labeling the attachment point dummy atoms with \n\
the index of the core atom they're attached to.\n\
\n\
- requireDummyMatch: if the molecule has side chains that attach at points not\n\
flagged with a dummy, it will be rejected (None is returned)\n\
\n\
- useChirality: use chirality matching in the coreQuery\n\
\n\
RETURNS: a new molecule with the core removed\n\
\n\
NOTES:\n\
\n\
- The original molecule is *not* modified.\n\
\n\
EXAMPLES:\n\
\n\
>>> from rdkit.Chem import MolToSmiles, MolFromSmiles, MolFromSmarts, ReplaceCore\n\
\n\
Basic usage: remove a core as specified by SMILES (or another molecule).\n\
To get the atom labels which are stored as an isotope of the matched atom, \n\
the output must be written as isomeric smiles. \n\
A small confusion is that atom isotopes of 0 aren't shown in smiles strings.\n\
\n\
Here we remove a ring and leave the decoration (r-group) behind.\n\
\n\
>>> MolToSmiles(ReplaceCore(MolFromSmiles('CCCC1CCC1'),MolFromSmiles('C1CCC1')),\n\
... isomericSmiles=True)\n\
'[1*]CCC'\n\
\n\
The isotope label by default is matched by the first connection found. In order to\n\
indicate which atom the decoration is attached in the core query, use labelByIndex=True.\n\
Here the attachment is from the third atom in the smiles string, which is indexed by 3\n\
in the core, like all good computer scientists expect, atoms indices start at 0.\n\
>>> MolToSmiles(ReplaceCore(MolFromSmiles('CCN1CCC1'),MolFromSmiles('C1CCN1'),\n\
... labelByIndex=True),\n\
... isomericSmiles=True)\n\
'[3*]CC'\n\
\n\
Non-core matches just return None\n\
>>> ReplaceCore(MolFromSmiles('CCC1CC1'),MolFromSmiles('C1CCC1'))\n\
\n\
The bond between atoms are considered part of the core and are removed as well\n\
>>> MolToSmiles(ReplaceCore(MolFromSmiles('C1CC2C1CCC2'),MolFromSmiles('C1CCC1')),\n\
... isomericSmiles=True)\n\
'[1*]CCC[2*]'\n\
>>> MolToSmiles(ReplaceCore(MolFromSmiles('C1CNCC1'),MolFromSmiles('N')),\n\
... isomericSmiles=True)\n\
'[1*]CCCC[2*]'\n\
\n\
When using dummy atoms, cores should be read in as SMARTS. When read as SMILES\n\
dummy atoms only match other dummy atoms.\n\
The replaceDummies flag indicates whether matches to the dummy atoms should be considered as part\n\
of the core or as part of the decoration (r-group)\n\
>>> MolToSmiles(ReplaceCore(MolFromSmiles('C1CNCC1'),MolFromSmarts('[*]N[*]'),\n\
... replaceDummies=True),\n\
... isomericSmiles=True)\n\
'[1*]CC[2*]'\n\
>>> MolToSmiles(ReplaceCore(MolFromSmiles('C1CNCC1'),MolFromSmarts('[*]N[*]'),\n\
... replaceDummies=False),\n\
... isomericSmiles=True)\n\
'[1*]CCCC[2*]'\n\
\n\
\n\
>>> MolToSmiles(ReplaceCore(MolFromSmiles('C1CCC1CN'),MolFromSmarts('C1CCC1[*]'),\n\
... replaceDummies=False),\n\
... isomericSmiles=True)\n\
'[1*]CN'\n\
\n\
\n";
python::def("ReplaceCore",
(ROMol * (*)(const ROMol &, const ROMol &, bool, bool, bool,
bool)) replaceCore,
(python::arg("mol"), python::arg("coreQuery"),
python::arg("replaceDummies") = true,
python::arg("labelByIndex") = false,
python::arg("requireDummyMatch") = false,
python::arg("useChirality") = false),
docString.c_str(),
python::return_value_policy<python::manage_new_object>());
docString = "Return a new molecule with all BRICS bonds broken";
python::def("FragmentOnBRICSBonds", MolFragmenter::fragmentOnBRICSBonds,
(python::arg("mol")), docString.c_str(),
python::return_value_policy<python::manage_new_object>());
docString =
"Return a new molecule with all specified bonds broken\n\
\n\
ARGUMENTS:\n\
\n\
- mol - the molecule to be modified\n\
- bondIndices - indices of the bonds to be broken\n\
- addDummies - toggles addition of dummy atoms to indicate where \n\
bonds were broken\n\
- dummyLabels - used to provide the labels to be used for the dummies.\n\
the first element in each pair is the label for the dummy\n\
that replaces the bond's beginAtom, the second is for the \n\
dummy that replaces the bond's endAtom. If not provided, the\n\
dummies are labeled with atom indices.\n\
- bondTypes - used to provide the bond type to use between the\n\
fragments and the dummy atoms. If not provided, defaults to single. \n\
- cutsPerAtom - used to return the number of cuts made at each atom. \n\
\n\
RETURNS:\n\
a new Mol with the modifications\n\
";
python::def("FragmentOnBonds", fragmentOnBondsHelper,
(python::arg("mol"), python::arg("bondIndices"),
python::arg("addDummies") = true,
python::arg("dummyLabels") = python::object(),
python::arg("bondTypes") = python::object(),
python::arg("cutsPerAtom") = python::list()),
docString.c_str(),
python::return_value_policy<python::manage_new_object>());
docString = "fragment on some bonds";
python::def(
"FragmentOnSomeBonds", fragmentOnSomeBondsHelper,
(python::arg("mol"), python::arg("bondIndices"),
python::arg("numToBreak") = 1, python::arg("addDummies") = true,
python::arg("dummyLabels") = python::object(),
python::arg("bondTypes") = python::object(),
python::arg("returnCutsPerAtom") = false),
docString.c_str());
// ------------------------------------------------------------------------
docString =
"Adds a recursive query to an atom\n\
\n\
ARGUMENTS:\n\
\n\
- mol: the molecule to be modified\n\
\n\
- query: the molecule to be used as the recursive query (this will be copied)\n\
\n\
- atomIdx: the atom to modify\n\
\n\
- preserveExistingQuery: (optional) if this is set, existing query information on the atom will be preserved\n\
\n\
RETURNS: None\n\
\n";
python::def(
"AddRecursiveQuery", addRecursiveQuery,
(python::arg("mol"), python::arg("query"), python::arg("atomIdx"),
python::arg("preserveExistingQuery") = true),
docString.c_str());
// ------------------------------------------------------------------------
docString =
"Returns a copy of a molecule with renumbered atoms\n\
\n\
ARGUMENTS:\n\
\n\
- mol: the molecule to be modified\n\
\n\
- newOrder: the new ordering the atoms (should be numAtoms long)\n\
for example: if newOrder is [3,2,0,1], then atom 3 in the original \n\
molecule will be atom 0 in the new one\n\
\n\
\n";
python::def("RenumberAtoms", renumberAtomsHelper,
(python::arg("mol"), python::arg("newOrder")),
docString.c_str(),
python::return_value_policy<python::manage_new_object>());
// ------------------------------------------------------------------------
docString = "Returns svg for a molecule";
python::def("MolToSVG", molToSVG,
(python::arg("mol"), python::arg("width") = 300,
python::arg("height") = 300,
python::arg("highlightAtoms") = python::object(),
python::arg("kekulize") = true,
python::arg("lineWidthMult") = 1, python::arg("fontSize") = 12,
python::arg("includeAtomCircles") = true),
docString.c_str());
python::enum_<MolOps::AdjustQueryWhichFlags>("AdjustQueryWhichFlags")
.value("ADJUST_IGNORENONE", MolOps::ADJUST_IGNORENONE)
.value("ADJUST_IGNORECHAINS", MolOps::ADJUST_IGNORECHAINS)
.value("ADJUST_IGNORERINGS", MolOps::ADJUST_IGNORERINGS)
.value("ADJUST_IGNOREDUMMIES", MolOps::ADJUST_IGNOREDUMMIES)
.value("ADJUST_IGNORENONDUMMIES", MolOps::ADJUST_IGNORENONDUMMIES)
.value("ADJUST_IGNOREALL", MolOps::ADJUST_IGNOREALL)
.export_values();
docString =
"Parameters controlling which components of the query atoms are adjusted.\n\
\n\
Attributes:\n\
- adjustDegree: \n\
modified atoms have an explicit-degree query added based on their degree in the query \n\
- adjustHeavyDegree: \n\
modified atoms have a heavy-atom-degree query added based on their degree in the query \n\
- adjustDegreeFlags: \n\
controls which atoms have a degree query added \n\
- adjustRingCount: \n\
modified atoms have a ring-count query added based on their ring count in the query \n\
- adjustRingCountFlags: \n\
controls which atoms have a ring-count query added \n\
- makeDummiesQueries: \n\
dummy atoms that do not have a specified isotope are converted to any-atom queries \n\
- aromatizeIfPossible: \n\
attempts aromaticity perception on the molecule \n\
- makeBondsGeneric: \n\
convert bonds to generic (any) bonds \n\
- makeBondsGenericFlags: \n\
controls which bonds are made generic \n\
- makeAtomsGeneric: \n\
convert atoms to generic (any) atoms \n\
- makeAtomsGenericFlags: \n\
controls which atoms are made generic \n\
- adjustRingChain: \n\
modified atoms have a ring-chain query added based on whether or not they are in a ring \n\
- adjustRingChainFlags: \n\
controls which atoms have a ring-chain query added \n\
\n\
A note on the flags controlling which atoms/bonds are modified: \n\
These generally limit the set of atoms/bonds to be modified.\n\
For example if ADJUST_RINGSONLY is set, then only atoms in rings will be modified.\n\
ADJUST_IGNORENONE causes all atoms to be modified\n\
ADJUST_SETALL sets all of the ADJUST flags\n\
Some of the options obviously make no sense for bonds\n\
";
python::class_<MolOps::AdjustQueryParameters>("AdjustQueryParameters",
docString.c_str())
.def_readwrite("adjustDegree",
&MolOps::AdjustQueryParameters::adjustDegree)
.def_readwrite("adjustDegreeFlags",
&MolOps::AdjustQueryParameters::adjustDegreeFlags)
.def_readwrite("adjustHeavyDegree",
&MolOps::AdjustQueryParameters::adjustHeavyDegree)
.def_readwrite("adjustHeavyDegreeFlags",
&MolOps::AdjustQueryParameters::adjustHeavyDegreeFlags)
.def_readwrite("adjustRingCount",
&MolOps::AdjustQueryParameters::adjustRingCount)
.def_readwrite("adjustRingCountFlags",
&MolOps::AdjustQueryParameters::adjustRingCountFlags)
.def_readwrite("makeDummiesQueries",
&MolOps::AdjustQueryParameters::makeDummiesQueries)
.def_readwrite("aromatizeIfPossible",
&MolOps::AdjustQueryParameters::aromatizeIfPossible)
.def_readwrite("makeBondsGeneric",
&MolOps::AdjustQueryParameters::makeBondsGeneric)
.def_readwrite("makeBondsGenericFlags",
&MolOps::AdjustQueryParameters::makeBondsGenericFlags)
.def_readwrite("makeAtomsGeneric",
&MolOps::AdjustQueryParameters::makeAtomsGeneric)
.def_readwrite("makeAtomsGenericFlags",
&MolOps::AdjustQueryParameters::makeAtomsGenericFlags)
.def_readwrite("adjustRingChain",
&MolOps::AdjustQueryParameters::adjustRingChain)
.def_readwrite("adjustRingChainFlags",
&MolOps::AdjustQueryParameters::adjustRingChainFlags);
docString =
"Returns a new molecule where the query properties of atoms have been "
"modified.";
python::def("AdjustQueryProperties", adjustQueryPropertiesHelper,
(python::arg("mol"), python::arg("params") = python::object()),
docString.c_str(),
python::return_value_policy<python::manage_new_object>());
};
};
} // namespace RDKit
void wrap_molops() { RDKit::molops_wrapper::wrap(); }
|