File: blah.hpp

package info (click to toggle)
rdkit 201809.1%2Bdfsg-6
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 123,688 kB
  • sloc: cpp: 230,509; python: 70,501; java: 6,329; ansic: 5,427; sql: 1,899; yacc: 1,739; lex: 1,243; makefile: 445; xml: 229; fortran: 183; sh: 123; cs: 93
file content (436 lines) | stat: -rw-r--r-- 14,013 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
//
//  Copyright (C) 2001-2014 Greg Landrum and Rational Discovery LLC
//
//   @@ All Rights Reserved @@
//  This file is part of the RDKit.
//  The contents are covered by the terms of the BSD license
//  which is included in the file license.txt, found at the root
//  of the RDKit source tree.
//
/*! \file Atom.h

  \brief Defines the Atom class and associated typedefs

*/
#ifndef _RD_ATOM_H
#define _RD_ATOM_H

// Std stuff
#include <iostream>
#include <boost/foreach.hpp>

// ours
#include <RDGeneral/Invariant.h>
#include <Query/QueryObjects.h>
#include <RDGeneral/types.h>
#include <RDGeneral/RDProps.h>
#include <GraphMol/details.h>

namespace RDKit {
class ROMol;
class RWMol;
class AtomMonomerInfo;

//! The class for representing atoms
/*!

  <b>Notes:</b>
    - many of the methods of Atom require that the Atom be associated
      with a molecule (an ROMol).
    - each Atom maintains a Dict of \c properties:
        - Each \c property is keyed by name and can store an
          arbitrary type.
        - \c Properties can be marked as \c calculated, in which case
          they will be cleared when the \c clearComputedProps() method
          is called.
        - Because they have no impact upon chemistry, all \c property
          operations are \c const, this allows extra flexibility for
          clients who need to store extra data on Atom objects.
    - Atom objects are lazy about computing their explicit and implicit valence
      values.  These will not be computed until their values are requested.

  <b>Chirality:</b>

  The chirality of an Atom is determined by two things:
    - its \c chiralTag
    - the input order of its bonds (see note below for handling of
      implicit Hs)

  For tetrahedral coordination, the \c chiralTag tells you what
  direction you have to rotate to get from bond 2 to bond 3 while looking
  down bond 1. This is pretty much identical to the SMILES representation of
  chirality.

  NOTE: if an atom has an implicit H, the bond to that H is considered to be
  at the *end* of the list of other bonds.

*/
class Atom : public RDProps {
  friend class MolPickler;  //!< the pickler needs access to our privates
  friend class ROMol;
  friend class RWMol;

 public:
  typedef boost::shared_ptr<Atom> ATOM_SPTR;
  typedef boost::shared_ptr<const Atom> C_ATOM_SPTR;
  // FIX: grn...
  typedef Queries::Query<int, Atom const *, true> QUERYATOM_QUERY;

  //! store hybridization
  typedef enum {
    UNSPECIFIED = 0,  //!< hybridization that hasn't been specified
    S,
    SP,
    SP2,
    SP3,
    SP3D,
    SP3D2,
    OTHER  //!< unrecognized hybridization
  } HybridizationType;

  //! store type of chirality
  typedef enum {
    CHI_UNSPECIFIED = 0,  //!< chirality that hasn't been specified
    CHI_TETRAHEDRAL_CW,   //!< tetrahedral: clockwise rotation (SMILES \@\@)
    CHI_TETRAHEDRAL_CCW,  //!< tetrahedral: counter-clockwise rotation (SMILES
                          //\@)
    CHI_OTHER             //!< some unrecognized type of chirality
  } ChiralType;

  Atom();
  //! construct an Atom with a particular atomic number
  explicit Atom(unsigned int num);
  //! construct an Atom with a particular symbol (looked up in the
  // PeriodicTable)
  explicit Atom(const std::string &what);
  Atom(const Atom &other);
  virtual ~Atom();

  //! makes a copy of this Atom and returns a pointer to it.
  /*!
    <b>Note:</b> the caller is responsible for <tt>delete</tt>ing the result
  */
  virtual Atom *copy() const;

  //! returns our atomic number
  int getAtomicNum() const { return d_atomicNum; };
  //! sets our atomic number
  void setAtomicNum(int newNum) { d_atomicNum = newNum; };

  //! returns our symbol (determined by our atomic number)
  std::string getSymbol() const;

  //! returns a reference to the ROMol that owns this Atom
  ROMol &getOwningMol() const {
    PRECONDITION(dp_mol, "no owner");
    return *dp_mol;
  };

  //! returns our index within the ROMol
  unsigned int getIdx() const { return d_index; };
  //! sets our index within the ROMol
  /*!
    <b>Notes:</b>
      - this makes no sense if we do not have an owning molecule
      - the index should be <tt>< this->getOwningMol()->getNumAtoms()</tt>
  */
  void setIdx(unsigned int index) { d_index = index; };
  //! overload
  template <class U>
  void setIdx(const U index) {
    setIdx(rdcast<unsigned int>(index));
  }
  //! returns the explicit degree of the Atom (number of bonded
  //!   neighbors in the graph)
  /*!
    <b>Notes:</b>
      - requires an owning molecule
  */
  unsigned int getDegree() const;

  //! returns the total degree of the Atom (number of bonded
  //!   neighbors + number of Hs)
  /*!
    <b>Notes:</b>
      - requires an owning molecule
  */
  unsigned int getTotalDegree() const;

  //! \brief returns the total number of Hs (implicit and explicit) that
  //! this Atom is bound to
  /*!
    <b>Notes:</b>
      - requires an owning molecule
  */
  unsigned int getTotalNumHs(bool includeNeighbors = false) const;

  //! \brief returns the total valence (implicit and explicit)
  //! for an atom
  /*!
    <b>Notes:</b>
      - requires an owning molecule
  */
  unsigned int getTotalValence() const;

  //! returns the number of implicit Hs this Atom is bound to
  /*!
    <b>Notes:</b>
      - requires an owning molecule
  */
  unsigned int getNumImplicitHs() const;

  //! returns the explicit valence (including Hs) of this atom
  int getExplicitValence() const;

  //! returns the implicit valence for this Atom
  /*!
    <b>Notes:</b>
      - requires an owning molecule
  */
  int getImplicitValence() const;

  //! returns the number of radical electrons for this Atom
  /*!
    <b>Notes:</b>
      - requires an owning molecule
  */
  unsigned int getNumRadicalElectrons() const { return d_numRadicalElectrons; };
  void setNumRadicalElectrons(unsigned int num) {
    d_numRadicalElectrons = num;
  };

  //! returns the formal charge of this atom
  int getFormalCharge() const { return d_formalCharge; };
  //! set's the formal charge of this atom
  void setFormalCharge(int what) { d_formalCharge = what; };

  //! \brief sets our \c noImplicit flag, indicating whether or not
  //!  we are allowed to have implicit Hs
  void setNoImplicit(bool what) { df_noImplicit = what; };
  //! returns the \c noImplicit flag
  bool getNoImplicit() const { return df_noImplicit; };

  //! sets our number of explict Hs
  void setNumExplicitHs(unsigned int what) { d_numExplicitHs = what; };
  //! returns our number of explict Hs
  unsigned int getNumExplicitHs() const { return d_numExplicitHs; };

  //! sets our \c isAromatic flag, indicating whether or not we are aromatic
  void setIsAromatic(bool what) { df_isAromatic = what; };
  //! returns our \c isAromatic flag
  bool getIsAromatic() const { return df_isAromatic; };

  //! returns our mass
  double getMass() const;

  //! sets our isotope number
  void setIsotope(unsigned int what);
  //! returns our isotope number
  unsigned int getIsotope() const { return d_isotope; };

  //! sets our \c chiralTag
  void setChiralTag(ChiralType what) { d_chiralTag = what; };
  //! inverts our \c chiralTag
  void invertChirality();
  //! returns our \c chiralTag
  ChiralType getChiralTag() const {
    return static_cast<ChiralType>(d_chiralTag);
  };

  //! sets our hybridization
  void setHybridization(HybridizationType what) { d_hybrid = what; };
  //! returns our hybridization
  HybridizationType getHybridization() const {
    return static_cast<HybridizationType>(d_hybrid);
  };

  // ------------------------------------
  // Some words of explanation before getting down into
  // the query stuff.
  // These query functions are really only here so that they
  //  can have real functionality in subclasses (like QueryAtoms).
  // Since pretty much it's gonna be a mistake to call any of these
  //  (ever), we're saddling them all with a precondition which
  //  is guaranteed to fail.  I'd like to have them be pure virtual,
  //  but that doesn't work since we need to be able to instantiate
  //  Atoms.
  // ------------------------------------

  // This method can be used to distinguish query atoms from standard atoms:
  virtual bool hasQuery() const { return false; };

  //! NOT CALLABLE
  virtual void setQuery(QUERYATOM_QUERY *what);

  //! NOT CALLABLE
  virtual QUERYATOM_QUERY *getQuery() const;
  //! NOT CALLABLE
  virtual void expandQuery(
      QUERYATOM_QUERY *what,
      Queries::CompositeQueryType how = Queries::COMPOSITE_AND,
      bool maintainOrder = true);

  //! returns whether or not we match the argument
  /*!
      <b>Notes:</b>
        The general rule is that if a property on this atom has a non-default
     value,
        the property on the other atom must have the same value.
        The exception to this is H counts, which are ignored. These turns out to
     be
          impossible to handle generally, so rather than having odd and
     hard-to-explain
          exceptions, we ignore them entirely.

        Here are the rules for atom-atom matching:
        | This    | Other   | Match | Reason
        | CCO     | CCO     | Yes   |
        | CCO     | CC[O-]  | Yes   |
        | CC[O-]  | CCO     | No    | Charge
        | CC[O-]  | CC[O-]  | Yes   |
        | CC[OH]  | CC[O-]  | Yes   |
        | CC[OH]  | CCOC    | Yes   |
        | CCO     | CCOC    | Yes   |
        | CCC     | CCC     | Yes   |
        | CCC     | CC[14C] | Yes   |
        | CC[14C] | CCC     | No    | Isotope
        | CC[14C] | CC[14C] | Yes   |
        | C       | OCO     | Yes   |
        | [CH]    | OCO     | Yes   |
        | [CH2]   | OCO     | Yes   |
        | [CH3]   | OCO     | No    | Radical
        | C       | O[CH2]O | Yes   |
        | [CH2]   | O[CH2]O | Yes   |
  */
  virtual bool Match(Atom const *what) const;
  //! \overload
  virtual inline bool Match(const ATOM_SPTR &what) const {
    return Match(what.get());
  };

  //! returns the perturbation order for a list of integers
  /*!

    This value is associated with chirality.

    \param probe a list of bond indices.  This must be the same
      length as our number of incoming bonds (our degree).

    \return the number of swaps required to convert the ordering
      of the probe list to match the order of our incoming bonds:
      e.g. if our incoming bond order is: <tt>[0,1,2,3]</tt>
      \verbatim
      getPerturbationOrder([1,0,2,3]) = 1
      getPerturbationOrder([1,2,3,0]) = 3
      getPerturbationOrder([1,2,0,3]) = 2
      \endverbatim

    See the class documentation for a more detailed description
    of our representation of chirality.

    <b>Notes:</b>
      - requires an owning molecule

  */
  int getPerturbationOrder(INT_LIST probe) const;

  //! calculates any of our lazy \c properties
  /*!
    <b>Notes:</b>
      - requires an owning molecule
      - the current lazy \c properties are implicit and explicit valence
  */
  void updatePropertyCache(bool strict = true);

  bool needsUpdatePropertyCache() const;

  //! calculates and returns our explicit valence
  /*!
    <b>Notes:</b>
      - requires an owning molecule
  */
  int calcExplicitValence(bool strict = true);

  //! calculates and returns our implicit valence
  /*!
    <b>Notes:</b>
      - requires an owning molecule
  */
  int calcImplicitValence(bool strict = true);

  AtomMonomerInfo *getMonomerInfo() { return dp_monomerInfo; };
  const AtomMonomerInfo *getMonomerInfo() const { return dp_monomerInfo; };
  //! takes ownership of the pointer
  void setMonomerInfo(AtomMonomerInfo *info) { dp_monomerInfo = info; };

  //! Set the atom map Number of the atom
  void setAtomMapNum(int mapno, bool strict = true) {
    PRECONDITION(
        !strict || (mapno >= 0 && mapno < 1000),
        "atom map number out of range [0..1000], use strict=false to override");
    if (mapno) {
      setProp(common_properties::molAtomMapNumber, mapno);
    } else if (hasProp(common_properties::molAtomMapNumber)) {
      clearProp(common_properties::molAtomMapNumber);
    }
  }
  //! Gets the atom map Number of the atom, if no atom map exists, 0 is
  //! returned.
  int getAtomMapNum() const {
    int mapno = 0;
    getPropIfPresent(common_properties::molAtomMapNumber, mapno);
    return mapno;
  }

 protected:
  //! sets our owning molecule
  void setOwningMol(ROMol *other);
  //! sets our owning molecule
  void setOwningMol(ROMol &other) { setOwningMol(&other); };

  bool df_isAromatic;
  bool df_noImplicit;
  boost::uint8_t d_numExplicitHs;
  boost::int8_t d_formalCharge;
  boost::uint8_t d_atomicNum;
  // NOTE that these cannot be signed, they are calculated using
  // a lazy scheme and are initialized to -1 to indicate that the
  // calculation has not yet been done.
  boost::int8_t d_implicitValence, d_explicitValence;
  boost::uint8_t d_numRadicalElectrons;
  boost::uint8_t d_chiralTag;
  boost::uint8_t d_hybrid;

  atomindex_t d_index;
  boost::uint16_t d_isotope;

  ROMol *dp_mol;
  AtomMonomerInfo *dp_monomerInfo;
  void initAtom();
};

//! Set the atom's MDL integer RLabel
//   Setting to 0 clears the rlabel.  Rlabel must be in the range [0..99]
void setAtomRLabel(Atom *atm, int rlabel);
int getAtomRLabel(const Atom *atm);

//! Set the atom's MDL atom alias
//   Setting to an empty string clears the alias
void setAtomAlias(Atom *atom, const std::string &alias);
std::string getAtomAlias(const Atom *atom);

//! Set the atom's MDL atom value
//   Setting to an empty string clears the value
//   This is where recursive smarts get stored in MolBlock Queries
void setAtomValue(Atom *atom, const std::string &value);
std::string getAtomValue(const Atom *atom);

//! Sets the supplemental label that will follow the atom when writing
//   smiles strings.
void setSupplementalSmilesLabel(Atom *atom, const std::string &label);
std::string getSupplementalSmilesLabel(const Atom *atom);
};
//! allows Atom objects to be dumped to streams
std::ostream &operator<<(std::ostream &target, const RDKit::Atom &at);

#endif