1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157
|
// $Id$
//
// Copyright (C) 2002-2010 Greg Landrum and Rational Discovery LLC
// @@ All Rights Reserved @@
// This file is part of the RDKit.
// The contents are covered by the terms of the BSD license
// which is included in the file license.txt, found at the root
// of the RDKit source tree.
//
#define PY_ARRAY_UNIQUE_SYMBOL Py_Array_API_Clustering
#include <RDBoost/Wrap.h>
#include <boost/cstdint.hpp>
namespace python = boost::python;
#include <RDBoost/import_array.h>
typedef double real;
extern "C" void distdriver_(boost::int64_t *n, boost::int64_t *len, real *dists,
boost::int64_t *toggle, boost::int64_t *ia,
boost::int64_t *ib, real *crit);
//
// Rather than deal with any nonsense like trying to get
// the distance matrix built properly on the f2c side of things
// (thus drowning in the waves of f2c hate), we'll generate
// the distance matrix on our own here and then call distdriver_
//
void clusterit(real *dataP, boost::int64_t n, boost::int64_t m,
boost::int64_t iopt, boost::int64_t *ia, boost::int64_t *ib,
real *crit) {
real *dists;
boost::int64_t len;
boost::int64_t pos = 0;
boost::int64_t i, j, k, iTab, jTab;
double tmp;
len = (n * (n - 1)) / 2;
dists = (real *)calloc(len, sizeof(real));
for (i = 1; i < n; i++) {
iTab = i * m;
for (j = 0; j < i; j++) {
jTab = j * m;
for (k = 0; k < m; k++) {
tmp = dataP[iTab + k] - dataP[jTab + k];
dists[pos] += tmp * tmp;
}
pos++;
}
}
distdriver_(&n, &len, dists, &iopt, ia, ib, crit);
free(dists);
};
static PyObject *Clustering_MurtaghCluster(python::object data, int nPts,
int sz, int option) {
PyArrayObject *dataContig;
boost::int64_t *ia, *ib;
real *crit;
PyObject *res;
PyObject *tmp;
npy_intp dims[2];
if (PyArray_Check(data.ptr())) {
dataContig = reinterpret_cast<PyArrayObject *>(
PyArray_ContiguousFromObject(data.ptr(), NPY_DOUBLE, 2, 2));
} else {
throw_value_error("PyArray_Type expected as input");
return nullptr;
}
ia = (boost::int64_t *)calloc(nPts, sizeof(boost::int64_t));
ib = (boost::int64_t *)calloc(nPts, sizeof(boost::int64_t));
crit = (real *)calloc(nPts, sizeof(real));
clusterit((real *)PyArray_DATA(dataContig), nPts, sz, option, ia, ib, crit);
dims[0] = nPts;
res = PyTuple_New(3);
// NOTE: these operations maintain pointers to the respective arrays,
// that's why it's ok that we do not free them in this function,
// Python will take care of it for us.
//
tmp = PyArray_SimpleNewFromData(1, dims, NPY_LONG, (void *)ia);
PyTuple_SetItem(res, 0, (PyObject *)tmp);
tmp = PyArray_SimpleNewFromData(1, dims, NPY_LONG, (void *)ib);
PyTuple_SetItem(res, 1, (PyObject *)tmp);
tmp = PyArray_SimpleNewFromData(1, dims, NPY_DOUBLE, (void *)crit);
PyTuple_SetItem(res, 2, (PyObject *)tmp);
return res;
};
void distclusterit(real *dists, boost::int64_t n, boost::int64_t iopt,
boost::int64_t *ia, boost::int64_t *ib, real *crit) {
boost::int64_t len;
len = (n * (n - 1)) / 2;
distdriver_(&n, &len, dists, &iopt, ia, ib, crit);
};
static PyObject *Clustering_MurtaghDistCluster(python::object data, int nPts,
int option) {
PyArrayObject *dataContig;
boost::int64_t *ia, *ib;
real *crit;
PyObject *res = PyTuple_New(3);
PyObject *tmp;
npy_intp dims[] = {1};
if (PyArray_Check(data.ptr())) {
dataContig = reinterpret_cast<PyArrayObject *>(
PyArray_ContiguousFromObject(data.ptr(), NPY_DOUBLE, 1, 1));
} else {
throw_value_error("PyArray_Type expected as input");
return nullptr;
}
ia = (boost::int64_t *)calloc(nPts, sizeof(boost::int64_t));
ib = (boost::int64_t *)calloc(nPts, sizeof(boost::int64_t));
crit = (real *)calloc(nPts, sizeof(real));
distclusterit((real *)PyArray_DATA(dataContig), nPts, option, ia, ib, crit);
dims[0] = nPts;
//
// NOTE: these operations maintain pointers to the respective arrays,
// that's why it's ok that we do not free them in this function,
// Python will take care of it for us.
//
tmp = PyArray_SimpleNewFromData(1, dims, NPY_LONG, (void *)ia);
PyTuple_SetItem(res, 0, tmp);
tmp = PyArray_SimpleNewFromData(1, dims, NPY_LONG, (void *)ib);
PyTuple_SetItem(res, 1, tmp);
tmp = PyArray_SimpleNewFromData(1, dims, NPY_DOUBLE, (void *)crit);
PyTuple_SetItem(res, 2, tmp);
return res;
};
BOOST_PYTHON_MODULE(Clustering) {
rdkit_import_array();
python::def("MurtaghCluster", Clustering_MurtaghCluster,
(python::arg("data"), python::arg("nPts"), python::arg("sz"),
python::arg("option")),
"TODO: provide docstring");
python::def("MurtaghDistCluster", Clustering_MurtaghDistCluster,
(python::arg("data"), python::arg("nPts"), python::arg("option")),
"TODO: provide docstring");
}
|