File: hc.f

package info (click to toggle)
rdkit 201809.1%2Bdfsg-6
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 123,688 kB
  • sloc: cpp: 230,509; python: 70,501; java: 6,329; ansic: 5,427; sql: 1,899; yacc: 1,739; lex: 1,243; makefile: 445; xml: 229; fortran: 183; sh: 123; cs: 93
file content (223 lines) | stat: -rwxr-xr-x 6,115 bytes parent folder | download | duplicates (8)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
C++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++C
C                                                            C
C  HIERARCHICAL CLUSTERING using (user-specified) criterion. C
C                                                            C
C  Parameters:                                               C
C                                                            C
C  DISS(LEN)         dissimilarities in lower half diagonal  C
C                    storage; LEN = N.N-1/2,                 C
C  IOPT              clustering criterion to be used,        C
C  IA, IB, CRIT      history of agglomerations; dimensions   C
C                    N, first N-1 locations only used,       C
C  MEMBR, NN, DISNN  vectors of length N, used to store      C 
C                    cluster cardinalities, current nearest  C
C                    neighbour, and the dissimilarity assoc. C
C                    with the latter.                        C
C  FLAG              boolean indicator of agglomerable obj./ C
C                    clusters.                               C
C                                                            C
C  F. Murtagh, ESA/ESO/STECF, Garching, February 1986.       C
C                                                            C
C------------------------------------------------------------C
      SUBROUTINE HC(N,LEN,IOPT,IA,IB,CRIT,MEMBR,NN,DISNN,
     X                FLAG,DISS)
      implicit none
      integer n,m,len,iopt
      REAL*8 MEMBR(N),DISS(LEN)
      INTEGER IA(N),IB(N)
      REAL*8 CRIT(N)
      integer nn
      real*8 disnn
      DIMENSION NN(N),DISNN(N)
      LOGICAL FLAG(N)
      REAL*8 INF
      
      integer i,j,ncl,ind,ioffset,jm,im,i2,j2,k
      integer ind1,ind2,ind3,jj
      real*8 dmin,x,xx

      DATA INF/1.E+20/
C
C  Initializations
C
      DO I=1,N
         MEMBR(I)=1.
         FLAG(I)=.TRUE.
      ENDDO
      NCL=N

      if (IOPT.EQ.1) then
         do IND=1,n*(n-1)/2
               DISS(IND)=DISS(IND)/2.
         enddo
      endif
C     (Above is done for the case of the min. var. method
C     where merging criteria are defined in terms of variances
C     rather than distances.)

C
C  Carry out an agglomeration - first create list of NNs
C
      DO I=1,N-1
         DMIN=INF
         DO J=I+1,N
            IND=IOFFSET(N,I,J)
            IF (DISS(IND).GE.DMIN) GOTO 500
               DMIN=DISS(IND)
               JM=J
  500    CONTINUE
         ENDDO
         NN(I)=JM
         DISNN(I)=DMIN
      ENDDO
C
  400 CONTINUE
C     Next, determine least diss. using list of NNs
      DMIN=INF
      DO I=1,N-1
         IF (.NOT.FLAG(I)) GOTO 600
         IF (DISNN(I).GE.DMIN) GOTO 600
            DMIN=DISNN(I)
            IM=I
            JM=NN(I)
  600    CONTINUE
      ENDDO
      NCL=NCL-1
C
C  This allows an agglomeration to be carried out.
C
      I2=MIN0(IM,JM)
      J2=MAX0(IM,JM)
      IA(N-NCL)=I2
      IB(N-NCL)=J2
      CRIT(N-NCL)=DMIN

      ind1 = ioffset(n,i2,j2)
c      write(6,*) "agglom: ",i2,j2,dmin,diss(ind1)
C     
C  Update dissimilarities from new cluster.
C
      FLAG(J2)=.FALSE.
      DMIN=INF
      DO K=1,N
         IF (.NOT.FLAG(K)) GOTO 800
         IF (K.EQ.I2) GOTO 800
         X=MEMBR(I2)+MEMBR(J2)+MEMBR(K)
         IF (I2.LT.K) THEN
                           IND1=IOFFSET(N,I2,K)
                      ELSE
                           IND1=IOFFSET(N,K,I2)
         ENDIF
         IF (J2.LT.K) THEN
                           IND2=IOFFSET(N,J2,K)
                      ELSE
                           IND2=IOFFSET(N,K,J2)
         ENDIF
         IND3=IOFFSET(N,I2,J2)
         XX=DISS(IND3)
C
C  WARD'S MINIMUM VARIANCE METHOD - IOPT=1.
C
         IF (IOPT.EQ.1) THEN
            DISS(IND1)=(MEMBR(I2)+MEMBR(K))*DISS(IND1)+
     X                 (MEMBR(J2)+MEMBR(K))*DISS(IND2)-
     X                 MEMBR(K)*XX
            DISS(IND1)=DISS(IND1)/X
         ENDIF
C
C  SINGLE LINK METHOD - IOPT=2.
C
         IF (IOPT.EQ.2) THEN
            DISS(IND1)=MIN(DISS(IND1),DISS(IND2))
         ENDIF
C
C  COMPLETE LINK METHOD - IOPT=3.
C
         IF (IOPT.EQ.3) THEN
            DISS(IND1)=MAX(DISS(IND1),DISS(IND2))
         ENDIF
C
C  AVERAGE LINK (OR GROUP AVERAGE) METHOD - IOPT=4.
C
         IF (IOPT.EQ.4) THEN
            DISS(IND1)=(MEMBR(I2)*DISS(IND1)+MEMBR(J2)*DISS(IND2))/
     X                 (MEMBR(I2)+MEMBR(J2))
         ENDIF
C
C  MCQUITTY'S METHOD - IOPT=5.
C
         IF (IOPT.EQ.5) THEN
            DISS(IND1)=0.5*DISS(IND1)+0.5*DISS(IND2)
         ENDIF
C
C  MEDIAN (GOWER'S) METHOD - IOPT=6.
C
         IF (IOPT.EQ.6) THEN
            DISS(IND1)=0.5*DISS(IND1)+0.5*DISS(IND2)-0.25*XX
         ENDIF
C
C  CENTROID METHOD - IOPT=7.
C
         IF (IOPT.EQ.7) THEN
            DISS(IND1)=(MEMBR(I2)*DISS(IND1)+MEMBR(J2)*DISS(IND2)-
     X          MEMBR(I2)*MEMBR(J2)*XX/(MEMBR(I2)+MEMBR(J2)))/
     X          (MEMBR(I2)+MEMBR(J2))
            ENDIF
C
         IF (I2.GT.K) GOTO 800
         IF (DISS(IND1).GE.DMIN) GOTO 800
            DMIN=DISS(IND1)
            JJ=K
  800    CONTINUE
      ENDDO
      MEMBR(I2)=MEMBR(I2)+MEMBR(J2)
      DISNN(I2)=DMIN
      NN(I2)=JJ
C
C  Update list of NNs insofar as this is required.
C
      DO I=1,N-1
         IF (.NOT.FLAG(I)) GOTO 900
         IF (NN(I).EQ.I2) GOTO 850
         IF (NN(I).EQ.J2) GOTO 850
         GOTO 900
  850    CONTINUE
C        (Redetermine NN of I:)
         DMIN=INF
         DO J=I+1,N
            IND=IOFFSET(N,I,J)
            IF (.NOT.FLAG(J)) GOTO 870
            IF (I.EQ.J) GOTO 870
            IF (DISS(IND).GE.DMIN) GOTO 870
               DMIN=DISS(IND)
               JJ=J
  870       CONTINUE
         ENDDO
         NN(I)=JJ
         DISNN(I)=DMIN
  900    CONTINUE
      ENDDO
C
C  Repeat previous steps until N-1 agglomerations carried out.
C
      IF (NCL.GT.1) GOTO 400
C
C
      RETURN
      END


C
C
      FUNCTION IOFFSET(N,I,J)
C  Map row I and column J of upper half diagonal symmetric matrix 
C  onto vector.
c      IOFFSET=J+(I-1)*N-(I*(I+1))/2
      if ( j > i) then
         ioffset= (j-1)*(j-2)/2+i
      else
         ioffset= (i-1)*(i-2)/2+j
      endif
      RETURN
      END