File: cQuantize.cpp

package info (click to toggle)
rdkit 201809.1%2Bdfsg-6
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 123,688 kB
  • sloc: cpp: 230,509; python: 70,501; java: 6,329; ansic: 5,427; sql: 1,899; yacc: 1,739; lex: 1,243; makefile: 445; xml: 229; fortran: 183; sh: 123; cs: 93
file content (356 lines) | stat: -rw-r--r-- 10,124 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
// $Id$
//
// Copyright 2003-2008 Rational Discovery LLC and Greg Landrum
//   @@ All Rights Reserved @@
//  This file is part of the RDKit.
//  The contents are covered by the terms of the BSD license
//  which is included in the file license.txt, found at the root
//  of the RDKit source tree.
//
#include <cstring>

#include <RDBoost/Wrap.h>
#include <RDBoost/import_array.h>

namespace python = boost::python;

#include <ML/InfoTheory/InfoGainFuncs.h>

/***********************************************

   constructs a variable table for the data passed in
   The table for a given variable records the number of times each possible
 value
    of that variable appears for each possible result of the function.

  **Arguments**

   - vals: pointer to double, contains the values of the variable,
     should be sorted

   - nVals: int, the length of _vals_

   - cuts: pointer to int, the indices of the quantization bounds

   - nCuts: int, the length of _cuts_

   - starts: pointer to int, the potential starting points for quantization
 bounds

   - nStarts: int, the length of _starts_

   - results: poitner to int, the result codes

   - nPossibleRes: int, the number of possible result codes


  **Returns**

    _varTable_ (a pointer to int), which is also modified in place.

  **Notes:**

    - _varTable_ is modified in place

    - the _results_ array is assumed to be _nVals_ long

 ***********************************************/
long int *GenVarTable(double *vals, int nVals, long int *cuts, int nCuts,
                      long int *starts, long int *results, int nPossibleRes,
                      long int *varTable) {
  RDUNUSED_PARAM(vals);
  int nBins = nCuts + 1;
  int idx, i, iTab;

  memset(varTable, 0, nBins * nPossibleRes * sizeof(long int));
  idx = 0;
  for (i = 0; i < nCuts; i++) {
    int cut = cuts[i];
    iTab = i * nPossibleRes;
    while (idx < starts[cut]) {
      varTable[iTab + results[idx]] += 1;
      idx++;
    }
  }
  iTab = nCuts * nPossibleRes;
  while (idx < nVals) {
    varTable[iTab + results[idx]] += 1;
    idx++;
  }
  return varTable;
}

/***********************************************

 This actually does the recursion required by *cQuantize_RecurseOnBounds()*,
  we do things this way to avoid having to convert things back and forth
  from Python objects

  **Arguments**

   - vals: pointer to double, contains the values of the variable,
     should be sorted

   - nVals: int, the length of _vals_

   - cuts: pointer to int, the indices of the quantization bounds

   - nCuts: int, the length of _cuts_

   - which: int, the quant bound being modified here

   - starts: pointer to int, the potential starting points for quantization
 bounds

   - nStarts: int, the length of _starts_

   - results: poitner to int, the result codes

   - nPossibleRes: int, the number of possible result codes


  **Returns**

    a double, the expected information gain for the best bounds found
      (which are found in _cuts_ )

  **Notes:**

    - _cuts_ is modified in place

    - the _results_ array is assumed to be _nVals_ long

 ***********************************************/
double RecurseHelper(double *vals, int nVals, long int *cuts, int nCuts,
                     int which, long int *starts, int nStarts,
                     long int *results, int nPossibleRes) {
  double maxGain = -1e6, gainHere;
  long int *bestCuts, *tCuts;
  long int *varTable = nullptr;
  int highestCutHere = nStarts - nCuts + which;
  int i, nBounds = nCuts;

  varTable = (long int *)calloc((nCuts + 1) * nPossibleRes, sizeof(long int));
  bestCuts = (long int *)calloc(nCuts, sizeof(long int));
  tCuts = (long int *)calloc(nCuts, sizeof(long int));
  GenVarTable(vals, nVals, cuts, nCuts, starts, results, nPossibleRes,
              varTable);
  while (cuts[which] <= highestCutHere) {
    gainHere = RDInfoTheory::InfoEntropyGain(varTable, nCuts + 1, nPossibleRes);
    if (gainHere > maxGain) {
      maxGain = gainHere;
      memcpy(bestCuts, cuts, nCuts * sizeof(long int));
    }

    // recurse on the next vars if needed
    if (which < nBounds - 1) {
      memcpy(tCuts, cuts, nCuts * sizeof(long int));
      gainHere = RecurseHelper(vals, nVals, tCuts, nCuts, which + 1, starts,
                               nStarts, results, nPossibleRes);
      if (gainHere > maxGain) {
        maxGain = gainHere;
        memcpy(bestCuts, tCuts, nCuts * sizeof(long int));
      }
    }

    // update this cut
    int oldCut = cuts[which];
    cuts[which] += 1;
    int top, bot;
    bot = starts[oldCut];
    if (oldCut + 1 < nStarts)
      top = starts[oldCut + 1];
    else
      top = starts[nStarts - 1];
    for (i = bot; i < top; i++) {
      int v = results[i];
      varTable[which * nPossibleRes + v] += 1;
      varTable[(which + 1) * nPossibleRes + v] -= 1;
    }
    for (i = which + 1; i < nBounds; i++) {
      if (cuts[i] == cuts[i - 1]) cuts[i] += 1;
    }
  }
  memcpy(cuts, bestCuts, nCuts * sizeof(long int));
  free(tCuts);
  free(bestCuts);
  free(varTable);
  return maxGain;
}

/***********************************************

   Recursively finds the best quantization boundaries

   **Arguments**

     - vals: a 1D Numeric array with the values of the variables,
       this should be sorted

     - cuts: a list with the indices of the quantization bounds
       (indices are into _starts_ )

     - which: an integer indicating which bound is being adjusted here
       (and index into _cuts_ )

     - starts: a list of potential starting points for quantization bounds

     - results: a 1D Numeric array of integer result codes

     - nPossibleRes: an integer with the number of possible result codes

   **Returns**

     - a 2-tuple containing:

       1) the best information gain found so far

       2) a list of the quantization bound indices ( _cuts_ for the best case)

   **Notes**

    - this is not even remotely efficient, which is why a C replacement
      was written

    - this is a drop-in replacement for *ML.Data.Quantize._PyRecurseBounds*

 ***********************************************/
static python::tuple cQuantize_RecurseOnBounds(python::object vals,
                                               python::list pyCuts, int which,
                                               python::list pyStarts,
                                               python::object results,
                                               int nPossibleRes) {
  PyArrayObject *contigVals, *contigResults;
  long int *cuts, *starts;

  /*
    -------

    Setup code

    -------
  */
  contigVals = reinterpret_cast<PyArrayObject *>(
      PyArray_ContiguousFromObject(vals.ptr(), NPY_DOUBLE, 1, 1));
  if (!contigVals) {
    throw_value_error("could not convert value argument");
  }

  contigResults = reinterpret_cast<PyArrayObject *>(
      PyArray_ContiguousFromObject(results.ptr(), NPY_LONG, 1, 1));
  if (!contigResults) {
    throw_value_error("could not convert results argument");
  }

  python::ssize_t nCuts = python::len(pyCuts);
  cuts = (long int *)calloc(nCuts, sizeof(long int));
  for (python::ssize_t i = 0; i < nCuts; i++) {
    python::object elem = pyCuts[i];
    cuts[i] = python::extract<long int>(elem);
  }

  python::ssize_t nStarts = python::len(pyStarts);
  starts = (long int *)calloc(nStarts, sizeof(long int));
  for (python::ssize_t i = 0; i < nStarts; i++) {
    python::object elem = pyStarts[i];
    starts[i] = python::extract<long int>(elem);
  }

  // do the real work
  double gain = RecurseHelper(
      (double *)PyArray_DATA(contigVals), PyArray_DIM(contigVals, 0), cuts,
      nCuts, which, starts, nStarts, (long int *)PyArray_DATA(contigResults),
      nPossibleRes);

  /*
    -------

    Construct the return value

    -------
  */
  python::list cutObj;
  for (python::ssize_t i = 0; i < nCuts; i++) {
    cutObj.append(cuts[i]);
  }
  free(cuts);
  free(starts);
  return python::make_tuple(gain, cutObj);
}

static python::list cQuantize_FindStartPoints(python::object values,
                                              python::object results,
                                              int nData) {
  python::list startPts;

  if (nData < 2) {
    return startPts;
  }

  PyArrayObject *contigVals = reinterpret_cast<PyArrayObject *>(
      PyArray_ContiguousFromObject(values.ptr(), NPY_DOUBLE, 1, 1));
  if (!contigVals) {
    throw_value_error("could not convert value argument");
  }

  double *vals = (double *)PyArray_DATA(contigVals);

  PyArrayObject *contigResults = reinterpret_cast<PyArrayObject *>(
      PyArray_ContiguousFromObject(results.ptr(), NPY_LONG, 1, 1));
  if (!contigResults) {
    throw_value_error("could not convert results argument");
  }

  long *res = (long *)PyArray_DATA(contigResults);

  bool firstBlock = true;
  long lastBlockAct = -2, blockAct = res[0];
  int lastDiv = -1;
  double tol = 1e-8;

  int i = 1;
  while (i < nData) {
    while (i < nData && vals[i] - vals[i - 1] <= tol) {
      if (res[i] != blockAct) {
        blockAct = -1;
      }
      ++i;
    }
    if (firstBlock) {
      firstBlock = false;
      lastBlockAct = blockAct;
      lastDiv = i;
    } else {
      if (blockAct == -1 || lastBlockAct == -1 || blockAct != lastBlockAct) {
        startPts.append(lastDiv);
        lastDiv = i;
        lastBlockAct = blockAct;
      } else {
        lastDiv = i;
      }
    }
    if (i < nData) blockAct = res[i];
    ++i;
  }

  // catch the case that the last point also sets a bin:
  if (blockAct != lastBlockAct) {
    startPts.append(lastDiv);
  }

  return startPts;
}

BOOST_PYTHON_MODULE(cQuantize) {
  rdkit_import_array();

  python::def("_RecurseOnBounds", cQuantize_RecurseOnBounds,
              (python::arg("vals"), python::arg("pyCuts"), python::arg("which"),
               python::arg("pyStarts"), python::arg("results"),
               python::arg("nPossibleRes")),
              "TODO: provide docstring");
  python::def(
      "_FindStartPoints", cQuantize_FindStartPoints,
      (python::arg("values"), python::arg("results"), python::arg("nData")),
      "TODO: provide docstring");
}