1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286
|
// $Id$
//
// Copyright (C) 2003-2008 Greg Landrum and Rational Discovery LLC
// @@ All Rights Reserved @@
// This file is part of the RDKit.
// The contents are covered by the terms of the BSD license
// which is included in the file license.txt, found at the root
// of the RDKit source tree.
//
#include "InfoBitRanker.h"
#include "InfoGainFuncs.h"
#include <RDGeneral/Invariant.h>
#include <iostream>
#include <iomanip>
#include <fstream>
#include <RDGeneral/FileParseException.h>
#include <RDGeneral/Exceptions.h>
#include <algorithm>
#include <queue>
namespace RDInfoTheory {
typedef std::pair<double, int> PAIR_D_I;
typedef std::vector<PAIR_D_I> VECT_PDI;
struct gtDIPair {
bool operator()(const PAIR_D_I &pd1, const PAIR_D_I &pd2) const {
return pd1.first > pd2.first;
}
};
typedef std::priority_queue<PAIR_D_I, VECT_PDI, gtDIPair> PR_QUEUE;
void InfoBitRanker::setBiasList(RDKit::INT_VECT &classList) {
URANGE_CHECK(classList.size(), d_classes);
d_biasList = classList;
// make sure we don't have any duplicates
std::sort(d_biasList.begin(), d_biasList.end());
RDKit::INT_VECT_CI bi = std::unique(d_biasList.begin(), d_biasList.end());
CHECK_INVARIANT(bi == d_biasList.end(),
"There are duplicates in the class bias list");
// finally make sure all the class ID in d_biasList are within range
for (bi = d_biasList.begin(); bi != d_biasList.end(); bi++) {
URANGE_CHECK(static_cast<unsigned int>(*bi), d_classes);
}
}
void InfoBitRanker::setMaskBits(RDKit::INT_VECT &maskBits) {
delete dp_maskBits;
dp_maskBits = new ExplicitBitVect(d_dims);
for (RDKit::INT_VECT_CI bi = maskBits.begin(); bi != maskBits.end(); ++bi) {
dp_maskBits->setBit(*bi);
}
}
bool InfoBitRanker::BiasCheckBit(RDKit::USHORT *resMat) const {
PRECONDITION(resMat, "bad results pointer");
if ((d_biasList.size() == 0) || (d_biasList.size() == d_classes)) {
// we will accept the bit
return true;
}
RDKit::DOUBLE_VECT fracs;
fracs.resize(d_classes);
// compute the fractions of items in each class that hit the bit
// and record the maximum for the those classes not in the bias list
double maxCor = 0.0;
for (unsigned int i = 0; i < d_classes; i++) {
if (d_clsCount[i] > 0) {
fracs[i] = ((double)resMat[i]) / d_clsCount[i];
} else {
fracs[i] = 0.0;
}
if (std::find(d_biasList.begin(), d_biasList.end(), i) ==
d_biasList.end()) {
// if not in the biasList
if (fracs[i] > maxCor) {
// if this is fraction is greater than the previously known maximum
maxCor = fracs[i];
}
}
}
bool bitOk = false;
for (int bci : d_biasList) {
if (fracs[bci] >= maxCor) {
bitOk = true;
break;
}
}
return bitOk;
}
double InfoBitRanker::BiasChiSquareGain(RDKit::USHORT *resMat) const {
PRECONDITION(resMat, "bad result pointer");
bool bitOk = this->BiasCheckBit(resMat);
double info = 0.0;
if (bitOk) {
info = ChiSquare(resMat, 2, d_classes);
}
return info;
}
double InfoBitRanker::BiasInfoEntropyGain(RDKit::USHORT *resMat) const {
PRECONDITION(resMat, "bad result pointer");
bool bitOk = this->BiasCheckBit(resMat);
double info = 0.0;
if (bitOk) {
info = InfoEntropyGain(resMat, 2, d_classes);
}
return info;
}
void InfoBitRanker::accumulateVotes(const ExplicitBitVect &bv,
unsigned int label) {
URANGE_CHECK(label, d_classes);
CHECK_INVARIANT(bv.getNumBits() == d_dims, "Incorrect bit vector size");
d_nInst += 1;
d_clsCount[label] += 1;
for (unsigned int i = 0; i < bv.getNumBits(); i++) {
if ((*bv.dp_bits)[i] && (!dp_maskBits || dp_maskBits->getBit(i))) {
d_counts[label][i] += 1;
}
}
}
void InfoBitRanker::accumulateVotes(const SparseBitVect &bv,
unsigned int label) {
URANGE_CHECK(label, d_classes);
CHECK_INVARIANT(bv.getNumBits() == d_dims, "Incorrect bit vector size");
d_nInst += 1;
d_clsCount[label] += 1;
for (int dp_bit : *bv.dp_bits) {
if (!dp_maskBits || dp_maskBits->getBit(dp_bit)) {
d_counts[label][dp_bit] += 1;
}
}
}
double *InfoBitRanker::getTopN(unsigned int num) {
// this is a place holder to pass along to infogain function
// the size of this container should nVals*d_classes, where nVals
// is the number of values a variable can take.
// since we are dealing with a binary bit vector nVals = 2
// in addition the infogain function pretends that this is a 2D matrix
// with the number of rows equal to nVals and num of columns equal to
// d_classes
if (num > d_dims)
throw ValueErrorException(
"attempt to rank more bits than present in the bit vectors");
if (dp_maskBits)
CHECK_INVARIANT(num <= dp_maskBits->getNumOnBits(),
"Can't rank more bits than the ensemble size");
auto *resMat = new RDKit::USHORT[2 * d_classes];
PR_QUEUE topN;
for (unsigned int i = 0; i < d_dims; i++) {
// we may want to ignore bits that are not turned on in any item of class
// "ignoreNoClass"
/*
if ((0 <= ignoreNoClass) && (d_classes > ignoreNoClass)) {
if (d_counts[ignoreNoClass][i] == 0) {
continue;
}
}*/
if (dp_maskBits && !dp_maskBits->getBit(i)) {
continue;
}
// fill up dmat
for (unsigned int j = 0; j < d_classes; j++) {
// we know that we have only two rows here
resMat[j] = d_counts[j][i];
resMat[d_classes + j] = (d_clsCount[j] - d_counts[j][i]);
}
double info = 0.0;
switch (d_type) {
case ENTROPY:
info = InfoEntropyGain(resMat, 2, d_classes);
break;
case BIASENTROPY:
info = this->BiasInfoEntropyGain(resMat);
break;
case CHISQUARE:
info = ChiSquare(resMat, 2, d_classes);
break;
case BIASCHISQUARE:
info = BiasChiSquareGain(resMat);
break;
default:
break;
}
PAIR_D_I entry(info, i);
if (info >= 0.0) {
if (topN.size() < num) {
topN.push(entry);
} else if (info > topN.top().first) {
topN.pop();
topN.push(entry);
}
}
}
delete[] resMat;
// now fill up the result matrix for the topN bits
// the result from this function is a double * of size
// num*4. The caller of this function interprets this
// array as a two dimensional array of size num*(2+d_classes) with each row
// containing the following entries
// bitId, infogain, 1 additional column for number of hits for each class
// double *res = new double[num*(2+d_classes)];
d_top = num;
int ncols = 2 + d_classes;
delete[] dp_topBits;
dp_topBits = new double[num * ncols];
int offset, bid;
RDKit::INT_VECT maskBits;
if (dp_maskBits && topN.size() < num) {
dp_maskBits->getOnBits(maskBits);
}
for (int i = num - 1; i >= 0; i--) {
offset = i * ncols;
if (topN.size() == 0) {
if (dp_maskBits) {
bid = maskBits[i];
} else {
bid = i;
}
dp_topBits[offset + 1] = 0.0;
} else {
bid = topN.top().second; // bit id
dp_topBits[offset + 1] = topN.top().first; // value of the infogain
topN.pop();
}
dp_topBits[offset] = (double)bid;
for (unsigned int j = 0; j < d_classes; j++) {
dp_topBits[offset + 2 + j] = (double)d_counts[j][bid];
}
}
return dp_topBits;
}
void InfoBitRanker::writeTopBitsToStream(std::ostream *outStream) const {
(*outStream) << std::setw(12) << "Bit" << std::setw(12) << "InfoContent";
for (unsigned int ic = 0; ic < d_classes; ic++) {
(*outStream) << std::setw(10) << "class" << ic;
}
(*outStream) << std::endl;
unsigned int ncols = 2 + d_classes;
for (unsigned int i = 0; i < d_top; i++) {
(*outStream) << std::setw(12) << (int)dp_topBits[i * ncols] << std::setw(12)
<< std::setprecision(5) << dp_topBits[i * ncols + 1];
for (unsigned int ic = 0; ic < d_classes; ic++) {
(*outStream) << std::setw(10) << (int)dp_topBits[i * ncols + 2 + ic];
}
(*outStream) << "\n";
}
}
void InfoBitRanker::writeTopBitsToFile(const std::string &fileName) const {
std::ofstream tmpStream(fileName.c_str());
if ((!tmpStream) || (tmpStream.bad())) {
std::ostringstream errout;
errout << "Bad output file " << fileName;
throw RDKit::FileParseException(errout.str());
}
std::ostream &outStream = static_cast<std::ostream &>(tmpStream);
this->writeTopBitsToStream(&outStream);
}
}
|