1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193
|
// $Id$
//
// Copyright (C) 2003-2008 Greg Landrum and Rational Discovery LLC
// @@ All Rights Reserved @@
// This file is part of the RDKit.
// The contents are covered by the terms of the BSD license
// which is included in the file license.txt, found at the root
// of the RDKit source tree.
//
#define NO_IMPORT_ARRAY
#include <RDBoost/python.h>
#define PY_ARRAY_UNIQUE_SYMBOL rdinfotheory_array_API
#define NPY_NO_DEPRECATED_API NPY_1_7_API_VERSION
#include <numpy/arrayobject.h>
#include <RDBoost/Wrap.h>
#include <ML/InfoTheory/InfoBitRanker.h>
#include <DataStructs/BitVects.h>
#include <RDBoost/PySequenceHolder.h>
namespace python = boost::python;
namespace RDInfoTheory {
PyObject *getTopNbits(InfoBitRanker *ranker,
int num) { // int ignoreNoClass=-1) {
double *dres = ranker->getTopN(num);
npy_intp dims[2];
dims[0] = num;
dims[1] = ranker->getNumClasses() + 2;
PyArrayObject *res = (PyArrayObject *)PyArray_SimpleNew(2, dims, NPY_DOUBLE);
memcpy(static_cast<void *>(PyArray_DATA(res)), static_cast<void *>(dres),
dims[0] * dims[1] * sizeof(double));
return PyArray_Return(res);
}
void AccumulateVotes(InfoBitRanker *ranker, python::object bitVect, int label) {
python::extract<ExplicitBitVect> ebvWorks(bitVect);
python::extract<SparseBitVect> sbvWorks(bitVect);
if (ebvWorks.check()) {
ExplicitBitVect ev = python::extract<ExplicitBitVect>(bitVect);
ranker->accumulateVotes(ev, label);
} else if (sbvWorks.check()) {
SparseBitVect sv = python::extract<SparseBitVect>(bitVect);
ranker->accumulateVotes(sv, label);
} else {
throw_value_error(
"Accumulate Vote can only take a explicitBitVects or SparseBitvects");
}
}
void SetBiasList(InfoBitRanker *ranker, python::object classList) {
RDKit::INT_VECT cList;
PySequenceHolder<int> bList(classList);
cList.reserve(bList.size());
for (unsigned int i = 0; i < bList.size(); i++) {
cList.push_back(bList[i]);
}
ranker->setBiasList(cList);
}
void SetMaskBits(InfoBitRanker *ranker, python::object maskBits) {
RDKit::INT_VECT cList;
PySequenceHolder<int> bList(maskBits);
cList.reserve(bList.size());
for (unsigned int i = 0; i < bList.size(); i++) {
cList.push_back(bList[i]);
}
ranker->setMaskBits(cList);
}
void tester(InfoBitRanker *ranker, python::object bitVect) {
RDUNUSED_PARAM(ranker);
python::extract<SparseBitVect> sbvWorks(bitVect);
if (sbvWorks.check()) {
SparseBitVect sv = python::extract<SparseBitVect>(bitVect);
std::cout << "Num of on bits: " << sv.getNumOnBits() << "\n";
}
}
struct ranker_wrap {
static void wrap() {
std::string docString =
"A class to rank the bits from a series of labelled fingerprints\n"
"A simple demonstration may help clarify what this class does. \n"
"Here's a small set of vectors:\n"
">>> for i,bv in enumerate(bvs): print bv.ToBitString(),acts[i]\n"
"... \n"
"0001 0\n"
"0101 0\n"
"0010 1\n"
"1110 1\n"
"\n"
"Default ranker, using infogain:\n"
">>> ranker = InfoBitRanker(4,2) \n"
">>> for i,bv in enumerate(bvs): ranker.AccumulateVotes(bv,acts[i])\n"
"... \n"
">>> for bit,gain,n0,n1 in ranker.GetTopN(3): print "
"int(bit),'%.3f'%gain,int(n0),int(n1)\n"
"... \n"
"3 1.000 2 0\n"
"2 1.000 0 2\n"
"0 0.311 0 1\n"
"\n"
"Using the biased infogain:\n"
">>> ranker = InfoBitRanker(4,2,InfoTheory.InfoType.BIASENTROPY)\n"
">>> ranker.SetBiasList((1,))\n"
">>> for i,bv in enumerate(bvs): ranker.AccumulateVotes(bv,acts[i])\n"
"... \n"
">>> for bit,gain,n0,n1 in ranker.GetTopN(3): print "
"int(bit),'%.3f'%gain,int(n0),int(n1)\n"
"... \n"
"2 1.000 0 2\n"
"0 0.311 0 1\n"
"1 0.000 1 1\n"
"\n"
"A chi squared ranker is also available:\n"
">>> ranker = InfoBitRanker(4,2,InfoTheory.InfoType.CHISQUARE)\n"
">>> for i,bv in enumerate(bvs): ranker.AccumulateVotes(bv,acts[i])\n"
"... \n"
">>> for bit,gain,n0,n1 in ranker.GetTopN(3): print "
"int(bit),'%.3f'%gain,int(n0),int(n1)\n"
"... \n"
"3 4.000 2 0\n"
"2 4.000 0 2\n"
"0 1.333 0 1\n"
"\n"
"As is a biased chi squared:\n"
">>> ranker = InfoBitRanker(4,2,InfoTheory.InfoType.BIASCHISQUARE)\n"
">>> ranker.SetBiasList((1,))\n"
">>> for i,bv in enumerate(bvs): ranker.AccumulateVotes(bv,acts[i])\n"
"... \n"
">>> for bit,gain,n0,n1 in ranker.GetTopN(3): print "
"int(bit),'%.3f'%gain,int(n0),int(n1)\n"
"... \n"
"2 4.000 0 2\n"
"0 1.333 0 1\n"
"1 0.000 1 1\n";
python::class_<InfoBitRanker>(
"InfoBitRanker", docString.c_str(),
python::init<int, int>(python::args("nBits", "nClasses")))
.def(python::init<int, int, InfoBitRanker::InfoType>(
python::args("nBits", "nClasses", "infoType")))
.def("AccumulateVotes", AccumulateVotes,
"Accumulate the votes for all the bits turned on in a bit "
"vector\n\n"
"ARGUMENTS:\n\n"
" - bv : bit vector either ExplicitBitVect or SparseBitVect "
"operator\n"
" - label : the class label for the bit vector. It is assumed "
"that 0 <= class < nClasses \n")
.def("SetBiasList", SetBiasList,
"Set the classes to which the entropy calculation should be "
"biased\n\n"
"This list contains a set of class ids used when in the "
"BIASENTROPY mode of ranking bits. \n"
"In this mode, a bit must be correlated higher with one of the "
"biased classes than all the \n"
"other classes. For example, in a two class problem with actives "
"and inactives, the fraction of \n"
"actives that hit the bit has to be greater than the fraction of "
"inactives that hit the bit\n\n"
"ARGUMENTS: \n\n"
" - classList : list of class ids that we want a bias towards\n")
.def("SetMaskBits", SetMaskBits,
"Set the mask bits for the calculation\n\n"
"ARGUMENTS: \n\n"
" - maskBits : list of mask bits to use\n")
.def("GetTopN", getTopNbits,
"Returns the top n bits ranked by the information metric\n"
"This is actually the function where most of the work of ranking "
"is happening\n\n"
"ARGUMENTS:\n\n"
" - num : the number of top ranked bits that are required\n")
.def("WriteTopBitsToFile", &InfoBitRanker::writeTopBitsToFile,
"Write the bits that have been ranked to a file")
.def("Tester", tester);
python::enum_<InfoBitRanker::InfoType>("InfoType")
.value("ENTROPY", InfoBitRanker::ENTROPY)
.value("BIASENTROPY", InfoBitRanker::BIASENTROPY)
.value("CHISQUARE", InfoBitRanker::CHISQUARE)
.value("BIASCHISQUARE", InfoBitRanker::BIASCHISQUARE)
.export_values();
;
};
};
}
void wrap_ranker() { RDInfoTheory::ranker_wrap::wrap(); }
|