File: InfoBitRanker.cpp

package info (click to toggle)
rdkit 201809.1%2Bdfsg-6
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 123,688 kB
  • sloc: cpp: 230,509; python: 70,501; java: 6,329; ansic: 5,427; sql: 1,899; yacc: 1,739; lex: 1,243; makefile: 445; xml: 229; fortran: 183; sh: 123; cs: 93
file content (193 lines) | stat: -rw-r--r-- 7,297 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
// $Id$
//
//  Copyright (C) 2003-2008 Greg Landrum and  Rational Discovery LLC
//   @@ All Rights Reserved @@
//  This file is part of the RDKit.
//  The contents are covered by the terms of the BSD license
//  which is included in the file license.txt, found at the root
//  of the RDKit source tree.
//

#define NO_IMPORT_ARRAY
#include <RDBoost/python.h>

#define PY_ARRAY_UNIQUE_SYMBOL rdinfotheory_array_API
#define NPY_NO_DEPRECATED_API NPY_1_7_API_VERSION
#include <numpy/arrayobject.h>

#include <RDBoost/Wrap.h>
#include <ML/InfoTheory/InfoBitRanker.h>
#include <DataStructs/BitVects.h>
#include <RDBoost/PySequenceHolder.h>

namespace python = boost::python;

namespace RDInfoTheory {

PyObject *getTopNbits(InfoBitRanker *ranker,
                      int num) {  // int ignoreNoClass=-1) {
  double *dres = ranker->getTopN(num);
  npy_intp dims[2];
  dims[0] = num;
  dims[1] = ranker->getNumClasses() + 2;
  PyArrayObject *res = (PyArrayObject *)PyArray_SimpleNew(2, dims, NPY_DOUBLE);
  memcpy(static_cast<void *>(PyArray_DATA(res)), static_cast<void *>(dres),
         dims[0] * dims[1] * sizeof(double));
  return PyArray_Return(res);
}

void AccumulateVotes(InfoBitRanker *ranker, python::object bitVect, int label) {
  python::extract<ExplicitBitVect> ebvWorks(bitVect);
  python::extract<SparseBitVect> sbvWorks(bitVect);
  if (ebvWorks.check()) {
    ExplicitBitVect ev = python::extract<ExplicitBitVect>(bitVect);
    ranker->accumulateVotes(ev, label);
  } else if (sbvWorks.check()) {
    SparseBitVect sv = python::extract<SparseBitVect>(bitVect);
    ranker->accumulateVotes(sv, label);
  } else {
    throw_value_error(
        "Accumulate Vote can only take a explicitBitVects or SparseBitvects");
  }
}

void SetBiasList(InfoBitRanker *ranker, python::object classList) {
  RDKit::INT_VECT cList;
  PySequenceHolder<int> bList(classList);
  cList.reserve(bList.size());
  for (unsigned int i = 0; i < bList.size(); i++) {
    cList.push_back(bList[i]);
  }
  ranker->setBiasList(cList);
}

void SetMaskBits(InfoBitRanker *ranker, python::object maskBits) {
  RDKit::INT_VECT cList;
  PySequenceHolder<int> bList(maskBits);
  cList.reserve(bList.size());
  for (unsigned int i = 0; i < bList.size(); i++) {
    cList.push_back(bList[i]);
  }
  ranker->setMaskBits(cList);
}

void tester(InfoBitRanker *ranker, python::object bitVect) {
  RDUNUSED_PARAM(ranker);
  python::extract<SparseBitVect> sbvWorks(bitVect);
  if (sbvWorks.check()) {
    SparseBitVect sv = python::extract<SparseBitVect>(bitVect);
    std::cout << "Num of on bits: " << sv.getNumOnBits() << "\n";
  }
}

struct ranker_wrap {
  static void wrap() {
    std::string docString =
        "A class to rank the bits from a series of labelled fingerprints\n"
        "A simple demonstration may help clarify what this class does. \n"
        "Here's a small set of vectors:\n"
        ">>> for i,bv in enumerate(bvs): print bv.ToBitString(),acts[i]\n"
        "... \n"
        "0001 0\n"
        "0101 0\n"
        "0010 1\n"
        "1110 1\n"
        "\n"
        "Default ranker, using infogain:\n"
        ">>> ranker = InfoBitRanker(4,2)  \n"
        ">>> for i,bv in enumerate(bvs): ranker.AccumulateVotes(bv,acts[i])\n"
        "... \n"
        ">>> for bit,gain,n0,n1 in ranker.GetTopN(3): print "
        "int(bit),'%.3f'%gain,int(n0),int(n1)\n"
        "... \n"
        "3 1.000 2 0\n"
        "2 1.000 0 2\n"
        "0 0.311 0 1\n"
        "\n"
        "Using the biased infogain:\n"
        ">>> ranker = InfoBitRanker(4,2,InfoTheory.InfoType.BIASENTROPY)\n"
        ">>> ranker.SetBiasList((1,))\n"
        ">>> for i,bv in enumerate(bvs): ranker.AccumulateVotes(bv,acts[i])\n"
        "... \n"
        ">>> for bit,gain,n0,n1 in ranker.GetTopN(3): print "
        "int(bit),'%.3f'%gain,int(n0),int(n1)\n"
        "... \n"
        "2 1.000 0 2\n"
        "0 0.311 0 1\n"
        "1 0.000 1 1\n"
        "\n"
        "A chi squared ranker is also available:\n"
        ">>> ranker = InfoBitRanker(4,2,InfoTheory.InfoType.CHISQUARE)\n"
        ">>> for i,bv in enumerate(bvs): ranker.AccumulateVotes(bv,acts[i])\n"
        "... \n"
        ">>> for bit,gain,n0,n1 in ranker.GetTopN(3): print "
        "int(bit),'%.3f'%gain,int(n0),int(n1)\n"
        "... \n"
        "3 4.000 2 0\n"
        "2 4.000 0 2\n"
        "0 1.333 0 1\n"
        "\n"
        "As is a biased chi squared:\n"
        ">>> ranker = InfoBitRanker(4,2,InfoTheory.InfoType.BIASCHISQUARE)\n"
        ">>> ranker.SetBiasList((1,))\n"
        ">>> for i,bv in enumerate(bvs): ranker.AccumulateVotes(bv,acts[i])\n"
        "... \n"
        ">>> for bit,gain,n0,n1 in ranker.GetTopN(3): print "
        "int(bit),'%.3f'%gain,int(n0),int(n1)\n"
        "... \n"
        "2 4.000 0 2\n"
        "0 1.333 0 1\n"
        "1 0.000 1 1\n";

    python::class_<InfoBitRanker>(
        "InfoBitRanker", docString.c_str(),
        python::init<int, int>(python::args("nBits", "nClasses")))
        .def(python::init<int, int, InfoBitRanker::InfoType>(
            python::args("nBits", "nClasses", "infoType")))
        .def("AccumulateVotes", AccumulateVotes,
             "Accumulate the votes for all the bits turned on in a bit "
             "vector\n\n"
             "ARGUMENTS:\n\n"
             "  - bv : bit vector either ExplicitBitVect or SparseBitVect "
             "operator\n"
             "  - label : the class label for the bit vector. It is assumed "
             "that 0 <= class < nClasses \n")
        .def("SetBiasList", SetBiasList,
             "Set the classes to which the entropy calculation should be "
             "biased\n\n"
             "This list contains a set of class ids used when in the "
             "BIASENTROPY mode of ranking bits. \n"
             "In this mode, a bit must be correlated higher with one of the "
             "biased classes than all the \n"
             "other classes. For example, in a two class problem with actives "
             "and inactives, the fraction of \n"
             "actives that hit the bit has to be greater than the fraction of "
             "inactives that hit the bit\n\n"
             "ARGUMENTS: \n\n"
             "  - classList : list of class ids that we want a bias towards\n")
        .def("SetMaskBits", SetMaskBits,
             "Set the mask bits for the calculation\n\n"
             "ARGUMENTS: \n\n"
             "  - maskBits : list of mask bits to use\n")
        .def("GetTopN", getTopNbits,
             "Returns the top n bits ranked by the information metric\n"
             "This is actually the function where most of the work of ranking "
             "is happening\n\n"
             "ARGUMENTS:\n\n"
             "  - num : the number of top ranked bits that are required\n")
        .def("WriteTopBitsToFile", &InfoBitRanker::writeTopBitsToFile,
             "Write the bits that have been ranked to a file")
        .def("Tester", tester);

    python::enum_<InfoBitRanker::InfoType>("InfoType")
        .value("ENTROPY", InfoBitRanker::ENTROPY)
        .value("BIASENTROPY", InfoBitRanker::BIASENTROPY)
        .value("CHISQUARE", InfoBitRanker::CHISQUARE)
        .value("BIASCHISQUARE", InfoBitRanker::BIASCHISQUARE)
        .export_values();
    ;
  };
};
}

void wrap_ranker() { RDInfoTheory::ranker_wrap::wrap(); }