1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160
|
// $Id$
//
// Copyright (C) 2003-2008 Greg Landrum and Rational Discovery LLC
// @@ All Rights Reserved @@
// This file is part of the RDKit.
// The contents are covered by the terms of the BSD license
// which is included in the file license.txt, found at the root
// of the RDKit source tree.
//
#define PY_ARRAY_UNIQUE_SYMBOL rdinfotheory_array_API
#include <RDBoost/Wrap.h>
#include <RDBoost/import_array.h>
#include <ML/InfoTheory/InfoBitRanker.h>
#include <ML/InfoTheory/InfoGainFuncs.h>
namespace python = boost::python;
using namespace RDInfoTheory;
namespace RDInfoTheory {
double infoEntropy(python::object resArr) {
PyObject *matObj = resArr.ptr();
if (!PyArray_Check(matObj)) {
throw_value_error("Expecting a Numeric array object");
}
PyArrayObject *copy;
copy = (PyArrayObject *)PyArray_ContiguousFromObject(
matObj, PyArray_DESCR((PyArrayObject *)matObj)->type_num, 1, 1);
double res = 0.0;
// we are expecting a 1 dimensional array
long int ncols = (long int)PyArray_DIM((PyArrayObject *)matObj, 0);
CHECK_INVARIANT(ncols > 0, "");
if (PyArray_DESCR((PyArrayObject *)matObj)->type_num == NPY_DOUBLE) {
double *data = (double *)PyArray_DATA(copy);
res = InfoEntropy(data, ncols);
} else if (PyArray_DESCR((PyArrayObject *)matObj)->type_num == NPY_FLOAT) {
float *data = (float *)PyArray_DATA(copy);
res = InfoEntropy(data, ncols);
} else if (PyArray_DESCR((PyArrayObject *)matObj)->type_num == NPY_INT) {
int *data = (int *)PyArray_DATA(copy);
res = InfoEntropy(data, ncols);
} else if (PyArray_DESCR((PyArrayObject *)matObj)->type_num == NPY_LONG) {
long int *data = (long int *)PyArray_DATA(copy);
res = InfoEntropy(data, ncols);
}
Py_DECREF(copy);
return res;
}
double infoGain(python::object resArr) {
PyObject *matObj = resArr.ptr();
if (!PyArray_Check(matObj)) {
throw_value_error("Expecting a Numeric array object");
}
PyArrayObject *copy;
copy = (PyArrayObject *)PyArray_ContiguousFromObject(
matObj, PyArray_DESCR((PyArrayObject *)matObj)->type_num, 2, 2);
long int rows = (long int)PyArray_DIM((PyArrayObject *)matObj, 0);
long int cols = (long int)PyArray_DIM((PyArrayObject *)matObj, 1);
double res = 0.0;
if (PyArray_DESCR((PyArrayObject *)matObj)->type_num == NPY_DOUBLE) {
double *data = (double *)PyArray_DATA(copy);
res = InfoEntropyGain(data, rows, cols);
} else if (PyArray_DESCR((PyArrayObject *)matObj)->type_num == NPY_FLOAT) {
float *data = (float *)PyArray_DATA(copy);
res = InfoEntropyGain(data, rows, cols);
} else if (PyArray_DESCR((PyArrayObject *)matObj)->type_num == NPY_INT) {
int *data = (int *)PyArray_DATA(copy);
res = InfoEntropyGain(data, rows, cols);
} else if (PyArray_DESCR((PyArrayObject *)matObj)->type_num == NPY_LONG) {
long int *data = (long int *)PyArray_DATA(copy);
res = InfoEntropyGain(data, rows, cols);
} else {
throw_value_error(
"Numeric array object of type int or long or float or double");
}
Py_DECREF(copy);
return res;
}
double chiSquare(python::object resArr) {
PyObject *matObj = resArr.ptr();
if (!PyArray_Check(matObj)) {
throw_value_error("Expecting a Numeric array object");
}
PyArrayObject *copy;
copy = (PyArrayObject *)PyArray_ContiguousFromObject(
matObj, PyArray_DESCR((PyArrayObject *)matObj)->type_num, 2, 2);
long int rows = (long int)PyArray_DIM((PyArrayObject *)matObj, 0);
long int cols = (long int)PyArray_DIM((PyArrayObject *)matObj, 1);
double res = 0.0;
if (PyArray_DESCR((PyArrayObject *)matObj)->type_num == NPY_DOUBLE) {
double *data = (double *)PyArray_DATA(copy);
res = ChiSquare(data, rows, cols);
} else if (PyArray_DESCR((PyArrayObject *)matObj)->type_num == NPY_FLOAT) {
float *data = (float *)PyArray_DATA(copy);
res = ChiSquare(data, rows, cols);
} else if (PyArray_DESCR((PyArrayObject *)matObj)->type_num == NPY_INT) {
int *data = (int *)PyArray_DATA(copy);
res = ChiSquare(data, rows, cols);
} else if (PyArray_DESCR((PyArrayObject *)matObj)->type_num == NPY_LONG) {
long int *data = (long int *)PyArray_DATA(copy);
res = ChiSquare(data, rows, cols);
} else {
throw_value_error(
"Numeric array object of type int or long or float or double");
}
Py_DECREF(copy);
return res;
}
}
void wrap_ranker();
void wrap_corrmatgen();
BOOST_PYTHON_MODULE(rdInfoTheory) {
python::scope().attr("__doc__") =
"Module containing bunch of functions for information metrics and a "
"ranker to rank bits";
rdkit_import_array();
wrap_ranker();
wrap_corrmatgen();
std::string docString =
"calculates the informational entropy of the values in an array\n\n\
ARGUMENTS:\n\
\n\
- resMat: pointer to a long int array containing the data\n\
- dim: long int containing the length of the _tPtr_ array.\n\n\
RETURNS:\n\n\
a double\n";
python::def("InfoEntropy", RDInfoTheory::infoEntropy, docString.c_str());
docString =
"Calculates the information gain for a variable\n\n\
ARGUMENTS:\n\n\
- varMat: a Numeric Array object\n\
varMat is a Numeric array with the number of possible occurances\n\
of each result for reach possible value of the given variable.\n\n\
So, for a variable which adopts 4 possible values and a result which\n\
has 3 possible values, varMat would be 4x3\n\n\
RETURNS:\n\n\
- a Python float object\n\n\
NOTES\n\n\
- this is a dropin replacement for _PyInfoGain()_ in entropy.py\n";
python::def("InfoGain", RDInfoTheory::infoGain, docString.c_str());
docString =
"Calculates the chi squared value for a variable\n\n\
ARGUMENTS:\n\n\
- varMat: a Numeric Array object\n\
varMat is a Numeric array with the number of possible occurances\n\
of each result for reach possible value of the given variable.\n\n\
So, for a variable which adopts 4 possible values and a result which\n\
has 3 possible values, varMat would be 4x3\n\n\
RETURNS:\n\n\
- a Python float object\n";
python::def("ChiSquare", RDInfoTheory::chiSquare, docString.c_str());
}
|