File: AlignPoints.cpp

package info (click to toggle)
rdkit 201809.1%2Bdfsg-6
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 123,688 kB
  • sloc: cpp: 230,509; python: 70,501; java: 6,329; ansic: 5,427; sql: 1,899; yacc: 1,739; lex: 1,243; makefile: 445; xml: 229; fortran: 183; sh: 123; cs: 93
file content (350 lines) | stat: -rw-r--r-- 10,536 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
// $Id$
//
//  Copyright (C) 2004-2008 Greg Landrum and Rational Discovery LLC
//
//   @@ All Rights Reserved @@
//  This file is part of the RDKit.
//  The contents are covered by the terms of the BSD license
//  which is included in the file license.txt, found at the root
//  of the RDKit source tree.
//
#include "AlignPoints.h"
#include <RDGeneral/Invariant.h>
#include <Geometry/point.h>
#include <Geometry/Transform3D.h>
#include <Numerics/Vector.h>

#define TOLERANCE 1.e-6

namespace RDNumeric {

namespace Alignments {

RDGeom::Point3D _weightedSumOfPoints(const RDGeom::Point3DConstPtrVect &points,
                                     const DoubleVector &weights) {
  PRECONDITION(points.size() == weights.size(), "");
  RDGeom::Point3DConstPtrVect_CI pti;
  RDGeom::Point3D tmpPt, res;
  const double *wData = weights.getData();
  unsigned int i = 0;
  for (pti = points.begin(); pti != points.end(); pti++) {
    tmpPt = (*(*pti));
    tmpPt *= wData[i];
    res += tmpPt;
    i++;
  }
  return res;
}

double _weightedSumOfLenSq(const RDGeom::Point3DConstPtrVect &points,
                           const DoubleVector &weights) {
  PRECONDITION(points.size() == weights.size(), "");
  double res = 0.0;
  RDGeom::Point3DConstPtrVect_CI pti;
  const double *wData = weights.getData();
  unsigned int i = 0;
  for (pti = points.begin(); pti != points.end(); pti++) {
    res += (wData[i] * ((*pti)->lengthSq()));
    i++;
  }
  return res;
}

double _sumOfWeights(const DoubleVector &weights) {
  const double *wData = weights.getData();
  double res = 0.0;
  for (unsigned int i = 0; i < weights.size(); i++) {
    CHECK_INVARIANT(wData[i] > 0.0, "Negative weight specified for a point");
    res += wData[i];
  }
  return res;
}

void _computeCovarianceMat(const RDGeom::Point3DConstPtrVect &refPoints,
                           const RDGeom::Point3DConstPtrVect &probePoints,
                           const DoubleVector &weights, double covMat[3][3]) {
  unsigned int i, j;
  for (i = 0; i < 3; i++) {
    for (j = 0; j < 3; j++) {
      covMat[i][j] = 0.0;
    }
  }
  unsigned int npt = refPoints.size();
  CHECK_INVARIANT(npt == probePoints.size(), "Number of points mismatch");
  CHECK_INVARIANT(npt == weights.size(),
                  "Number of points and number of weights do not match");
  const double *wData = weights.getData();

  const RDGeom::Point3D *rpt, *ppt;
  double w;
  for (i = 0; i < npt; i++) {
    rpt = refPoints[i];
    ppt = probePoints[i];
    w = wData[i];

    covMat[0][0] += w * (ppt->x) * (rpt->x);
    covMat[0][1] += w * (ppt->x) * (rpt->y);
    covMat[0][2] += w * (ppt->x) * (rpt->z);

    covMat[1][0] += w * (ppt->y) * (rpt->x);
    covMat[1][1] += w * (ppt->y) * (rpt->y);
    covMat[1][2] += w * (ppt->y) * (rpt->z);

    covMat[2][0] += w * (ppt->z) * (rpt->x);
    covMat[2][1] += w * (ppt->z) * (rpt->y);
    covMat[2][2] += w * (ppt->z) * (rpt->z);
  }
}

void _covertCovMatToQuad(const double covMat[3][3],
                         const RDGeom::Point3D &rptSum,
                         const RDGeom::Point3D &pptSum, double wtsSum,
                         double quad[4][4]) {
  double PxRx, PxRy, PxRz;
  double PyRx, PyRy, PyRz;
  double PzRx, PzRy, PzRz;
  double temp;

  temp = pptSum.x / wtsSum;
  PxRx = covMat[0][0] - temp * rptSum.x;
  PxRy = covMat[0][1] - temp * rptSum.y;
  PxRz = covMat[0][2] - temp * rptSum.z;

  temp = pptSum.y / wtsSum;
  PyRx = covMat[1][0] - temp * rptSum.x;
  PyRy = covMat[1][1] - temp * rptSum.y;
  PyRz = covMat[1][2] - temp * rptSum.z;

  temp = pptSum.z / wtsSum;
  PzRx = covMat[2][0] - temp * rptSum.x;
  PzRy = covMat[2][1] - temp * rptSum.y;
  PzRz = covMat[2][2] - temp * rptSum.z;

  quad[0][0] = -2.0 * (PxRx + PyRy + PzRz);
  quad[1][1] = -2.0 * (PxRx - PyRy - PzRz);
  quad[2][2] = -2.0 * (PyRy - PzRz - PxRx);
  quad[3][3] = -2.0 * (PzRz - PxRx - PyRy);

  quad[0][1] = quad[1][0] = 2.0 * (PyRz - PzRy);
  quad[0][2] = quad[2][0] = 2.0 * (PzRx - PxRz);
  quad[0][3] = quad[3][0] = 2.0 * (PxRy - PyRx);
  quad[1][2] = quad[2][1] = -2.0 * (PxRy + PyRx);
  quad[1][3] = quad[3][1] = -2.0 * (PzRx + PxRz);
  quad[2][3] = quad[3][2] = -2.0 * (PyRz + PzRy);
}

//! Obtain the eigen vectors and eigen values
/*!
  \param quad        4x4 matrix of interest
  \param eigenVals   storage for eigen values
  \param eigenVecs   storage for eigen vectors
  \param maxIter     max number of iterations

  <b>Reference:<\b>
  This is essentailly a copy of the jacobi routine taken from the program
  quatfit.c available from the Computational Chemistry Archives.
  http://www.ccl.net/cca/software/SOURCES/C/quaternion-mol-fit/index.shtml
  E-mail jkl@osc.edu for details.
  It was written by:

  David J. Heisterberg
  The Ohio Supercomputer Center
  1224 Kinnear Rd.
  Columbus, OH  43212-1163
  (614)292-6036
  djh@osc.edu    djh@ohstpy.bitnet    ohstpy::djh
  Copyright: Ohio Supercomputer Center, David J. Heisterberg, 1990.
  The program can be copied and distributed freely, provided that
  this copyright in not removed. You may acknowledge the use of the
  program in published material as:
  David J. Heisterberg, 1990, unpublished results.

  Also see page 463 in Numerical Recipes in C (second edition)
*/

unsigned int jacobi(double quad[4][4], double eigenVals[4],
                    double eigenVecs[4][4], unsigned int maxIter) {
  double offDiagNorm, diagNorm;
  double b, dma, q, t, c, s;
  double atemp, vtemp, dtemp;
  int i, j, k;
  unsigned int l;

  // initialize the eigen vector to Identity
  for (j = 0; j <= 3; j++) {
    for (i = 0; i <= 3; i++) eigenVecs[i][j] = 0.0;
    eigenVecs[j][j] = 1.0;
    eigenVals[j] = quad[j][j];
  }

  for (l = 0; l < maxIter; l++) {
    diagNorm = 0.0;
    offDiagNorm = 0.0;
    for (j = 0; j <= 3; j++) {
      diagNorm += fabs(eigenVals[j]);
      for (i = 0; i <= j - 1; i++) {
        offDiagNorm += fabs(quad[i][j]);
      }
    }
    if ((offDiagNorm / diagNorm) <= TOLERANCE) goto Exit_now;
    for (j = 1; j <= 3; j++) {
      for (i = 0; i <= j - 1; i++) {
        b = quad[i][j];
        if (fabs(b) > 0.0) {
          dma = eigenVals[j] - eigenVals[i];
          if ((fabs(dma) + fabs(b)) <= fabs(dma)) {
            t = b / dma;
          } else {
            q = 0.5 * dma / b;
            t = 1.0 / (fabs(q) + sqrt(1.0 + q * q));
            if (q < 0.0) {
              t = -t;
            }
          }
          c = 1.0 / sqrt(t * t + 1.0);
          s = t * c;
          quad[i][j] = 0.0;
          for (k = 0; k <= i - 1; k++) {
            atemp = c * quad[k][i] - s * quad[k][j];
            quad[k][j] = s * quad[k][i] + c * quad[k][j];
            quad[k][i] = atemp;
          }
          for (k = i + 1; k <= j - 1; k++) {
            atemp = c * quad[i][k] - s * quad[k][j];
            quad[k][j] = s * quad[i][k] + c * quad[k][j];
            quad[i][k] = atemp;
          }
          for (k = j + 1; k <= 3; k++) {
            atemp = c * quad[i][k] - s * quad[j][k];
            quad[j][k] = s * quad[i][k] + c * quad[j][k];
            quad[i][k] = atemp;
          }
          for (k = 0; k <= 3; k++) {
            vtemp = c * eigenVecs[k][i] - s * eigenVecs[k][j];
            eigenVecs[k][j] = s * eigenVecs[k][i] + c * eigenVecs[k][j];
            eigenVecs[k][i] = vtemp;
          }
          dtemp = c * c * eigenVals[i] + s * s * eigenVals[j] - 2.0 * c * s * b;
          eigenVals[j] =
              s * s * eigenVals[i] + c * c * eigenVals[j] + 2.0 * c * s * b;
          eigenVals[i] = dtemp;
        } /* end if */
      }   /* end for i */
    }     /* end for j */
  }       /* end for l */

Exit_now:

  for (j = 0; j <= 2; j++) {
    k = j;
    dtemp = eigenVals[k];
    for (i = j + 1; i <= 3; i++) {
      if (eigenVals[i] < dtemp) {
        k = i;
        dtemp = eigenVals[k];
      }
    }

    if (k > j) {
      eigenVals[k] = eigenVals[j];
      eigenVals[j] = dtemp;
      for (i = 0; i <= 3; i++) {
        dtemp = eigenVecs[i][k];
        eigenVecs[i][k] = eigenVecs[i][j];
        eigenVecs[i][j] = dtemp;
      }
    }
  }
  return l + 1;
}

void reflectCovMat(double covMat[3][3]) {
  unsigned int i, j;
  for (i = 0; i < 3; i++) {
    for (j = 0; j < 3; j++) {
      covMat[i][j] = -covMat[i][j];
    }
  }
}

double AlignPoints(const RDGeom::Point3DConstPtrVect &refPoints,
                   const RDGeom::Point3DConstPtrVect &probePoints,
                   RDGeom::Transform3D &trans, const DoubleVector *weights,
                   bool reflect, unsigned int maxIterations) {
  unsigned int npt = refPoints.size();
  PRECONDITION(npt == probePoints.size(), "Mismatch in number of points");
  trans.setToIdentity();
  const DoubleVector *wts;
  double wtsSum;
  bool ownWts;
  if (weights) {
    PRECONDITION(npt == weights->size(), "Mismatch in number of points");
    wts = weights;
    wtsSum = _sumOfWeights(*wts);
    ownWts = false;
  } else {
    wts = new DoubleVector(npt, 1.0);
    wtsSum = static_cast<double>(npt);
    ownWts = true;
  }

  RDGeom::Point3D rptSum = _weightedSumOfPoints(refPoints, *wts);
  RDGeom::Point3D pptSum = _weightedSumOfPoints(probePoints, *wts);

  double rptSumLenSq = _weightedSumOfLenSq(refPoints, *wts);
  double pptSumLenSq = _weightedSumOfLenSq(probePoints, *wts);

  double covMat[3][3];

  // compute the co-variance matrix
  _computeCovarianceMat(refPoints, probePoints, *wts, covMat);
  if (ownWts) {
    delete wts;
    wts = nullptr;
  }
  if (reflect) {
    rptSum *= -1.0;
    reflectCovMat(covMat);
  }

  // convert the covariance matrix to a 4x4 matrix that needs to be diagonalized
  double quad[4][4];
  _covertCovMatToQuad(covMat, rptSum, pptSum, wtsSum, quad);

  // get the eigenVecs and eigenVals for the matrix
  double eigenVecs[4][4], eigenVals[4];
  jacobi(quad, eigenVals, eigenVecs, maxIterations);

  // get the quaternion
  double quater[4];
  quater[0] = eigenVecs[0][0];
  quater[1] = eigenVecs[1][0];
  quater[2] = eigenVecs[2][0];
  quater[3] = eigenVecs[3][0];

  trans.SetRotationFromQuaternion(quater);
  if (reflect) {
    // put the flip in the rotation matrix
    trans.Reflect();
  }
  // compute the SSR value
  double ssr = eigenVals[0] - (pptSum.lengthSq() + rptSum.lengthSq()) / wtsSum +
               rptSumLenSq + pptSumLenSq;

  if ((ssr < 0.0) && (fabs(ssr) < TOLERANCE)) {
    ssr = 0.0;
  }
  if (reflect) {
    rptSum *= -1.0;
  }

  // set the translation
  trans.TransformPoint(pptSum);
  RDGeom::Point3D move = rptSum;
  move -= pptSum;
  move /= wtsSum;
  trans.SetTranslation(move);
  return ssr;
}
}
}