1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213
|
##########################################################################
# Boost Utilities #
##########################################################################
# Copyright (C) 2007 Douglas Gregor <doug.gregor@gmail.com> #
# Copyright (C) 2007 Troy Straszheim #
# #
# Distributed under the Boost Software License, Version 1.0. #
# See accompanying file LICENSE_1_0.txt or copy at #
# http://www.boost.org/LICENSE_1_0.txt #
##########################################################################
# Macros in this module: #
# #
# list_contains: Determine whether a string value is in a list. #
# #
# car: Return the first element in a list #
# #
# cdr: Return all but the first element in a list #
# #
# parse_arguments: Parse keyword arguments for use in other macros. #
##########################################################################
# This utility macro determines whether a particular string value
# occurs within a list of strings:
#
# list_contains(result string_to_find arg1 arg2 arg3 ... argn)
#
# This macro sets the variable named by result equal to TRUE if
# string_to_find is found anywhere in the following arguments.
macro(list_contains var value)
set(${var})
foreach (value2 ${ARGN})
if (${value} STREQUAL ${value2})
set(${var} TRUE)
endif (${value} STREQUAL ${value2})
endforeach (value2)
endmacro(list_contains)
# This utility macro extracts the first argument from the list of
# arguments given, and places it into the variable named var.
#
# car(var arg1 arg2 ...)
macro(car var)
set(${var} ${ARGV1})
endmacro(car)
# This utility macro extracts all of the arguments given except the
# first, and places them into the variable named var.
#
# car(var arg1 arg2 ...)
macro(cdr var junk)
set(${var} ${ARGN})
endmacro(cdr)
# The PARSE_ARGUMENTS macro will take the arguments of another macro and
# define several variables. The first argument to PARSE_ARGUMENTS is a
# prefix to put on all variables it creates. The second argument is a
# list of names, and the third argument is a list of options. Both of
# these lists should be quoted. The rest of PARSE_ARGUMENTS are
# arguments from another macro to be parsed.
#
# PARSE_ARGUMENTS(prefix arg_names options arg1 arg2...)
#
# For each item in options, PARSE_ARGUMENTS will create a variable with
# that name, prefixed with prefix_. So, for example, if prefix is
# MY_MACRO and options is OPTION1;OPTION2, then PARSE_ARGUMENTS will
# create the variables MY_MACRO_OPTION1 and MY_MACRO_OPTION2. These
# variables will be set to true if the option exists in the command line
# or false otherwise.
#
# For each item in arg_names, PARSE_ARGUMENTS will create a variable
# with that name, prefixed with prefix_. Each variable will be filled
# with the arguments that occur after the given arg_name is encountered
# up to the next arg_name or the end of the arguments. All options are
# removed from these lists. PARSE_ARGUMENTS also creates a
# prefix_DEFAULT_ARGS variable containing the list of all arguments up
# to the first arg_name encountered.
MACRO(PARSE_ARGUMENTS prefix arg_names option_names)
SET(DEFAULT_ARGS)
FOREACH(arg_name ${arg_names})
SET(${prefix}_${arg_name})
ENDFOREACH(arg_name)
FOREACH(option ${option_names})
SET(${prefix}_${option} FALSE)
ENDFOREACH(option)
SET(current_arg_name DEFAULT_ARGS)
SET(current_arg_list)
FOREACH(arg ${ARGN})
LIST_CONTAINS(is_arg_name ${arg} ${arg_names})
IF (is_arg_name)
SET(${prefix}_${current_arg_name} ${current_arg_list})
SET(current_arg_name ${arg})
SET(current_arg_list)
ELSE (is_arg_name)
LIST_CONTAINS(is_option ${arg} ${option_names})
IF (is_option)
SET(${prefix}_${arg} TRUE)
ELSE (is_option)
SET(current_arg_list ${current_arg_list} ${arg})
ENDIF (is_option)
ENDIF (is_arg_name)
ENDFOREACH(arg)
SET(${prefix}_${current_arg_name} ${current_arg_list})
ENDMACRO(PARSE_ARGUMENTS)
# Perform a reverse topological sort on the given LIST.
#
# topological_sort(my_list "MY_" "_EDGES")
#
# LIST is the name of a variable containing a list of elements to be
# sorted in reverse topological order. Each element in the list has a
# set of outgoing edges (for example, those other list elements that
# it depends on). In the resulting reverse topological ordering
# (written back into the variable named LIST), an element will come
# later in the list than any of the elements that can be reached by
# following its outgoing edges and the outgoing edges of any vertices
# they target, recursively. Thus, if the edges represent dependencies
# on build targets, for example, the reverse topological ordering is
# the order in which one would build those targets.
#
# For each element E in this list, the edges for E are contained in
# the variable named ${PREFIX}${E}${SUFFIX}, where E is the
# upper-cased version of the element in the list. If no such variable
# exists, then it is assumed that there are no edges. For example, if
# my_list contains a, b, and c, one could provide a dependency graph
# using the following variables:
#
# MY_A_EDGES b
# MY_B_EDGES
# MY_C_EDGES a b
#
# With the involcation of topological_sort shown above and these
# variables, the resulting reverse topological ordering will be b, a,
# c.
function(topological_sort LIST PREFIX SUFFIX)
# Clear the stack and output variable
set(VERTICES "${${LIST}}")
set(STACK)
set(${LIST})
# Loop over all of the vertices, starting the topological sort from
# each one.
foreach(VERTEX ${VERTICES})
string(TOUPPER ${VERTEX} UPPER_VERTEX)
# If we haven't already processed this vertex, start a depth-first
# search from where.
if (NOT FOUND_${UPPER_VERTEX})
# Push this vertex onto the stack with all of its outgoing edges
string(REPLACE ";" " " NEW_ELEMENT
"${VERTEX};${${PREFIX}${UPPER_VERTEX}${SUFFIX}}")
list(APPEND STACK ${NEW_ELEMENT})
# We've now seen this vertex
set(FOUND_${UPPER_VERTEX} TRUE)
# While the depth-first search stack is not empty
list(LENGTH STACK STACK_LENGTH)
while(STACK_LENGTH GREATER 0)
# Remove the vertex and its remaining out-edges from the top
# of the stack
list(GET STACK -1 OUT_EDGES)
list(REMOVE_AT STACK -1)
# Get the source vertex and the list of out-edges
separate_arguments(OUT_EDGES)
list(GET OUT_EDGES 0 SOURCE)
list(REMOVE_AT OUT_EDGES 0)
# While there are still out-edges remaining
list(LENGTH OUT_EDGES OUT_DEGREE)
while (OUT_DEGREE GREATER 0)
# Pull off the first outgoing edge
list(GET OUT_EDGES 0 TARGET)
list(REMOVE_AT OUT_EDGES 0)
string(TOUPPER ${TARGET} UPPER_TARGET)
if (NOT FOUND_${UPPER_TARGET})
# We have not seen the target before, so we will traverse
# its outgoing edges before coming back to our
# source. This is the key to the depth-first traversal.
# We've now seen this vertex
set(FOUND_${UPPER_TARGET} TRUE)
# Push the remaining edges for the current vertex onto the
# stack
string(REPLACE ";" " " NEW_ELEMENT
"${SOURCE};${OUT_EDGES}")
list(APPEND STACK ${NEW_ELEMENT})
# Setup the new source and outgoing edges
set(SOURCE ${TARGET})
string(TOUPPER ${SOURCE} UPPER_SOURCE)
set(OUT_EDGES
${${PREFIX}${UPPER_SOURCE}${SUFFIX}})
endif(NOT FOUND_${UPPER_TARGET})
list(LENGTH OUT_EDGES OUT_DEGREE)
endwhile (OUT_DEGREE GREATER 0)
# We have finished all of the outgoing edges for
# SOURCE; add it to the resulting list.
list(APPEND ${LIST} ${SOURCE})
# Check the length of the stack
list(LENGTH STACK STACK_LENGTH)
endwhile(STACK_LENGTH GREATER 0)
endif (NOT FOUND_${UPPER_VERTEX})
endforeach(VERTEX)
set(${LIST} ${${LIST}} PARENT_SCOPE)
endfunction(topological_sort)
|