1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380
|
from __future__ import print_function
import numpy
import time
import unittest
from scipy.optimize import linear_sum_assignment
from rdkit import Chem
from rdkit.Chem import AllChem
from rdkit.Chem import rdmolops
from rdkit import DataStructs
from rdkit.Chem.Fingerprints import FingerprintMols
_BK_ = {
Chem.rdchem.BondType.SINGLE: 1,
Chem.rdchem.BondType.DOUBLE: 2,
Chem.rdchem.BondType.TRIPLE: 3,
Chem.rdchem.BondType.AROMATIC: 4
}
_BONDSYMBOL_ = {1: '-', 2: '=', 3: '#', 4: ':'}
#_nAT_ = 217 # 108*2+1
_nAT_ = 223 # Gobbi code actually uses the first prime higher than 217, not 217 itself
_nBT_ = 5
#def FindAllPathsOfLengthN_Gobbi(mol, length, rootedAtAtom=-1, uniquepaths=True):
# return FindAllPathsOfLengthMToN(mol, length, length, rootedAtAtom=rootedAtAtom, uniquepaths=uniquepaths)
def FindAllPathsOfLengthMToN_Gobbi(mol, minlength, maxlength, rootedAtAtom=-1, uniquepaths=True):
'''this function returns the same set of bond paths as the Gobbi paper. These differ a little from the rdkit FindAllPathsOfLengthMToN function'''
paths = []
for atom in mol.GetAtoms():
if rootedAtAtom == -1 or atom.GetIdx() == rootedAtAtom:
path = []
visited = set([atom.GetIdx()])
# visited = set()
_FindAllPathsOfLengthMToN_Gobbi(atom, path, minlength, maxlength, visited, paths)
if uniquepaths:
uniquepathlist = []
seen = set()
for path in paths:
if path not in seen:
reversepath = tuple([i for i in path[::-1]])
if reversepath not in seen:
uniquepathlist.append(path)
seen.add(path)
return uniquepathlist
else:
return paths
def _FindAllPathsOfLengthMToN_Gobbi(atom, path, minlength, maxlength, visited, paths):
for bond in atom.GetBonds():
if bond.GetIdx() not in path:
bidx = bond.GetIdx()
path.append(bidx)
if len(path) >= minlength and len(path) <= maxlength:
paths.append(tuple(path))
if len(path) < maxlength:
a1 = bond.GetBeginAtom()
a2 = bond.GetEndAtom()
if a1.GetIdx() == atom.GetIdx():
nextatom = a2
else:
nextatom = a1
nextatomidx = nextatom.GetIdx()
if nextatomidx not in visited:
visited.add(nextatomidx)
_FindAllPathsOfLengthMToN_Gobbi(nextatom, path, minlength, maxlength, visited, paths)
visited.remove(nextatomidx)
path.pop()
def getpathintegers(m1, uptolength=7):
'''returns a list of integers describing the paths for molecule m1. This uses numpy 16 bit unsigned integers to reproduce the data in the Gobbi paper. The returned list is sorted'''
bondtypelookup = {}
for b in m1.GetBonds():
bondtypelookup[b.GetIdx()] = _BK_[b.GetBondType()], b.GetBeginAtom(), b.GetEndAtom()
pathintegers = {}
for a in m1.GetAtoms():
idx = a.GetIdx()
pathintegers[idx] = []
# for pathlength in range(1, uptolength+1):
# for path in rdmolops.FindAllPathsOfLengthN(m1, pathlength, rootedAtAtom=idx):
for ipath, path in enumerate(
FindAllPathsOfLengthMToN_Gobbi(m1, 1, uptolength, rootedAtAtom=idx, uniquepaths=False)):
strpath = []
currentidx = idx
res = []
for ip, p in enumerate(path):
bk, a1, a2 = bondtypelookup[p]
strpath.append(_BONDSYMBOL_[bk])
if a1.GetIdx() == currentidx:
a = a2
else:
a = a1
ak = a.GetAtomicNum()
if a.GetIsAromatic():
ak += 108
#trying to get the same behaviour as the Gobbi test code - it looks like a circular path includes the bond, but not the closure atom - this fix works
if a.GetIdx() == idx:
ak = None
if ak is not None:
astr = a.GetSymbol()
if a.GetIsAromatic():
strpath.append(astr.lower())
else:
strpath.append(astr)
res.append((bk, ak))
currentidx = a.GetIdx()
pathuniqueint = numpy.ushort(0) # work with 16 bit unsigned integers and ignore overflow...
for ires, (bi, ai) in enumerate(res):
#use 16 bit unsigned integer arithmetic to reproduce the Gobbi ints
# pathuniqueint = ((pathuniqueint+bi)*_nAT_+ai)*_nBT_
val1 = pathuniqueint + numpy.ushort(bi)
val2 = val1 * numpy.ushort(_nAT_)
#trying to get the same behaviour as the Gobbi test code - it looks like a circular path includes the bond, but not the closure atom - this fix works
if ai is not None:
val3 = val2 + numpy.ushort(ai)
val4 = val3 * numpy.ushort(_nBT_)
else:
val4 = val2
pathuniqueint = val4
pathintegers[idx].append(pathuniqueint)
#sorted lists allow for a quicker comparison algorithm
for p in pathintegers.values():
p.sort()
return pathintegers
def getcommon(l1, ll1, l2, ll2):
'''returns the number of items sorted lists l1 and l2 have in common. ll1 and ll2 are the list lengths'''
ncommon = 0
ix1 = 0
ix2 = 0
while (ix1 < ll1) and (ix2 < ll2):
a1 = l1[ix1]
a2 = l2[ix2]
#a1 is < or > more often that ==
if a1 < a2:
ix1 += 1
elif a1 > a2:
ix2 += 1
else: # a1 == a2:
ncommon += 1
ix1 += 1
ix2 += 1
return ncommon
def getsimaibj(aipaths, bjpaths, naipaths, nbjpaths):
'''returns the similarity of two sorted path lists. Equation 2'''
nc = getcommon(aipaths, naipaths, bjpaths, nbjpaths)
sim = float(nc + 1) / (max(naipaths, nbjpaths) * 2 - nc + 1)
return sim
def getmappings(simmatrixarray):
'''return a mapping of the atoms in the similarity matix using the heuristic algorithm described in the paper'''
costarray = numpy.ones(simmatrixarray.shape) - simmatrixarray
it = numpy.nditer(costarray, flags=['multi_index'], op_flags=['writeonly'])
dsu = []
for a in it:
dsu.append((a, it.multi_index[0], it.multi_index[1]))
dsu.sort()
seena = set()
seenb = set()
mappings = []
for sim, a, b in dsu:
if a not in seena and b not in seenb:
seena.add(a)
seenb.add(b)
mappings.append((a, b))
return mappings[:min(simmatrixarray.shape)]
def gethungarianmappings(simmatrixarray):
'''return a mapping of the atoms in the similarity matrix - the Hungarian algorithm is used because it is invariant to atom ordering. Requires scipy'''
costarray = numpy.ones(simmatrixarray.shape) - simmatrixarray
row_ind, col_ind = linear_sum_assignment(costarray)
res = zip(row_ind, col_ind)
return res
def getsimab(mappings, simmatrixdict):
'''return the similarity for a set of mapping. See Eqn 3'''
naa, nab = simmatrixdict.shape
score = 0.0
for a, b in mappings:
score += simmatrixdict[a][b]
simab = score / (max(naa, nab) * 2 - score)
return simab
def getsimmatrix(m1, m1pathintegers, m2, m2pathintegers):
'''generate a matrix of atom atom similarities. See Figure 4'''
aidata = [((ai.GetAtomicNum(), ai.GetIsAromatic()), ai.GetIdx()) for ai in m1.GetAtoms()]
bjdata = [((bj.GetAtomicNum(), bj.GetIsAromatic()), bj.GetIdx()) for bj in m2.GetAtoms()]
simmatrixarray = numpy.zeros((len(aidata), len(bjdata)))
for ai, (aitype, aiidx) in enumerate(aidata):
aipaths = m1pathintegers[aiidx]
naipaths = len(aipaths)
for bj, (bjtype, bjidx) in enumerate(bjdata):
if aitype == bjtype:
bjpaths = m2pathintegers[bjidx]
nbjpaths = len(bjpaths)
simmatrixarray[ai][bj] = getsimaibj(aipaths, bjpaths, naipaths, nbjpaths)
return simmatrixarray
def AtomAtomPathSimilarity(m1, m2, m1pathintegers=None, m2pathintegers=None):
'''compute the Atom Atom Path Similarity for a pair of RDKit molecules. See Gobbi et al, J. ChemInf (2015) 7:11
the most expensive part of the calculation is computing the path integers - we can precompute these and pass them in as an argument'''
if m1pathintegers is None:
m1pathintegers = getpathintegers(m1)
if m2pathintegers is None:
m2pathintegers = getpathintegers(m2)
simmatrix = getsimmatrix(m1, m1pathintegers, m2, m2pathintegers)
# mappings = getmappings(simmatrix)
mappings = gethungarianmappings(simmatrix)
simab = getsimab(mappings, simmatrix)
return simab
def test0():
'''reproduce the worked similarity in the Gobbi paper'''
m1 = Chem.MolFromSmiles('o1nccc1C')
m2 = Chem.MolFromSmiles('[nH]1nccc1')
return AtomAtomPathSimilarity(m1, m2)
def test1():
'''generate a set of path integers for 3 molecules from the Gobbi source IAAPathGeneratorCharTest.java'''
res = []
smiles = ["C", "C(=O)F", "C1ON1"]
for s in smiles:
m = Chem.MolFromSmiles(s)
mpathintegers = getpathintegers(m)
res.append(mpathintegers)
return res
def test2():
'''generate a matrix molecules from the Gobbi source AAPathComparator2Test.java'''
smileslist = ["*", "C", "N", "CCO", "CC(=O)N", "c1ccccc1", "c1ncncc1", "c1[nH]ccc1",
"c1ncncc1CC(=O)N", "c1ccccc1c1ncncc1"]
sims = []
for s1 in smileslist:
for s2 in smileslist:
m1 = Chem.MolFromSmiles(s1)
m2 = Chem.MolFromSmiles(s2)
sims.append('%.4f' % AtomAtomPathSimilarity(m1, m2))
return sims
def test3():
'''generate a set of similarities for the example compounds in Figure 1. These are compared to the values in Additional File 1'''
m1a = Chem.MolFromSmiles('Clc1ccc(CN2CCC(CC2)c3cc([nH]n3)c4ccc(Cl)cc4)cc1')
m1b = Chem.MolFromSmiles('Clc1ccc(CN2CCN(CC2)CC(=O)N(C)c3ccccc3)cc1')
m2a = Chem.MolFromSmiles('Cc1cccn2cc(nc12)c3ccc(NC(=O)CN4CCCC4)cc3')
m2b = Chem.MolFromSmiles('Cc1c(cc2ccccn12)c3ccc(OCCCN4CCCCC4)cc3')
res = []
for m1 in (m1a, m1b, m2a, m2b):
for m2 in (m1a, m1b, m2a, m2b):
sim = AtomAtomPathSimilarity(m1, m2)
res.append('%.2f' % sim)
return res
def timeit():
#these are the first 40 smiles in the Gobbi 13321_2015_56_MOESM2_ESM file'''
molstr = '''C[C@@H](O)[C@@H]1OCC[C@@H](C)[C@H](O)C(=O)OC[C@]23CCC(C)=C[C@H]2O[C@@H]4C[C@@H](OC(=O)C=CC=C1)[C@@]3(C)[C@@]45CO5
CC1=C[C@H]2O[C@@H]3C[C@H]4OC(=O)C=CC=CC(=O)OCCC(C)=CC(=O)OC[C@@]2(CC1)[C@]4(C)[C@]35CO5
CC1=CC(=O)OC[C@]23C[C@H](O)C(C)=C[C@H]2O[C@@H]4C[C@@H](OC(=O)C=CC=CC(=O)OCC1)[C@@]3(C)[C@]45CO5
CC1(C)N=C(N)N=C(N)N1C2=CC=C(Br)C=C2
CC1(C)N=C(N)N=C(N)N1C2=CC=CC=C2
CC1(C)N=C(N)N=C(N)N1C2=CC=C(I)C=C2
CC1=CC=C(C=C1)N2C(N)=NC(N)=NC2(C)C
CC1(C)N=C(N)N=C(N)N1C2=CC=C(Cl)C=C2
CC1(C)N=C(N)N=C(N)N1C2=CC=C(F)C=C2
CC1=CC=CC(=C1)N2C(N)=NC(N)=NC2(C)C
COC1=CC=C(C=C1)N2C(N)=NC(N)=NC2(C)C
CC1=CC=C(N2C(N)=NC(N)=NC2(C)C)C(C)=C1
CCOC1=CC=C(C=C1)N2C(N)=NC(N)=NC2(C)C
COC1=CC=CC(=C1)N2C(N)=NC(N)=NC2(C)C
CC1=CC=CC(NC2=NC(N)=NC(C)(C)N2)=C1
CNC1=C(N(CC2=CC=C(Cl)C(Cl)=C2)C(C)=O)C(=O)C3=CC=CC=C3C1=O
CC(=O)N(CC1=CC=C(F)C=C1)C2=C(NCC3=CC=CC=C3)C(=O)C4=CC=CC=C4C2=O
CC(=O)N(CC1=CC=C(F)C=C1)C2=C(NCCC3=CC=CC=C3)C(=O)C4=CC=CC=C4C2=O
CCC(=O)N(C(C)C)C1=C(NC)C(=O)C2=CC=CC=C2C1=O
CCN(CC)CCCC(C)NC1=CC=NC2=CC(Cl)=CC=C12
CC(CCCNCCO)NC1=CC=NC2=CC(Cl)=CC=C12
CC(C)C(=O)NCCCCNC1=CC=NC2=CC(Cl)=CC=C12
CC(C)(C)CC(=O)NCCCCNC1=CC=NC2=CC(Cl)=CC=C12
CC(C)CC(=O)NCCCCNC1=CC=NC2=CC(Cl)=CC=C12
CC(CC(=O)NCCCCNC1=CC=NC2=CC(Cl)=CC=C12)CC(C)(C)C
CCCCC(CC)C(=O)NCCCCNC1=CC=NC2=CC(Cl)=CC=C12
ClC1=CC=C2C(NCCCCNC(=O)C3CCCC3)=CC=NC2=C1
CCCCCCCCC(=O)NCCCCNC1=CC=NC2=CC(Cl)=CC=C12
CC(C)(CCl)C(=O)NCCCCNC1=CC=NC2=CC(Cl)=CC=C12
ClC1=CC=C2C(NCCCCNC(=O)C3CCCCC3)=CC=NC2=C1
NCCCCCCNC1=CC=NC2=CC(Cl)=CC=C12
ClC1=CC=C2C(NCCCCNC(=O)CCC3CCCC3)=CC=NC2=C1
ClC1=CC=C2C(NC3CCCCCCC3)=CC=NC2=C1
CC1CCC(CC1)NC2=CC=NC3=CC(Cl)=CC=C23
CN(C)C(=O)NCCCCNC1=CC=NC2=CC(Cl)=CC=C12
CCN(CC)CCCC(C)NC1=C2C=CC(Cl)=CC2=NC3=CC=C(OC)C=C13
CC(CCCO)NC1=CC=NC2=CC(Cl)=CC=C12
CCCCCC(=O)NCCCCCCNC1=CC=NC2=CC(Cl)=CC=C12
ClC1=CC=C2C(NC3CCC(CC3)NC(=O)CCC4CCCC4)=CC=NC2=C1
CN(C)CCCNC1=CC=NC2=CC(Cl)=CC=C12
'''
mols = [Chem.MolFromSmiles(smiles) for smiles in molstr.splitlines()]
na = len(mols)
nb = len(mols)
pathints = [getpathintegers(mol) for mol in mols]
start = time.time()
for a, api in zip(mols, pathints):
for b, bpi in zip(mols, pathints):
sim = AtomAtomPathSimilarity(a, b, m1pathintegers=api, m2pathintegers=bpi)
print('time to compute %dx%d matrix: %.2fs' % (na, nb, time.time() - start))
class TestAtomAtomPathSimilarity(unittest.TestCase):
def test_paper(self):
self.assertEqual('%.3f' % test0(), '0.066')
def test_getcommon(self):
self.assertEqual(getcommon([2, 2, 2, 3, 3, 3], 6, [1, 2, 3, 3, 4, 5], 6), 3)
def test_pathintegers(self):
self.assertEqual(test1(), [
{0: []}, {0: [1160, 2270],
1: [2260, 30692],
2: [1145, 33761]}, {0: [752, 1150, 1155, 3826, 38221, 43791],
1: [1145, 1150, 1596, 4670, 32641, 38211],
2: [1145, 1155, 5785, 32646, 43786, 65173]}
])
def test_AAPathComparator2Test(self):
self.assertEqual(
test2(),
['1.0000', '0.0000', '0.0000', '0.0000', '0.0000', '0.0000', '0.0000', '0.0000', '0.0000',
'0.0000', '0.0000', '1.0000', '0.0000', '0.0345', '0.0182', '0.0000', '0.0000', '0.0000',
'0.0017', '0.0000', '0.0000', '0.0000', '1.0000', '0.0000', '0.0182', '0.0000', '0.0000',
'0.0000', '0.0020', '0.0000', '0.0000', '0.0345', '0.0000', '1.0000', '0.1126', '0.0000',
'0.0000', '0.0000', '0.0088', '0.0000', '0.0000', '0.0182', '0.0182', '0.1126', '1.0000',
'0.0000', '0.0000', '0.0000', '0.0336', '0.0000', '0.0000', '0.0000', '0.0000', '0.0000',
'0.0000', '1.0000', '0.0373', '0.0645', '0.0148', '0.0869', '0.0000', '0.0000', '0.0000',
'0.0000', '0.0000', '0.0373', '1.0000', '0.1101', '0.1767', '0.0869', '0.0000', '0.0000',
'0.0000', '0.0000', '0.0000', '0.0645', '0.1101', '1.0000', '0.0387', '0.0219', '0.0000',
'0.0017', '0.0020', '0.0088', '0.0336', '0.0148', '0.1767', '0.0387', '1.0000', '0.0869',
'0.0000', '0.0000', '0.0000', '0.0000', '0.0000', '0.0869', '0.0869', '0.0219', '0.0869',
'1.0000'])
def test_tableS1(self):
self.assertEqual(test3(), ['1.00', '0.19', '0.06', '0.09', '0.19', '1.00', '0.12', '0.05',
'0.06', '0.12', '1.00', '0.15', '0.09', '0.05', '0.15', '1.00'])
if __name__ == "__main__":
# unittest.main()
timeit()
|