File: indexing.py

package info (click to toggle)
rdkit 201809.1%2Bdfsg-6
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 123,688 kB
  • sloc: cpp: 230,509; python: 70,501; java: 6,329; ansic: 5,427; sql: 1,899; yacc: 1,739; lex: 1,243; makefile: 445; xml: 229; fortran: 183; sh: 123; cs: 93
file content (530 lines) | stat: -rw-r--r-- 18,918 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
# Copyright (c) 2012, GlaxoSmithKline Research & Development Ltd.
# All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are
# met:
#
#     * Redistributions of source code must retain the above copyright
#       notice, this list of conditions and the following disclaimer.
#     * Redistributions in binary form must reproduce the above
#       copyright notice, this list of conditions and the following
#       disclaimer in the documentation and/or other materials provided
#       with the distribution.
#     * Neither the name of GlaxoSmithKline Research & Development Ltd.
#       nor the names of its contributors may be used to endorse or promote
#       products derived from this software without specific prior written
#       permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
# "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
# LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
# A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
# OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
# SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
# LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
# DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
# THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
# (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#
# Created by Jameed Hussain, September 2012
from __future__ import print_function
import sys
import re
from rdkit import Chem
from optparse import OptionParser


def heavy_atom_count(smi):

  m = Chem.MolFromSmiles(smi)
  return m.GetNumAtoms()


def add_to_index(smi, attachments, cmpd_heavy):

  result = False
  core_size = heavy_atom_count(smi) - attachments

  if (use_ratio):
    core_ratio = float(core_size) / float(cmpd_heavy)
    if (core_ratio <= ratio):
      result = True
  else:
    if (core_size <= max_size):
      result = True

  return result


def get_symmetry_class(smi):
  symmetry = []

  m = Chem.MolFromSmiles(smi)
  symmetry_classes = Chem.CanonicalRankAtoms(m, breakTies=False)

  #get the symmetry class of the attachements points
  #Note: 1st star is the zero index,
  #2nd star is first index, etc
  for atom, symmetry_class in zip(m.GetAtoms(), symmetry_classes):
    if (atom.GetMass() == 0):
      symmetry.append(symmetry_class)

  return symmetry


def cansmirk(lhs, rhs, context):

  #cansmirk algorithm
  #1) cansmi the LHS.
  #2) For the LHS the 1st star will have label 1, 2nd star will have label 2 and so on
  #3) Do a symmetry check of lhs and rhs and use that to decide if the labels on
  #   RHS or/and context need to change.
  #4) For the rhs, if you have a choice (ie. two attachement points are symmetrically
  #   equivalent), always put the label with lower numerical value on the earlier
  #   attachement point on the cansmi-ed smiles

  #print "in: %s,%s" % (lhs,rhs)

  isotope_track = {}
  #if the star count of lhs/context/rhs is 1, single cut
  stars = lhs.count("*")

  if (stars > 1):
    #get the symmetry class of stars of lhs and rhs
    lhs_sym = get_symmetry_class(lhs)
    rhs_sym = get_symmetry_class(rhs)

  #deal with double cuts
  if (stars == 2):
    #simple cases
    #unsymmetric lhs and unsymmetric rhs
    if ((lhs_sym[0] != lhs_sym[1]) and (rhs_sym[0] != rhs_sym[1])):
      #get 1st and 2nd labels and store the new label for it in isotope_track
      #structure: isotope_track[old_label]=new_label (as strings)
      isotope_track = build_track_dictionary(lhs, stars)

      #switch labels using isotope track
      lhs = switch_labels_on_position(lhs)
      rhs = switch_labels(isotope_track, stars, rhs)
      context = switch_labels(isotope_track, stars, context)

    #symmetric lhs and symmetric rhs
    elif ((lhs_sym[0] == lhs_sym[1]) and (rhs_sym[0] == rhs_sym[1])):
      #the points are all equivalent so change labels on lhs and rhs based on position
      #labels on context don't need to change
      lhs = switch_labels_on_position(lhs)
      rhs = switch_labels_on_position(rhs)

    #more difficult cases..
    #symmetric lhs and unsymmetric rhs
    elif ((lhs_sym[0] == lhs_sym[1]) and (rhs_sym[0] != rhs_sym[1])):
      #switch labels lhs based on position
      lhs = switch_labels_on_position(lhs)
      #change labels on rhs based on position but need to record
      #the changes as need to appy them to the context
      isotope_track = build_track_dictionary(rhs, stars)
      rhs = switch_labels_on_position(rhs)
      context = switch_labels(isotope_track, stars, context)

    #unsymmetric lhs and symmetric rhs
    elif ((lhs_sym[0] != lhs_sym[1]) and (rhs_sym[0] == rhs_sym[1])):
      #change labels on lhs based on position but need to record
      #the changes as need to appy them to the context
      isotope_track = build_track_dictionary(lhs, stars)
      lhs = switch_labels_on_position(lhs)
      context = switch_labels(isotope_track, stars, context)
      #as rhs is symmetric, positions are equivalent so change labels on position
      rhs = switch_labels_on_position(rhs)

    #deal with triple cut
    #unwieldy code but most readable I can make it
  elif (stars == 3):
    #simple cases
    #completely symmetric lhs and completely symmetric rhs
    if (((lhs_sym[0] == lhs_sym[1]) and (lhs_sym[1] == lhs_sym[2]) and
         (lhs_sym[0] == lhs_sym[2])) and
        ((rhs_sym[0] == rhs_sym[1]) and (rhs_sym[1] == rhs_sym[2]) and (rhs_sym[0] == rhs_sym[2]))):
      #the points are all equivalent so change labels on lhs and rhs based on position
      #labels on context don't need to change
      lhs = switch_labels_on_position(lhs)
      rhs = switch_labels_on_position(rhs)

    #completely symmetric lhs and completely unsymmetric rhs
    elif (
      ((lhs_sym[0] == lhs_sym[1]) and (lhs_sym[1] == lhs_sym[2]) and (lhs_sym[0] == lhs_sym[2])) and
      ((rhs_sym[0] != rhs_sym[1]) and (rhs_sym[1] != rhs_sym[2]) and (rhs_sym[0] != rhs_sym[2]))):

      #alter lhs in usual way
      lhs = switch_labels_on_position(lhs)
      #change labels on rhs based on position but need to record
      #the changes as need to appy them to the context
      isotope_track = build_track_dictionary(rhs, stars)
      rhs = switch_labels_on_position(rhs)
      context = switch_labels(isotope_track, stars, context)

    #completely unsymmetric lhs and completely unsymmetric rhs
    elif (
      ((lhs_sym[0] != lhs_sym[1]) and (lhs_sym[1] != lhs_sym[2]) and (lhs_sym[0] != lhs_sym[2])) and
      ((rhs_sym[0] != rhs_sym[1]) and (rhs_sym[1] != rhs_sym[2]) and (rhs_sym[0] != rhs_sym[2]))):

      #build the isotope track
      isotope_track = build_track_dictionary(lhs, stars)
      #alter lhs in usual way
      lhs = switch_labels_on_position(lhs)
      #change rhs and context based on isotope_track
      rhs = switch_labels(isotope_track, stars, rhs)
      context = switch_labels(isotope_track, stars, context)

    #completely unsymmetric lhs and completely symmetric rhs
    elif (
      ((lhs_sym[0] != lhs_sym[1]) and (lhs_sym[1] != lhs_sym[2]) and (lhs_sym[0] != lhs_sym[2])) and
      ((rhs_sym[0] == rhs_sym[1]) and (rhs_sym[1] == rhs_sym[2]) and (rhs_sym[0] == rhs_sym[2]))):

      #build isotope trach on lhs
      isotope_track = build_track_dictionary(lhs, stars)
      #alter lhs in usual way
      lhs = switch_labels_on_position(lhs)
      #change labels on context
      context = switch_labels(isotope_track, stars, context)
      #all positions on rhs equivalent so add labels on position
      rhs = switch_labels_on_position(rhs)

    #more difficult cases, partial symmetry
    #completely unsymmetric on lhs and partial symmetry on rhs
    elif ((lhs_sym[0] != lhs_sym[1]) and (lhs_sym[1] != lhs_sym[2]) and (lhs_sym[0] != lhs_sym[2])):
      #build the isotope track
      isotope_track = build_track_dictionary(lhs, stars)
      #alter lhs in usual way
      lhs = switch_labels_on_position(lhs)
      #change rhs and context based on isotope_track
      rhs = switch_labels(isotope_track, stars, rhs)
      context = switch_labels(isotope_track, stars, context)

      #tweak positions on rhs based on symmetry
      #rhs 1,2 equivalent
      if (rhs_sym[0] == rhs_sym[1]):
        #tweak rhs position 1 and 2 as they are symmetric
        rhs = switch_specific_labels_on_symmetry(rhs, rhs_sym, 1, 2)

      #rhs 2,3 equivalent
      elif (rhs_sym[1] == rhs_sym[2]):
        #tweak rhs position 1 and 2 as they are symmetric
        rhs = switch_specific_labels_on_symmetry(rhs, rhs_sym, 2, 3)

      #rhs 1,3 equivalent - try for larger set in future
      elif (rhs_sym[0] == rhs_sym[2]):
        #tweak rhs position 1 and 2 as they are symmetric
        rhs = switch_specific_labels_on_symmetry(rhs, rhs_sym, 1, 3)

      #now we are left with things with partial symmetry on lhs and not completely symmetric or unsymmetric on rhs
    else:
      #lhs 1,2,3 equivalent and any sort of partial symmetry on rhs
      if ((lhs_sym[0] == lhs_sym[1]) and (lhs_sym[1] == lhs_sym[2]) and (lhs_sym[0] == lhs_sym[2])):

        #alter lhs in usual way
        lhs = switch_labels_on_position(lhs)
        #change labels on rhs based on position but need to record
        #the changes as need to appy them to the context
        isotope_track = build_track_dictionary(rhs, stars)
        rhs = switch_labels_on_position(rhs)
        context = switch_labels(isotope_track, stars, context)

      #now deal partial symmetry on lhs or rhs.
      #Cases where:
      #lhs 1,2 equivalent
      #lhs 2,3 equivalent
      #lhs 1,3 equivalent
      else:
        #build isotope track on lhs
        isotope_track = build_track_dictionary(lhs, stars)
        #alter lhs in usual way
        lhs = switch_labels_on_position(lhs)
        #change rhs and context based on isotope_track
        rhs = switch_labels(isotope_track, stars, rhs)
        context = switch_labels(isotope_track, stars, context)

        #tweak positions on rhs based on symmetry

        #lhs 1,2 equivalent
        if (lhs_sym[0] == lhs_sym[1]):
          #tweak rhs position 1 and 2 as they are symmetric on lhs
          rhs = switch_specific_labels_on_symmetry(rhs, rhs_sym, 1, 2)

        #lhs 2,3 equivalent
        elif (lhs_sym[1] == lhs_sym[2]):
          #tweak rhs position 1 and 2 as they are symmetric on lhs
          rhs = switch_specific_labels_on_symmetry(rhs, rhs_sym, 2, 3)

        #lhs 1,3 equivalent - try for larger set in future
        elif (lhs_sym[0] == lhs_sym[2]):
          #tweak rhs position 1 and 2 as they are symmetric on lhs
          rhs = switch_specific_labels_on_symmetry(rhs, rhs_sym, 1, 3)

  smirk = "%s>>%s" % (lhs, rhs)

  return smirk, context


def switch_specific_labels_on_symmetry(smi, symmetry_class, a, b):

  #check if a and b positions are symmetrically equivalent
  #if equivalent, swap labels if the lower numerical label is not on the
  #1st symmetrically equivalent attachment points in the smi

  if (symmetry_class[a - 1] == symmetry_class[b - 1]):
    #what are the labels on a and b

    matchObj = re.search(r'\[\*\:([123])\].*\[\*\:([123])\].*\[\*\:([123])\]', smi)
    if matchObj:
      #if the higher label comes first, fix
      if (int(matchObj.group(a)) > int(matchObj.group(b))):
        #if(int(matchObj.group(1)) > int(matchObj.group(2))):
        smi = re.sub(r'\[\*\:' + matchObj.group(a) + '\]', '[*:XX' + matchObj.group(b) + 'XX]', smi)
        smi = re.sub(r'\[\*\:' + matchObj.group(b) + '\]', '[*:XX' + matchObj.group(a) + 'XX]', smi)
        smi = re.sub('XX', '', smi)

  return smi


def switch_labels_on_position(smi):

  #move the labels in order of position
  smi = re.sub(r'\[\*\:[123]\]', '[*:XX1XX]', smi, 1)
  smi = re.sub(r'\[\*\:[123]\]', '[*:XX2XX]', smi, 1)
  smi = re.sub(r'\[\*\:[123]\]', '[*:XX3XX]', smi, 1)
  smi = re.sub('XX', '', smi)

  return smi


def switch_labels(track, stars, smi):

  #switch labels based on the input dictionary track
  if (stars > 1):
    #for k in track:
    #        print "old: %s, new: %s" % (k,track[k])

    if (track['1'] != '1'):
      smi = re.sub(r'\[\*\:1\]', '[*:XX' + track['1'] + 'XX]', smi)

    if (track['2'] != '2'):
      smi = re.sub(r'\[\*\:2\]', '[*:XX' + track['2'] + 'XX]', smi)

    if (stars == 3):
      if (track['3'] != '3'):
        smi = re.sub(r'\[\*\:3\]', '[*:XX' + track['3'] + 'XX]', smi)

    #now remove the XX
    smi = re.sub('XX', '', smi)

  return smi


def build_track_dictionary(smi, stars):

  isotope_track = {}

  #find 1st label, record it in isotope_track as key, with value being the
  #new label based on its position (1st star is 1, 2nd star 2 etc.)
  if (stars == 2):
    matchObj = re.search(r'\[\*\:([123])\].*\[\*\:([123])\]', smi)
    if matchObj:
      isotope_track[matchObj.group(1)] = '1'
      isotope_track[matchObj.group(2)] = '2'

  elif (stars == 3):
    matchObj = re.search(r'\[\*\:([123])\].*\[\*\:([123])\].*\[\*\:([123])\]', smi)
    if matchObj:
      isotope_track[matchObj.group(1)] = '1'
      isotope_track[matchObj.group(2)] = '2'
      isotope_track[matchObj.group(3)] = '3'

  return isotope_track


def index_hydrogen_change():
  #Algorithm details
  #have an index of common fragment(key) => fragments conected to it (values)
  #Need to add *-H to the values where appropriate - and its
  #appropriate when the key is what you would get if you chopped a H off a cmpd.
  #Therefore simply need to check if key with the * replaced with a H is
  #the same as any full smiles in the set
  #
  #Specific details:
  #1) Loop through keys of index
  #2) If key is the result of a single cut (so contains only 1 *) replace the * with H, and cansmi
  #3) If full smiles matches key in hash above, add *-H to that fragment index.

  for key in index:

    attachments = key.count('*')
    #print attachments

    if (attachments == 1):

      smi = key

      #simple method
      smi = re.sub(r'\[\*\:1\]', '[H]', smi)

      #now cansmi it
      temp = Chem.MolFromSmiles(smi)

      if (temp == None):
        sys.stderr.write('Error with key: %s, Added H: %s\n' % (key, smi))
      else:
        c_smi = Chem.MolToSmiles(temp, isomericSmiles=True)

        if (c_smi in smi_to_id):
          core = "[*:1][H]"
          id = smi_to_id[c_smi]

          value = "%s;t%s" % (id, core)
          #add to index
          index[key].append(value)


if __name__ == '__main__':

  #note max heavy atom count does not
  #include the attachement points (*)
  max_size = 10
  ratio = 0.3
  use_ratio = False

  index = {}
  smi_to_id = {}
  id_to_smi = {}

  id_to_heavy = {}

  #set up the command line options
  #parser = OptionParser()
  parser = OptionParser(description="Program to generate MMPs")
  parser.add_option(
    '-s', '--symmetric', default=False, action='store_true', dest='sym',
    help='Output symmetrically equivalent MMPs, i.e output both cmpd1,cmpd2, SMIRKS:A>>B and cmpd2,cmpd1, SMIRKS:B>>A')
  parser.add_option(
    '-m', '--maxsize', action='store', dest='maxsize', type='int',
    help='Maximum size of change (in heavy atoms) allowed in matched molecular pairs identified. DEFAULT=10. \
                      Note: This option overrides the ratio option if both are specified.')
  parser.add_option(
    '-r', '--ratio', action='store', dest='ratio', type='float',
    help='Maximum ratio of change allowed in matched molecular pairs identified. The ratio is: size of change / \
                      size of cmpd (in terms of heavy atoms). DEFAULT=0.3. Note: If this option is used with the maxsize option, the maxsize option will be used.')

  #parse the command line options
  (options, args) = parser.parse_args()

  #print options
  if (options.maxsize != None):
    max_size = options.maxsize
  elif (options.ratio != None):
    ratio = options.ratio
    if (ratio >= 1):
      print("Ratio specified: %s. Ratio needs to be less than 1.")
      sys.exit(1)
    use_ratio = True

  #read the STDIN
  for line in sys.stdin:

    line = line.rstrip()
    smi, id, core, context = line.split(',')

    #fill in dictionaries
    smi_to_id[smi] = id
    id_to_smi[id] = smi

    #if using the ratio option, check if heavy atom
    #of mol already calculated. If not, calculate and store
    cmpd_heavy = None
    if (use_ratio):
      if ((id in id_to_heavy) == False):
        id_to_heavy[id] = heavy_atom_count(smi)

      cmpd_heavy = id_to_heavy[id]

    #deal with cmpds that have not been fragmented
    if (len(core) == 0) and (len(context) == 0):
      continue

    #deal with single cuts
    if (len(core) == 0):
      side_chains = context.split('.')

      #minus 1 for the attachement pt
      if (add_to_index(side_chains[1], 1, cmpd_heavy) == True):
        context = side_chains[0]
        core = side_chains[1]

        value = "%s;t%s" % (id, core)

        #add the array if no key exists
        #add the context with id to index
        index.setdefault(context, []).append(value)

      #minus 1 for the attachement pt
      if (add_to_index(side_chains[0], 1, cmpd_heavy) == True):
        context = side_chains[1]
        core = side_chains[0]

        value = "%s;t%s" % (id, core)

        #add the array if no key exists
        #add the context with id to index
        index.setdefault(context, []).append(value)

    #double or triple cut
    else:

      attachments = core.count('*')

      if (add_to_index(core, attachments, cmpd_heavy) == True):
        value = "%s;t%s" % (id, core)

        #add the array if no key exists
        #add the context with id to index
        index.setdefault(context, []).append(value)

  #index the H change
  index_hydrogen_change()

  #Now index is ready

  #loop through the index
  for key in index:

    total = len(index[key])

    #check if have more than one value
    if (total == 1):
      continue

    for xa in range(total):

      for xb in range(xa, total):

        if (xa != xb):
          #now generate the pairs

          id_a, core_a = index[key][xa].split(";t")
          id_b, core_b = index[key][xb].split(";t")

          #make sure pairs are not same molecule
          if (id_a != id_b):

            #make sure LHS and RHS of SMIRKS are not the same
            if (core_a != core_b):

              smirks, context = cansmirk(core_a, core_b, key)
              print("%s,%s,%s,%s,%s,%s" %
                    (id_to_smi[id_a], id_to_smi[id_b], id_a, id_b, smirks, context))

              #deal with symmetry switch
              if (options.sym == True):
                smirks, context = cansmirk(core_b, core_a, key)
                print("%s,%s,%s,%s,%s,%s" %
                      (id_to_smi[id_b], id_to_smi[id_a], id_b, id_a, smirks, context))