1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448
|
# Copyright (c) 2013, GlaxoSmithKline Research & Development Ltd.
# All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are
# met:
#
# * Redistributions of source code must retain the above copyright
# notice, this list of conditions and the following disclaimer.
# * Redistributions in binary form must reproduce the above
# copyright notice, this list of conditions and the following
# disclaimer in the documentation and/or other materials provided
# with the distribution.
# * Neither the name of GlaxoSmithKline Research & Development Ltd.
# nor the names of its contributors may be used to endorse or promote
# products derived from this software without specific prior written
# permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
# "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
# LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
# A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
# OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
# SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
# LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
# DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
# THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
# (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#
# Created by Jameed Hussain, July 2013
from __future__ import print_function
import sys
import os
import re
import sqlite3
import subprocess
from optparse import OptionParser
from indexing import cansmirk, heavy_atom_count
from rfrag import fragment_mol
def cmpd_not_in_db_mmp_query(in_smi, cmpd_id):
query_contexts = set()
cmpd_frags = fragment_mol(in_smi, cmpd_id)
for row in cmpd_frags:
row = row.rstrip()
row_fields = re.split(',', row)
if (row_fields[3].count(".") == 1):
a, b = row_fields[3].split(".")
query_contexts.add(a)
query_contexts.add(b)
else:
query_contexts.add(row_fields[3])
q_string = "','".join(query_contexts)
q_string = "'%s'" % (q_string)
query_sql = """
select c.cmpd_id,
c.core_smi,
con.context_smi,
con.context_size
from core_table c, context_table con
where c.context_id in (select context_id from context_table where context_smi in (%s))
and c.context_id = con.context_id""" % (q_string)
cursor.execute(query_sql)
results = cursor.fetchall()
cmpd_size = heavy_atom_count(in_smi)
print_smallest_change_mmp(results, cmpd_id, cmpd_size)
def run_mmp_query(cmpd_id, cmpd_size):
query_sql = """
select c.cmpd_id,
c.core_smi,
con.context_smi,
con.context_size
from core_table c, context_table con
where c.context_id in (select context_id from core_table where cmpd_id = '%s')
and c.context_id = con.context_id""" % (cmpd_id)
cursor.execute(query_sql)
results = cursor.fetchall()
print_smallest_change_mmp(results, cmpd_id, cmpd_size)
def print_smallest_change_mmp(db_results, cmpd_id, query_size):
uniq_list = {}
for r in db_results:
if (r[0] != cmpd_id):
#print r
#for each unique compound keep the largest one in common
if (r[0] not in uniq_list):
uniq_list[r[0]] = r
elif (r[3] > uniq_list[r[0]][3]):
uniq_list[r[0]] = r
for key, value in uniq_list.items():
size_of_change = query_size - value[3]
#print "q_size: %s, Size od change: %s, Ratio: %s" % (query_size,size_of_change,float(size_of_change)/query_size)
if (use_ratio):
if (float(size_of_change) / query_size <= ratio):
cursor.execute("SELECT smiles FROM cmpd_smisp WHERE cmpd_id = ?", (key, ))
rsmi = cursor.fetchone()[0]
print("%s,%s,%s,%s,%s,%s" % (smi, rsmi, id, value[0], value[1], value[2]))
elif (size_of_change <= max_size):
cursor.execute("SELECT smiles FROM cmpd_smisp WHERE cmpd_id = ?", (key, ))
rsmi = cursor.fetchone()[0]
print("%s,%s,%s,%s,%s,%s" % (search_string, rsmi, id, value[0], value[1], value[2]))
def run_subs_query(subs):
query_sql = """
select lhs_smi.smiles,
lhs.cmpd_id,
lhs.core_smi,
rhs_smi.smiles,
rhs.cmpd_id,
rhs.core_smi,
context_table.context_smi,
rhs_smi.cmpd_size-context_table.context_size
from (select cmpd_id,core_smi,context_id from core_table where core_smi_ni = '%s') lhs,
core_table rhs,
cmpd_smisp lhs_smi,
cmpd_smisp rhs_smi,
context_table
where lhs.context_id = rhs.context_id
and context_table.context_id = rhs.context_id
and lhs_smi.cmpd_id = lhs.cmpd_id
and rhs_smi.cmpd_id = rhs.cmpd_id
and lhs.cmpd_id != rhs.cmpd_id
and rhs_smi.cmpd_size-context_table.context_size <= %s""" % (subs, max_size)
cursor.execute(query_sql)
results = cursor.fetchall()
for r in results:
#make sure it is not the same core on both sides
if (r[2] != r[5]):
#cansmirk
smirks, context = cansmirk(str(r[2]), str(r[5]), str(r[6]))
if (have_id):
print("%s,%s,%s,%s,%s,%s,%s,%s" % (subs, id, r[0], r[3], r[1], r[4], smirks, context))
else:
print("%s,%s,%s,%s,%s,%s,%s" % (subs, r[0], r[3], r[1], r[4], smirks, context))
def run_subs_smarts_query(subs_smarts):
#set os enviroment for rdkit to use sqllite
os.environ['RD_USESQLLITE'] = '1'
temp_core_ni_file = 'temp_core_ni_file_%s' % (os.getpid())
cmd = "python $RDBASE/Projects/DbCLI/SearchDb.py --dbDir=%s_smarts --smarts='%s' --silent >%s" % (
pre, subs_smarts, temp_core_ni_file)
subprocess.Popen(cmd, shell=True).wait()
infile = open(temp_core_ni_file, 'r')
for row in infile:
row = row.rstrip()
query_sql = """
select lhs_smi.smiles,
lhs.cmpd_id,
lhs.core_smi,
rhs_smi.smiles,
rhs.cmpd_id,
rhs.core_smi,
context_table.context_smi,
rhs_smi.cmpd_size-context_table.context_size
from (select cmpd_id,core_smi,context_id from core_table where core_smi_ni = '%s') lhs,
core_table rhs,
cmpd_smisp lhs_smi,
cmpd_smisp rhs_smi,
context_table
where lhs.context_id = rhs.context_id
and context_table.context_id = rhs.context_id
and lhs_smi.cmpd_id = lhs.cmpd_id
and rhs_smi.cmpd_id = rhs.cmpd_id
and lhs.cmpd_id != rhs.cmpd_id
and rhs_smi.cmpd_size-context_table.context_size <= %s
and lhs_smi.cmpd_size-context_table.context_size <= %s""" % (row, max_size,
max_size)
cursor.execute(query_sql)
results = cursor.fetchall()
for r in results:
#cansmirk
smirks, context = cansmirk(str(r[2]), str(r[5]), str(r[6]))
if (have_id):
print("%s,%s,%s,%s,%s,%s,%s" % (id, r[0], r[3], r[1], r[4], smirks, context))
else:
print("%s,%s,%s,%s,%s,%s" % (r[0], r[3], r[1], r[4], smirks, context))
infile.close()
#remove temporary files
os.unlink(temp_core_ni_file)
def run_trans_smarts_query(transform):
lhs, rhs = transform.split(">>")
matching_lhs = []
matching_rhs = []
#set os enviroment for rdkit to use sqllite
os.environ['RD_USESQLLITE'] = '1'
cmd = "python $RDBASE/Projects/DbCLI/SearchDb.py --dbDir=%s_smarts --smarts='%s' --silent" % (pre,
lhs)
p1 = subprocess.Popen(cmd, shell=True, stdout=subprocess.PIPE)
output = p1.communicate()[0].decode().rstrip()
matching_lhs = output.split("\n")
#sys.stderr.write("rhs: %s\n" % (len(matching_lhs)) )
cmd = "python $RDBASE/Projects/DbCLI/SearchDb.py --dbDir=%s_smarts --smarts='%s' --silent" % (pre,
rhs)
p1 = subprocess.Popen(cmd, shell=True, stdout=subprocess.PIPE)
output = p1.communicate()[0].decode().rstrip()
matching_rhs = output.split("\n")
#sys.stderr.write("rhs: %s\n" % (len(matching_rhs)) )
#sys.stderr.write('SQLlite method\n')
lhs_q_string = "','".join(matching_lhs)
lhs_q_string = "'%s'" % (lhs_q_string)
rhs_q_string = "','".join(matching_rhs)
rhs_q_string = "'%s'" % (rhs_q_string)
query_sql = """
select lhs_smi.smiles,
lhs.cmpd_id,
lhs.core_smi,
rhs_smi.smiles,
rhs.cmpd_id,
rhs.core_smi,
context_table.context_smi
from (select cmpd_id,core_smi,context_id from core_table where core_smi_ni in (%s) ) lhs,
(select cmpd_id,core_smi,context_id from core_table where core_smi_ni in (%s) ) rhs,
cmpd_smisp lhs_smi,
cmpd_smisp rhs_smi,
context_table
where lhs.context_id = rhs.context_id
and context_table.context_id = rhs.context_id
and lhs_smi.cmpd_id = lhs.cmpd_id
and rhs_smi.cmpd_id = rhs.cmpd_id
and lhs.cmpd_id != rhs.cmpd_id
and rhs_smi.cmpd_size-context_table.context_size <= %s
and lhs_smi.cmpd_size-context_table.context_size <= %s """ % (
lhs_q_string, rhs_q_string, max_size, max_size)
cursor.execute(query_sql)
results = cursor.fetchall()
for r in results:
smirks, context = cansmirk(str(r[2]), str(r[5]), str(r[6]))
if (have_id):
print("%s,%s,%s,%s,%s,%s,%s,%s" % (transform, id, r[0], r[3], r[1], r[4], smirks, context))
else:
print("%s,%s,%s,%s,%s,%s,%s" % (transform, r[0], r[3], r[1], r[4], smirks, context))
def run_trans_query(transform):
lhs, rhs = transform.split(">>")
#remove connectivity info
lhs_ni = remove_numbers(lhs)
rhs_ni = remove_numbers(rhs)
query_sql = """
select lhs_smi.smiles,
lhs.cmpd_id,
lhs.core_smi,
rhs_smi.smiles,
rhs.cmpd_id,
rhs.core_smi,
context_table.context_smi
from (select cmpd_id,core_smi,context_id from core_table where core_smi_ni = '%s') lhs,
(select cmpd_id,core_smi,context_id from core_table where core_smi_ni = '%s') rhs,
cmpd_smisp lhs_smi,
cmpd_smisp rhs_smi,
context_table
where lhs.context_id = rhs.context_id
and context_table.context_id = rhs.context_id
and lhs_smi.cmpd_id = lhs.cmpd_id
and rhs_smi.cmpd_id = rhs.cmpd_id""" % (lhs_ni, rhs_ni)
cursor.execute(query_sql)
results = cursor.fetchall()
for r in results:
smirks, context = cansmirk(str(r[2]), str(r[5]), str(r[6]))
#make sure connectivity is correct
if (smirks == transform):
if (have_id):
print("%s,%s,%s,%s,%s,%s,%s" % (id, r[0], r[3], r[1], r[4], smirks, context))
else:
print("%s,%s,%s,%s,%s,%s" % (r[0], r[3], r[1], r[4], smirks, context))
def remove_numbers(in_string):
out_string = re.sub(r'\[\*\:1\]', '[*]', in_string)
out_string = re.sub(r'\[\*\:2\]', '[*]', out_string)
out_string = re.sub(r'\[\*\:3\]', '[*]', out_string)
return out_string
#quick class to help with the formatting of optparse
class MyParser(OptionParser):
def format_description(self, formatter):
return self.description
parser = MyParser(
description="""Program to search MMP db. The types of searching that can be performed are as
follows:
mmp: Find all MMPs of a input/query compound to the compounds in the db
subs: Find all MMPs in the db where the LHS of the transform matches an input
substructure. Make sure the attached points are donated by an asterisk and the
input substructure has been canonicalised (eg. [*]c1ccccc1).
trans: Find all MMPs that match the input transform/SMIRKS. Make sure the input
SMIRKS has been canonicalised using the cansmirk.py program.
subs_smarts: Find all MMPs in the db where the LHS of the transform matches an
input SMARTS. The attachment points in the SMARTS can be donated by [#0] (eg.
[#0]c1ccccc1).
trans_smarts: Find all MMPs that match the LHS and RHS SMARTS of the input
transform. The transform SMARTS are input as LHS_SMARTS>>RHS_SMARTS (eg.
[#0]c1ccccc1>>[#0]c1ccncc1). Note: This search can take a long time to run if a
very general SMARTS expression is used.
""")
parser.add_option(
'-t', '--type', action='store', dest='type', type='string',
help='Type of search required. Options are: mmp, subs, trans, subs_smarts, trans_smarts')
parser.add_option(
'-m', '--maxsize', action='store', dest='maxsize', type='int',
help='Maximum size of change (in heavy atoms) allowed in matched molecular pairs identified. DEFAULT=10. \
Note: This option overrides the ratio option if both are specified.')
parser.add_option(
'-r', '--ratio', action='store', dest='ratio', type='float',
help='Only applicable with the mmp search type. Maximum ratio of change allowed in matched molecular pairs identified. The ratio is: size of change / \
size of cmpd (in terms of heavy atoms) for the QUERY MOLECULE. DEFAULT=0.3. Note: If this option is used with the maxsize option, the maxsize option will be used.')
parser.add_option('-p', '--prefix', action='store', dest='prefix', type='string',
help='Prefix for the db file. DEFAULT=mmp')
#parse the command line options
(options, args) = parser.parse_args()
#note max heavy atom count does not
#include the attachement points (*)
max_size = 10
ratio = 0.3
use_ratio = False
have_id = True
search_type = "mmp"
db_name = "mmp.db"
pre = "mmp"
if (options.maxsize != None):
max_size = options.maxsize
elif (options.ratio != None):
ratio = options.ratio
if (ratio >= 1):
print("Ratio specified: %s. Ratio needs to be less than 1.")
sys.exit(1)
use_ratio = True
if (options.type != None):
if ((options.type == "mmp") or (options.type == "subs") or (options.type == "trans") or
(options.type == "subs_smarts") or (options.type == "trans_smarts")):
search_type = options.type
else:
print(
"Unrecognised search type. Please choose from: mmp, subs, trans, subs_smarts, trans_smarts")
sys.exit(1)
else:
print(
"Please specify search type. Please choose from: mmp, subs, trans, subs_smarts, trans_smarts")
sys.exit(1)
if (options.prefix != None):
pre = options.prefix
db_name = "%s.db" % (pre)
#connect to db
con = sqlite3.connect(db_name)
cursor = con.cursor()
#these setting increase performance
cursor.execute('PRAGMA main.page_size = 4096;')
cursor.execute('PRAGMA main.cache_size=10000;')
cursor.execute('PRAGMA main.locking_mode=EXCLUSIVE;')
cursor.execute('PRAGMA main.synchronous=NORMAL;')
cursor.execute('PRAGMA main.journal_mode=WAL;')
cursor.execute('PRAGMA main.cache_size=5000;')
cursor.execute('PRAGMA main.temp_store = MEMORY;')
#read the STDIN
for line in sys.stdin:
line = line.rstrip()
line_fields = re.split('\s|,', line)
if (len(line_fields) == 1):
id = line_fields[0]
have_id = False
else:
id = line_fields[1]
search_string = line_fields[0]
if (search_type == "mmp"):
#check smiles is in the database
cursor.execute("SELECT cmpd_id,cmpd_size FROM cmpd_smisp WHERE smiles = ?", (search_string, ))
d_res = cursor.fetchone()
#cmpd in the db
if (d_res):
id_in_db, query_size = d_res
run_mmp_query(id_in_db, query_size)
else:
#print "Not in db"
cmpd_not_in_db_mmp_query(search_string, id)
#if doing a subs query
elif (search_type == "subs"):
run_subs_query(search_string)
elif (search_type == "trans"):
run_trans_query(search_string)
#smarts queries
elif (search_type == "subs_smarts"):
run_subs_smarts_query(search_string)
elif (search_type == "trans_smarts"):
run_trans_smarts_query(search_string)
|