File: p_con.py

package info (click to toggle)
rdkit 201809.1%2Bdfsg-6
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 123,688 kB
  • sloc: cpp: 230,509; python: 70,501; java: 6,329; ansic: 5,427; sql: 1,899; yacc: 1,739; lex: 1,243; makefile: 445; xml: 229; fortran: 183; sh: 123; cs: 93
file content (1395 lines) | stat: -rw-r--r-- 45,825 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
# coding=utf-8
# Copyright (c) 2014 Merck KGaA
from __future__ import print_function
import os, re, gzip, json, requests, sys, optparse, csv
from rdkit import Chem
from rdkit.Chem import AllChem
from rdkit.Chem import SDWriter
from rdkit.Chem import Descriptors
from rdkit.ML.Descriptors import MoleculeDescriptors
from scipy import interp
from scipy import stats
from sklearn import cross_validation
from sklearn.ensemble import RandomForestClassifier
from sklearn import metrics
from sklearn.cross_validation import train_test_split
from sklearn.metrics import roc_curve, auc
from sklearn.metrics import precision_score, recall_score
from sklearn import preprocessing
import cPickle
from pickle import Unpickler
import numpy as np
import math
from pylab import *
from sklearn.metrics import make_scorer

kappa_template = '''\
%(kind)s Kappa Coefficient
--------------------------------
Kappa %(kappa)6.4f
ASE %(std_kappa)6.4f
%(alpha_ci)s%% Lower Conf Limit %(kappa_low)6.4f
%(alpha_ci)s%% Upper Conf Limit %(kappa_upp)6.4f

Test of H0: %(kind)s Kappa = 0

ASE under H0 %(std_kappa0)6.4f
Z %(z_value)6.4f
One-sided Pr > Z %(pvalue_one_sided)6.4f
Two-sided Pr > |Z| %(pvalue_two_sided)6.4f
'''
'''
Weighted Kappa Coefficient
--------------------------------
Weighted Kappa 0.4701
ASE 0.1457
95% Lower Conf Limit 0.1845
95% Upper Conf Limit 0.7558

Test of H0: Weighted Kappa = 0

ASE under H0 0.1426
Z 3.2971
One-sided Pr > Z 0.0005
Two-sided Pr > |Z| 0.0010
'''


def int_ifclose(x, dec=1, width=4):
  '''helper function for creating result string for int or float

only dec=1 and width=4 is implemented

Parameters
----------
x : int or float
value to format
dec : 1
number of decimals to print if x is not an integer
width : 4
width of string

Returns
-------
xint : int or float
x is converted to int if it is within 1e-14 of an integer
x_string : str
x formatted as string, either '%4d' or '%4.1f'
'''
  xint = int(round(x))
  if np.max(np.abs(xint - x)) < 1e-14:
    return xint, '%4d' % xint
  else:
    return x, '%4.1f' % x


class KappaResults(dict):

  def __init__(self, **kwds):
    self.update(kwds)
    if not 'alpha' in self:
      self['alpha'] = 0.025
      self['alpha_ci'] = int_ifclose(100 - 0.025 * 200)[1]

    self['std_kappa'] = np.sqrt(self['var_kappa'])
    self['std_kappa0'] = np.sqrt(self['var_kappa0'])

    self['z_value'] = self['kappa'] / self['std_kappa0']

    self['pvalue_one_sided'] = stats.norm.sf(self['z_value'])
    self['pvalue_two_sided'] = self['pvalue_one_sided'] * 2

    delta = stats.norm.isf(self['alpha']) * self['std_kappa']
    self['kappa_low'] = self['kappa'] - delta
    self['kappa_upp'] = self['kappa'] + delta

  def __str__(self):
    return kappa_template % self


def cohens_kappa(table, weights=None, return_results=True, wt=None):
  '''Compute Cohen's kappa with variance and equal-zero test

Parameters
----------
table : array_like, 2-Dim
square array with results of two raters, one rater in rows, second
rater in columns
weights : array_like
The interpretation of weights depends on the wt argument.
If both are None, then the simple kappa is computed.
see wt for the case when wt is not None
If weights is two dimensional, then it is directly used as a weight
matrix. For computing the variance of kappa, the maximum of the
weights is assumed to be smaller or equal to one.
TODO: fix conflicting definitions in the 2-Dim case for
wt : None or string
If wt and weights are None, then the simple kappa is computed.
If wt is given, but weights is None, then the weights are set to
be [0, 1, 2, ..., k].
If weights is a one-dimensional array, then it is used to construct
the weight matrix given the following options.

wt in ['linear', 'ca' or None] : use linear weights, Cicchetti-Allison
actual weights are linear in the score "weights" difference
wt in ['quadratic', 'fc'] : use linear weights, Fleiss-Cohen
actual weights are squared in the score "weights" difference
wt = 'toeplitz' : weight matrix is constructed as a toeplitz matrix
from the one dimensional weights.

return_results : bool
If True (default), then an instance of KappaResults is returned.
If False, then only kappa is computed and returned.

Returns
-------
results or kappa
If return_results is True (default), then a results instance with all
statistics is returned
If return_results is False, then only kappa is calculated and returned.

Notes
-----
There are two conflicting definitions of the weight matrix, Wikipedia
versus SAS manual. However, the computation are invariant to rescaling
of the weights matrix, so there is no difference in the results.

Weights for 'linear' and 'quadratic' are interpreted as scores for the
categories, the weights in the computation are based on the pairwise
difference between the scores.
Weights for 'toeplitz' are a interpreted as weighted distance. The distance
only depends on how many levels apart two entries in the table are but
not on the levels themselves.

example:

weights = '0, 1, 2, 3' and wt is either linear or toeplitz means that the
weighting only depends on the simple distance of levels.

weights = '0, 0, 1, 1' and wt = 'linear' means that the first two levels
are zero distance apart and the same for the last two levels. This is
the sampe as forming two aggregated levels by merging the first two and
the last two levels, respectively.

weights = [0, 1, 2, 3] and wt = 'quadratic' is the same as squaring these
weights and using wt = 'toeplitz'.

References
----------
Wikipedia
SAS Manual

'''
  table = np.asarray(table, float)  #avoid integer division
  agree = np.diag(table).sum()
  nobs = table.sum()
  probs = table / nobs
  freqs = probs  #TODO: rename to use freqs instead of probs for observed
  probs_diag = np.diag(probs)
  freq_row = table.sum(1) / nobs
  freq_col = table.sum(0) / nobs
  prob_exp = freq_col * freq_row[:, None]
  assert np.allclose(prob_exp.sum(), 1)
  #print prob_exp.sum()
  agree_exp = np.diag(prob_exp).sum()  #need for kappa_max
  if weights is None and wt is None:
    kind = 'Simple'
    kappa = (agree / nobs - agree_exp) / (1 - agree_exp)

    if return_results:
      #variance
      term_a = probs_diag * (1 - (freq_row + freq_col) * (1 - kappa))**2
      term_a = term_a.sum()
      term_b = probs * (freq_col[:, None] + freq_row)**2
      d_idx = np.arange(table.shape[0])
      term_b[d_idx, d_idx] = 0  #set diagonal to zero
      term_b = (1 - kappa)**2 * term_b.sum()
      term_c = (kappa - agree_exp * (1 - kappa))**2
      var_kappa = (term_a + term_b - term_c) / (1 - agree_exp)**2 / nobs
      #term_c = freq_col * freq_row[:, None] * (freq_col + freq_row[:,None])
      term_c = freq_col * freq_row * (freq_col + freq_row)
      var_kappa0 = (agree_exp + agree_exp**2 - term_c.sum())
      var_kappa0 /= (1 - agree_exp)**2 * nobs

  else:
    if weights is None:
      weights = np.arange(table.shape[0])
    #weights follows the Wikipedia definition, not the SAS, which is 1 -
    kind = 'Weighted'
    weights = np.asarray(weights, float)
    if weights.ndim == 1:
      if wt in ['ca', 'linear', None]:
        weights = np.abs(weights[:, None] - weights) / \
                   (weights[-1] - weights[0])
      elif wt in ['fc', 'quadratic']:
        weights = (weights[:, None] - weights)**2 / \
                   (weights[-1] - weights[0])**2
      elif wt == 'toeplitz':
        #assume toeplitz structure
        from scipy.linalg import toeplitz
        #weights = toeplitz(np.arange(table.shape[0]))
        weights = toeplitz(weights)
      else:
        raise ValueError('wt option is not known')
    else:
      rows, cols = table.shape
      if (table.shape != weights.shape):
        raise ValueError('weights are not square')
    #this is formula from Wikipedia
    kappa = 1 - (weights * table).sum() / nobs / (weights * prob_exp).sum()
    #TODO: add var_kappa for weighted version
    if return_results:
      var_kappa = np.nan
      var_kappa0 = np.nan
      #switch to SAS manual weights, problem if user specifies weights
      #w is negative in some examples,
      #but weights is scale invariant in examples and rough check of source
      w = 1. - weights
      w_row = (freq_col * w).sum(1)
      w_col = (freq_row[:, None] * w).sum(0)
      agree_wexp = (w * freq_col * freq_row[:, None]).sum()
      term_a = freqs * (w - (w_col + w_row[:, None]) * (1 - kappa))**2
      fac = 1. / ((1 - agree_wexp)**2 * nobs)
      var_kappa = term_a.sum() - (kappa - agree_wexp * (1 - kappa))**2
      var_kappa *= fac

      freqse = freq_col * freq_row[:, None]
      var_kappa0 = (freqse * (w - (w_col + w_row[:, None]))**2).sum()
      var_kappa0 -= agree_wexp**2
      var_kappa0 *= fac

  kappa_max = (np.minimum(freq_row, freq_col).sum() - agree_exp) / \
              (1 - agree_exp)

  if return_results:
    res = KappaResults(kind=kind, kappa=kappa, kappa_max=kappa_max, weights=weights,
                       var_kappa=var_kappa, var_kappa0=var_kappa0)
    return res
  else:
    return kappa


def to_table(data, bins=None):
  '''convert raw data with shape (subject, rater) to (rater1, rater2)

    brings data into correct format for cohens_kappa

    Parameters
    ----------
    data : array_like, 2-Dim
        data containing category assignment with subjects in rows and raters
        in columns.
    bins : None, int or tuple of array_like
        If None, then the data is converted to integer categories,
        0,1,2,...,n_cat-1. Because of the relabeling only category levels
        with non-zero counts are included.
        If this is an integer, then the category levels in the data are already
        assumed to be in integers, 0,1,2,...,n_cat-1. In this case, the
        returned array may contain columns with zero count, if no subject
        has been categorized with this level.
        If bins are a tuple of two array_like, then the bins are directly used
        by ``numpy.histogramdd``. This is useful if we want to merge categories.

    Returns
    -------
    arr : nd_array, (n_cat, n_cat)
        Contingency table that contains counts of category level with rater1
        in rows and rater2 in columns.

    Notes
    -----
    no NaN handling, delete rows with missing values

    This works also for more than two raters. In that case the dimension of
    the resulting contingency table is the same as the number of raters
    instead of 2-dimensional.

    '''

  data = np.asarray(data)
  n_rows, n_cols = data.shape
  if bins is None:
    #I could add int conversion (reverse_index) to np.unique
    cat_uni, cat_int = np.unique(data.ravel(), return_inverse=True)
    n_cat = len(cat_uni)
    data_ = cat_int.reshape(data.shape)
    bins_ = np.arange(n_cat + 1) - 0.5
    #alternative implementation with double loop
    #tt = np.asarray([[(x == [i,j]).all(1).sum() for j in cat_uni]
    #                 for i in cat_uni] )
    #other altervative: unique rows and bincount
  elif np.isscalar(bins):
    bins_ = np.arange(bins + 1) - 0.5
    data_ = data
  else:
    bins_ = bins
    data_ = data

  tt = np.histogramdd(data_, (bins_, ) * n_cols)

  return tt[0], bins_


class p_con:
  """Class to create Models to classify Molecules active or inactive
    using threshold for value in training-data"""

  def __init__(self, acc_id=None, proxy={}):
    """Constructor to initialize Object, use proxy if neccessary"""
    self.request_data = {"acc_id": acc_id, "proxy": proxy}
    self.acc_id = acc_id
    self.proxy = proxy
    self.model = []
    self.verbous = False

  def __str__(self):
    """String-Representation for Object"""
    self.request_data["cmpd_count"] = len(self.sd_entries)
    retString = ""
    for key in self.request_data.keys():
      retString += "%s: %s\n" % (key, self.request_data[key])
    return retString.rstrip()

  def step_0_get_chembl_data(self):
    """Download Compound-Data for self.acc_id, these are available in self.sd_entries afterwards"""

    def looks_like_number(x):
      """Check for proper Float-Value"""
      try:
        float(x)
        return True
      except ValueError:
        return False

    if self.acc_id.find("CHEMBL") == -1:
      self.target_data = requests.get(
        "https://www.ebi.ac.uk/chemblws/targets/uniprot/{}.json".format(self.acc_id),
        proxies=self.proxy).json()

    else:
      self.target_data = {}
      self.target_data['target'] = {}
      self.target_data['target']['chemblId'] = self.acc_id

    self.chembl_id = self.target_data['target']['chemblId']
    self.request_data["chembl_id"] = self.target_data['target']['chemblId']
    #        print self.target_data
    self.bioactivity_data = requests.get(
      "https://www.ebi.ac.uk/chemblws/targets/{}/bioactivities.json".format(self.target_data[
        'target']['chemblId']), proxies=self.proxy).json()

    ic50_skip = 0
    ki_skip = 0
    inhb_skip = 0

    count = 0
    non_homo = 0
    self.dr = {}
    i = 0
    x = len(self.bioactivity_data['bioactivities'])

    for bioactivity in [record for record in self.bioactivity_data['bioactivities']
                        if looks_like_number(record['value'])]:

      if i % 100 == 0:
        sys.stdout.write('\r' + str(i) + '/' + str(x) + ' >          <\b\b\b\b\b\b\b\b\b\b\b')
      elif (i % 100) % 10 == 0:
        sys.stdout.write('|')
      sys.stdout.flush()
      i += 1
      #            if i > 5000: break
      if bioactivity['organism'] != 'Homo sapiens':
        non_homo += 1
        continue
      if re.search('IC50', bioactivity['bioactivity_type']):
        if bioactivity['units'] != 'nM':
          ic50_skip += 1
          continue
      elif re.search('Ki', bioactivity['bioactivity_type']):
        ki_skip += 1
        continue
      elif re.search('Inhibition', bioactivity['bioactivity_type']):
        inhb_skip += 1
      else:
        continue

      self.cmpd_data = requests.get("https://www.ebi.ac.uk/chemblws/compounds/{}.json".format(
        bioactivity['ingredient_cmpd_chemblid']), proxies=self.proxy).json()

      my_smiles = self.cmpd_data['compound']['smiles']
      bioactivity['Smiles'] = my_smiles
      self.dr[count] = bioactivity
      count += 1

    SDtags = self.dr[0].keys()
    cpd_counter = 0
    self.sd_entries = []
    for x in range(len(self.dr)):
      entry = self.dr[x]
      cpd = Chem.MolFromSmiles(str(entry['Smiles']))
      AllChem.Compute2DCoords(cpd)
      cpd.SetProp("_Name", str(cpd_counter))
      cpd_counter += 1
      for tag in SDtags:
        cpd.SetProp(str(tag), str(entry[tag]))
      self.sd_entries.append(cpd)
    return True

  def step_1_keeplargestfrag(self):
    """remove all smaller Fragments per compound, just keep the largest"""
    result = []

    for cpd in self.sd_entries:
      fragments = Chem.GetMolFrags(cpd, asMols=True)
      list_cpds_fragsize = []
      for frag in fragments:
        list_cpds_fragsize.append(frag.GetNumAtoms())
      largest_frag_index = list_cpds_fragsize.index(max(list_cpds_fragsize))
      largest_frag = fragments[largest_frag_index]
      result.append(largest_frag)

    self.sd_entries = result
    return True

  def step_2_remove_dupl(self):
    """remove duplicates from self.sd_entries"""
    result = []
    all_struct_dict = {}
    for cpd in self.sd_entries:
      Chem.RemoveHs(cpd)
      cansmi = Chem.MolToSmiles(cpd, canonical=True)
      if not cansmi in all_struct_dict.keys():
        all_struct_dict[cansmi] = []
      all_struct_dict[cansmi].append(cpd)

    for entry in all_struct_dict.keys():
      if len(all_struct_dict[entry]) == 1:
        all_struct_dict[entry][0].SetProp('cansmirdkit', entry)
        result.append(all_struct_dict[entry][0])

    self.sd_entries = result
    return True

  def step_3_merge_IC50(self):
    """merge IC50 of duplicates into one compound using mean of all values if:
        min(IC50) => IC50_avg-3*IC50_stddev && max(IC50) <= IC50_avg+3*IC50_stddev && IC50_stddev <= IC50_avg"""
    np_old_settings = np.seterr(invalid='ignore')  #dirty way to ignore warnings from np.std

    def get_mean_IC50(mol_list):
      IC50 = 0
      IC50_avg = 0
      for bla in mol_list:
        try:
          IC50 += float(bla.GetProp("value"))
        except Exception:
          print("no IC50 reported", bla.GetProp("_Name"))
      IC50_avg = IC50 / len(mol_list)
      return IC50_avg

    def get_stddev_IC50(mol_list):
      IC50_list = []
      for mol in mol_list:
        try:
          IC50_list.append(round(float(mol.GetProp("value")), 2))
        except Exception:
          print("no IC50 reported", mol.GetProp("_Name"))
      IC50_stddev = np.std(IC50_list, ddof=1)
      return IC50_stddev, IC50_list

    result = []
    IC50_dict = {}
    for cpd in self.sd_entries:
      if not "cansmirdkit" in cpd.GetPropNames():
        Chem.RemoveHs(cpd)
        cansmi = Chem.MolToSmiles(cpd, canonical=True)
        cpd.SetProp('cansmirdkit', cansmi)
      cansmi = str(cpd.GetProp("cansmirdkit"))
      IC50_dict[cansmi] = {}

    for cpd in self.sd_entries:
      cansmi = str(cpd.GetProp("cansmirdkit"))
      try:
        IC50_dict[cansmi].append(cpd)
      except Exception:
        IC50_dict[cansmi] = [cpd]
    for entry in IC50_dict:
      IC50_avg = str(get_mean_IC50(IC50_dict[entry]))
      IC50_stddev, IC50_list = get_stddev_IC50(IC50_dict[entry])
      IC50_dict[entry][0].SetProp("value_stddev", str(IC50_stddev))
      IC50_dict[entry][0].SetProp("value", IC50_avg)
      minimumvalue = float(IC50_avg) - 3 * float(IC50_stddev)
      maximumvalue = float(IC50_avg) + 3 * float(IC50_stddev)

      if round(IC50_stddev, 1) == 0.0:
        result.append(IC50_dict[entry][0])
      elif IC50_stddev > float(IC50_avg):
        runawaylist = []
        for e in IC50_dict[entry]:
          runawaylist.append(e.GetProp("_Name"))
          print("stddev larger than mean", runawaylist, IC50_list, IC50_avg, IC50_stddev)
      elif np.min(IC50_list) < minimumvalue or np.max(IC50_list) > maximumvalue:
        pass
      else:
        result.append(IC50_dict[entry][0])

    self.sd_entries = result
    np.seterr(over=np_old_settings['over'], divide=np_old_settings['divide'],
              invalid=np_old_settings['invalid'], under=np_old_settings['under'])
    return True

  def step_4_set_TL(self, threshold, ic50_tag="value"):
    """set Property "TL"(TrafficLight) for each compound:
        if ic50_tag (default:"value") > threshold: TL = 0, else 1"""
    result = []
    i, j = 0, 0
    for cpd in self.sd_entries:
      if float(cpd.GetProp(ic50_tag)) > float(threshold):
        cpd.SetProp('TL', '0')
        i += 1
      else:
        cpd.SetProp('TL', '1')
        j += 1
      result.append(cpd)

    self.sd_entries = result
    if self.verbous:
      print("## act: %d, inact: %d" % (j, i))
    return True

  def step_5_remove_descriptors(self):
    """remove list of Properties from each compound (hardcoded)
        which would corrupt process of creating Prediction-Models"""
    sd_tags = ['activity__comment', 'alogp', 'assay__chemblid', 'assay__description', 'assay__type',
               'bioactivity__type', 'activity_comment', 'assay_chemblid', 'assay_description',
               'assay_type', 'bioactivity_type', 'cansmirdkit', 'ingredient__cmpd__chemblid',
               'ingredient_cmpd_chemblid', 'knownDrug', 'medChemFriendly', 'molecularFormula',
               'name__in__reference', 'name_in_reference', 'numRo5Violations', 'operator',
               'organism', 'parent__cmpd__chemblid', 'parent_cmpd_chemblid', 'passesRuleOfThree',
               'preferredCompoundName', 'reference', 'rotatableBonds', 'smiles', 'Smiles',
               'stdInChiKey', 'synonyms', 'target__chemblid', 'target_chemblid',
               'target__confidence', 'target__name', 'target_confidence', 'target_name', 'units',
               'value_avg', 'value_stddev'] + ['value']
    result = []

    for mol in self.sd_entries:
      properties = mol.GetPropNames()
      for tag in properties:
        if tag in sd_tags:
          mol.ClearProp(tag)
      result.append(mol)

    self.sd_entries = result
    return True

  def step_6_calc_descriptors(self):
    """calculate descriptors for each compound, according to Descriptors._descList"""
    nms = [x[0] for x in Descriptors._descList]
    calc = MoleculeDescriptors.MolecularDescriptorCalculator(nms)
    for i in range(len(self.sd_entries)):
      descrs = calc.CalcDescriptors(self.sd_entries[i])
      for j in range(len(descrs)):
        self.sd_entries[i].SetProp(str(nms[j]), str(descrs[j]))
    return True

  def step_7_train_models(self):
    """train models according to trafficlight using sklearn.ensamble.RandomForestClassifier
        self.model contains up to 10 models afterwards, use save_model_info(type) to create csv or html
        containing data for each model"""
    title_line = ["#", "accuracy", "MCC", "precision", "recall", "f1", "auc", "kappa", "prevalence",
                  "bias", "pickel-File"]
    self.csv_text = [title_line]

    TL_list = []
    property_list_list = []
    directory = os.getcwd().split("/")[-2:]
    dir_string = ';'.join(directory)
    for cpd in self.sd_entries:
      property_list = []
      property_name_list = []
      prop_name = cpd.GetPropNames()
      for property in prop_name:
        if property not in ['TL', 'value']:
          try:
            f = float(cpd.GetProp(property))
            if math.isnan(f) or math.isinf(f):
              print("invalid: %s" % property)

          except ValueError:
            print("valerror: %s" % property)
            continue
          property_list.append(f)
          property_name_list.append(property)
        elif property == 'TL':
          TL_list.append(int(cpd.GetProp(property)))
        else:
          print(property)
          pass
      property_list_list.append(property_list)
    dataDescrs_array = np.asarray(property_list_list)
    dataActs_array = np.array(TL_list)

    for randomseedcounter in range(1, 11):
      if self.verbous:
        print("################################")
        print("try to calculate seed %d" % randomseedcounter)
      X_train, X_test, y_train, y_test = cross_validation.train_test_split(
        dataDescrs_array, dataActs_array, test_size=.4, random_state=randomseedcounter)
      #            try:
      clf_RF = RandomForestClassifier(n_estimators=100, random_state=randomseedcounter)
      clf_RF = clf_RF.fit(X_train, y_train)

      cv_counter = 5

      scores = cross_validation.cross_val_score(clf_RF, X_test, y_test, cv=cv_counter,
                                                scoring='accuracy')

      accuracy_CV = round(scores.mean(), 3)
      accuracy_std_CV = round(scores.std(), 3)

      calcMCC = make_scorer(metrics.matthews_corrcoef, greater_is_better=True,
                            needs_threshold=False)
      scores = cross_validation.cross_val_score(clf_RF, X_test, y_test, cv=cv_counter,
                                                scoring=calcMCC)

      MCC_CV = round(scores.mean(), 3)
      MCC_std_CV = round(scores.std(), 3)

      scores = cross_validation.cross_val_score(clf_RF, X_test, y_test, cv=cv_counter, scoring='f1')
      scores_rounded = [round(x, 3) for x in scores]
      f1_CV = round(scores.mean(), 3)
      f1_std_CV = round(scores.std(), 3)

      scores = cross_validation.cross_val_score(clf_RF, X_test, y_test, cv=cv_counter,
                                                scoring='precision')
      scores_rounded = [round(x, 3) for x in scores]
      precision_CV = round(scores.mean(), 3)
      precision_std_CV = round(scores.std(), 3)

      scores = cross_validation.cross_val_score(clf_RF, X_test, y_test, cv=cv_counter,
                                                scoring='recall')
      scores_rounded = [round(x, 3) for x in scores]
      recall_CV = round(scores.mean(), 3)
      recall_std_CV = round(scores.std(), 3)

      scores = cross_validation.cross_val_score(clf_RF, X_test, y_test, cv=cv_counter,
                                                scoring='roc_auc')
      scores_rounded = [round(x, 3) for x in scores]
      auc_CV = round(scores.mean(), 3)
      auc_std_CV = round(scores.std(), 3)

      y_predict = clf_RF.predict(X_test)
      conf_matrix = metrics.confusion_matrix(y_test, y_predict)
      #                coh_kappa = cohenskappa.cohens_kappa(conf_matrix)
      coh_kappa = cohens_kappa(conf_matrix)
      kappa = round(coh_kappa['kappa'], 3)
      kappa_stdev = round(coh_kappa['std_kappa'], 3)

      tp = conf_matrix[0][0]
      tn = conf_matrix[1][1]
      fp = conf_matrix[1][0]
      fn = conf_matrix[0][1]
      n = tn + fp
      p = tp + fn
      kappa_prevalence = round(float(abs(tp - tn)) / float(n), 3)
      kappa_bias = round(float(abs(fp - fn)) / float(n), 3)

      if self.verbous:
        print("test:")
        print("\tpos\tneg")
        print("true\t%d\t%d" % (tp, tn))
        print("false\t%d\t%d" % (fp, fn))
        print(conf_matrix)
        print("\ntrain:")
        y_predict2 = clf_RF.predict(X_train)
        conf_matrix2 = metrics.confusion_matrix(y_train, y_predict2)
        tp2 = conf_matrix2[0][0]
        tn2 = conf_matrix2[1][1]
        fp2 = conf_matrix2[1][0]
        fn2 = conf_matrix2[0][1]
        print("\tpos\tneg")
        print("true\t%d\t%d" % (tp2, tn2))
        print("false\t%d\t%d" % (fp2, fn2))
        print(conf_matrix2)

      result_string_cut = [
        randomseedcounter, str(accuracy_CV) + "_" + str(accuracy_std_CV),
        str(MCC_CV) + "_" + str(MCC_std_CV), str(precision_CV) + "_" + str(precision_std_CV),
        str(recall_CV) + "_" + str(recall_std_CV), str(f1_CV) + "_" + str(f1_std_CV),
        str(auc_CV) + "_" + str(auc_std_CV), str(kappa) + "_" + str(kappa_stdev), kappa_prevalence,
        kappa_bias, "model_file.pkl"
      ]

      self.model.append(clf_RF)
      self.csv_text.append(result_string_cut)

#            except Exception as e:
#                print "got %d models" % len(self.model)
#                print e
#                sys.exit(-1)
#                break
    return True if len(self.model) > 0 else False

  def save_model_info(self, outfile, mode="html"):
    """create html- or csv-File for models according to mode (default: "html")"""
    if mode == "csv":
      if not outfile.endswith(".csv"):
        outfile += ".csv"
      csv_file = open(outfile, "wb")
      csv_file_writer = csv.writer(csv_file, delimiter=";", quotechar=' ')
      for line in self.csv_text:
        csv_file_writer.writerow(line)
      csv_file.flush()
      csv_file.close()
    elif mode == "html":
      if not outfile.endswith(".html"):
        outfile += ".html"

      def lines2list(lines):
        return lines

      def list2html(data, act, inact):
        html_head = """<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8">
<title></title>
<style type="text/css">
table {
  max-width: 100%;
  background-color: transparent;
}

th {
  text-align: left;
}

.table {
  width: 100%;
  margin-bottom: 20px;
}

.table > thead > tr > th,
.table > tbody > tr > th,
.table > tfoot > tr > th,
.table > thead > tr > td,
.table > tbody > tr > td,
.table > tfoot > tr > td {
  padding: 8px;
  line-height: 1.428571429;
  vertical-align: top;
  border-top: 1px solid #dddddd;
}

.table > thead > tr > th {MSC1013123
  vertical-align: bottom;
  border-bottom: 2px solid #dddddd;
}

.table > caption + thead > tr:first-child > th,
.table > colgroup + thead > tr:first-child > th,
.table > thead:first-child > tr:first-child > th,
.table > caption + thead > tr:first-child > td,
.table > colgroup + thead > tr:first-child > td,
.table > thead:first-child > tr:first-child > td {
  border-top: 0;
}

.table > tbody + tbody {
  border-top: 2px solid #dddddd;
}

.table .table {
  background-color: #ffffff;
}

.table-condensed > thead > tr > th,
.table-condensed > tbody > tr > th,
.table-condensed > tfoot > tr > th,
.table-condensed > thead > tr > td,
.table-condensed > tbody > tr > td,
.table-condensed > tfoot > tr > td {
  padding: 5px;
}

.table-bordered {
  border: 1px solid #dddddd;
}

.table-bordered > thead > tr > th,
.table-bordered > tbody > tr > th,
.table-bordered > tfoot > tr > th,
.table-bordered > thead > tr > td,
.table-bordered > tbody > tr > td,
.table-bordered > tfoot > tr > td {
  border: 1px solid #dddddd;
}

.table-bordered > thead > tr > th,
.table-bordered > thead > tr > td {
  border-bottom-width: 2px;
}

.table-striped > tbody > tr:nth-child(odd) > td,
.table-striped > tbody > tr:nth-child(odd) > th {
  background-color: #f9f9f9;
}

.table-hover > tbody > tr:hover > td,
.table-hover > tbody > tr:hover > th {
  background-color: #f5f5f5;
}

table col[class*="col-"] {
  position: static;
  display: table-column;
  float: none;
}

table td[class*="col-"],
table th[class*="col-"] {
  display: table-cell;
  float: none;
}

.table > thead > tr > .active,
.table > tbody > tr > .active,
.table > tfoot > tr > .active,
.table > thead > .active > td,
.table > tbody > .active > td,
.table > tfoot > .active > td,
.table > thead > .active > th,
.table > tbody > .active > th,
.table > tfoot > .active > th {
  background-color: #f5f5f5;
}

.table-hover > tbody > tr > .active:hover,
.table-hover > tbody > .active:hover > td,
.table-hover > tbody > .active:hover > th {
  background-color: #e8e8e8;
}

.table > thead > tr > .success,
.table > tbody > tr > .success,
.table > tfoot > tr > .success,
.table > thead > .success > td,
.table > tbody > .success > td,
.table > tfoot > .success > td,
.table > thead > .success > th,
.table > tbody > .success > th,
.table > tfoot > .success > th {
  background-color: #dff0d8;
}

.table-hover > tbody > tr > .success:hover,
.table-hover > tbody > .success:hover > td,
.table-hover > tbody > .success:hover > th {
  background-color: #d0e9c6;
}

.table > thead > tr > .danger,
.table > tbody > tr > .danger,
.table > tfoot > tr > .danger,
.table > thead > .danger > td,
.table > tbody > .danger > td,
.table > tfoot > .danger > td,
.table > thead > .danger > th,
.table > tbody > .danger > th,
.table > tfoot > .danger > th {
  background-color: #f2dede;
}

.table-hover > tbody > tr > .danger:hover,
.table-hover > tbody > .danger:hover > td,
.table-hover > tbody > .danger:hover > th {
  background-color: #ebcccc;
}

.table > thead > tr > .warning,
.table > tbody > tr > .warning,
.table > tfoot > tr > .warning,
.table > thead > .warning > td,
.table > tbody > .warning > td,
.table > tfoot > .warning > td,
.table > thead > .warning > th,
.table > tbody > .warning > th,
.table > tfoot > .warning > th {
  background-color: #fcf8e3;
}

.table-hover > tbody > tr > .warning:hover,
.table-hover > tbody > .warning:hover > td,
.table-hover > tbody > .warning:hover > th {
  background-color: #faf2cc;
}

@media (max-width: 767px) {
  .table-responsive {
    width: 100%;
    margin-bottom: 15px;
    overflow-x: scroll;
    overflow-y: hidden;
    border: 1px solid #dddddd;
    -ms-overflow-style: -ms-autohiding-scrollbar;
    -webkit-overflow-scrolling: touch;
  }
  .table-responsive > .table {
    margin-bottom: 0;
  }
  .table-responsive > .table > thead > tr > th,
  .table-responsive > .table > tbody > tr > th,
  .table-responsive > .table > tfoot > tr > th,
  .table-responsive > .table > thead > tr > td,
  .table-responsive > .table > tbody > tr > td,
  .table-responsive > .table > tfoot > tr > td {
    white-space: nowrap;
  }
  .table-responsive > .table-bordered {
    border: 0;
  }
  .table-responsive > .table-bordered > thead > tr > th:first-child,
  .table-responsive > .table-bordered > tbody > tr > th:first-child,
  .table-responsive > .table-bordered > tfoot > tr > th:first-child,
  .table-responsive > .table-bordered > thead > tr > td:first-child,
  .table-responsive > .table-bordered > tbody > tr > td:first-child,
  .table-responsive > .table-bordered > tfoot > tr > td:first-child {
    border-left: 0;
  }
  .table-responsive > .table-bordered > thead > tr > th:last-child,
  .table-responsive > .table-bordered > tbody > tr > th:last-child,
  .table-responsive > .table-bordered > tfoot > tr > th:last-child,
  .table-responsive > .table-bordered > thead > tr > td:last-child,
  .table-responsive > .table-bordered > tbody > tr > td:last-child,
  .table-responsive > .table-bordered > tfoot > tr > td:last-child {
    border-right: 0;
  }
  .table-responsive > .table-bordered > tbody > tr:last-child > th,
  .table-responsive > .table-bordered > tfoot > tr:last-child > th,
  .table-responsive > .table-bordered > tbody > tr:last-child > td,
  .table-responsive > .table-bordered > tfoot > tr:last-child > td {
    border-bottom: 0;
  }
}
</style>
</head>
<body>
<p style="padding-left:10px;padding-top:10px;font-size:200&#37;">Data for Models</p>
<p style="padding-left:10px;padding-right:10px;">"""

        html_topPlot_start = """<table style="vertical-align:top; background-color=#CCCCCC">
<tr align="left" valign="top"><td><img src="pieplot.png"></td><td><H3>Distribution</H3><font color="#00C000">active %d</font><br><font color="#FF0000">inactive %d</td><td>"""

        html_topPlot_bottom = """</td></tr></table>"""

        html_tableStart = """<table class="table table-bordered table-condensed">
<thead>
<tr>
<th>%s</th>
<th>%s</th>
<th>%s</th>
<th>%s</th>
<th>%s</th>
<th>%s</th>
<th>%s</th>
<th>%s</th>
<th>%s</th>
<th>%s</th>
<th>%s</th>
</tr>
</thead>
<tbody>"""

        html_tElements = """
<tr bgcolor = "%s">
<td>%s</td>
<td>%s</td>
<td>%s</td>
<td>%s</td>
<td>%s</td>
<td>%s</td>
<td>%s</td>
<td>%s</td>
<td>%s</td>
<td>%s</td>
<td><a href="%s">model.pkl</a></td>
</tr>"""

        html_bottomPlot = """</tbody>
</table>
<img src="barplot.png"><br>"""

        html_foot = """
</p>
</body>
</html>"""

        html_kappa_table_head = """<table class="table table-bordered table-condensed">
<thead>
<tr>
<th>%s</th>
<th>%s</th>
<th>%s</th>
<th>%s</th>
<th>%s</th>
<th>%s</th>
<th>%s</th>
<th>%s</th>
<th>%s</th>
<th>%s</th>
<th>%s</th>
<th>%s</th>
<th>%s</th>
</tr>
</thead>
<tbody>"""

        html_kappa_table_element = """<tr bgcolor = "%s">
<td>%s</td>
<td>%s</td>
<td>%s</td>
<td>%s</td>
<td>%s</td>
<td>%s</td>
<td>%s</td>
<td>%s</td>
<td>%s</td>
<td>%s</td>
<td>%s</td>
<td>%s</td>
<td><a href="%s">model.pkl</a></td>
</tr>"""

        html_kappa_table_bottom = """</tbody>
</table>
<img src="barplot.png"><br>"""

        best, worst = findBestWorst(data)
        html = []
        html.append(html_head)
        html.append(html_topPlot_start % (act, inact))
        html.append(html_topPlot_bottom)
        html.append(html_tableStart % tuple(data[0]))
        i = 0
        for l in data[1:len(data)]:
          l_replaced = []
          for elem in l:
            elem_string = str(elem)
            if elem_string.find("pkl") == -1:
              l_replaced.append(elem_string.replace("_", "±"))
            else:
              l_replaced.append(elem_string)

          c = ""
          if i == best:
            c = "#9CC089"
          if i == worst:
            c = "#FF3333"

          html.append(html_tElements % tuple([c] + l_replaced))
          i += 1
        html.append(html_bottomPlot)
        html.append(html_foot)
        createBarPlot(data)
        return html

      def writeHtml(html, outf):
        outf_h = open(outf, 'w')
        for block in html:
          outf_h.write(block)
        outf_h.flush()
        outf_h.close()
        return

      def findBestWorst(data):
        auc = [float(x[6].split("_")[0]) for x in data[1:]]
        max_index, min_index = auc.index(max(auc)), auc.index(min(auc))
        return (max_index, min_index)

      def createPiePlot(cpds):

        def getActInact(cpds):
          act, inact = 0, 0
          for cpd in cpds:
            if int(cpd.GetProp('TL')) == 0:
              inact += 1
            else:
              act += 1
          return act, inact

        act_count, inact_count = getActInact(cpds)
        print("act/inact from TL's %d/%d" % (act_count, inact_count))
        fig = plt.figure(figsize=(2, 2))
        pie = plt.pie([inact_count, act_count], colors=('r', 'g'))
        fig.savefig("pieplot.png", transparent=True)
        return act_count, inact_count

      def createBarPlot(data):

        def getLists(data, col):
          accList = []
          errList = []
          for x in data[1:]:
            if x[col].find("_") == -1:
              continue
            if x[col].find(".pkl") != -1:
              continue
            spl = x[col].split("_")
            accList.append(float(spl[0]))
            errList.append(float(spl[1]))
          return accList, errList

        def plotLists(cnt):
          result = []
          clr = ['#DD1E2F', '#EBB035', '#06A2CB', '#218559', '#D0C6B1', '#192823', '#DDAACC']
          #                    print ticks, list,errList,width
          #                    print ticks
          for i in range(1, cnt):
            list, errList = getLists(data, i)
            #                        print i,cnt,list,errList
            result.append(ax.bar(ticks + width * i, list, width, color=clr[i - 1], yerr=errList))
          return result

        fig, ax = plt.subplots()
        fig.set_size_inches(15, 6)
        ticks = np.arange(0.0, 12.0, 1.2)
        if len(self.model) == 1:
          ticks = np.arange(0.0, 1.0, 1.5)
        width = 0.15
        plots = plotLists(8)
        ax.set_xticks(ticks + 0.75)
        ax.set_xticklabels([str(x) for x in range(1, 11, 1)])
        ax.set_ylabel("Accuracy")
        ax.set_xlabel("# model")
        ax.set_xlim(-0.3, 14)
        ax.set_ylim(-0.1, 1.2)
        ax.legend(tuple(plots), [x for x in data[0][1:8]], 'upper right')
        best, worst = findBestWorst(data)
        if len(self.model) > 1:
          ax.annotate("best", xy=(ticks[best], 0.85), xytext=(ticks[best] + 0.25, 1.1),
                      color="green")
          ax.annotate("worst", xy=(ticks[worst], 0.85), xytext=(ticks[worst] + 0.25, 1.10),
                      color="red")
        fig.savefig("barplot.png", transparent=True)
        return

      act, inact = createPiePlot(self.sd_entries)
      lines = self.csv_text
      data = lines2list(lines)
      html = list2html(data, act, inact)
      writeHtml(html, outfile)
    return True

  def load_mols(self, sd_file):
    """load SD-File from .sdf, .sdf.gz or .sd.gz"""
    if sd_file.endswith(".sdf.gz") or sd_file.endswith(".sd.gz"):
      SDFile = Chem.ForwardSDMolSupplier(gzip.open(sd_file))
    else:
      SDFile = Chem.SDMolSupplier(sd_file)
    self.sd_entries = [mol for mol in SDFile]
    return True

  def save_mols(self, outfile, gzip=True):
    """create SD-File of current molecules in self.sd_entries"""
    sdw = Chem.SDWriter(outfile + ".tmp")
    for mol in self.sd_entries:
      sdw.write(mol)
    sdw.flush()
    sdw.close()
    if not gzip:
      os.rename(outfile + ".tmp", outfile)
      return
    f_in = open(outfile + ".tmp", 'rb')
    f_out = gzip.open(outfile, 'wb')
    f_out.writelines(f_in)
    f_out.flush()
    f_out.close()
    f_in.close()
    os.remove(outfile + ".tmp")
    return

  def save_model(self, outfile, model_number=0):
    """save Model to file using cPickle.dump"""
    cPickle.dump(self.model[model_number], file(outfile, "wb+"))
    return

  def load_models(self, model_files):
    """load model or list of models into self.model"""
    if type(model_files) == str:
      model_files = [model_files]
    i = 0
    for mod_file in model_files:
      model = open(mod_file, 'r')
      unPickled = Unpickler(model)
      clf_RF = unPickled.load()
      self.model.append(clf_RF)
      model.close()
      i += 1
    return i

  def predict(self, model_number):
    """try to predict activity of compounds using giving model-Number"""
    if len(self.model) <= model_number:
      sys.stderr.write("\nModel-Number %d doesn't exist, there are just %d Models\n" %
                       (model_number, len(self.model)))
      sys.exit(-1)
    descriptors = []
    active, inactive = 0, 0

    for D in Descriptors._descList:
      descriptors.append(D[0])
    calculator = MoleculeDescriptors.MolecularDescriptorCalculator(descriptors)

    clf_RF = self.model[model_number]

    for sample in self.sd_entries:
      use = False
      try:
        pattern = calculator.CalcDescriptors(sample)
        use = True
      except e:
        sys.stderr.write("Error computing descriptors for %s, skip" % sample)

      if use:
        dataDescrs_array = np.asarray(pattern)
        y_predict = int(clf_RF.predict(dataDescrs_array)[0])
        if y_predict == 0:
          inactive += 1
        if y_predict == 1:
          active += 1
        sample.SetProp("TL_prediction", str(y_predict))
    return (active, inactive)

if __name__ == "__main__":

  def step_error(step):
    sys.stderr.write("Error in Step: %s" % step)

  usage = "usage: python master.py [--accession=<Acc_ID>] [--sdf=<sdf-File>] --dupl/--uniq [--rof] [--combine=<file1>,<file2>] [--IC50=<IC50_tag>] [--cutoff=<value>] [--remove_descr=<txt_file>] [--proxy=<https://user:pass@proxy.de:portnumber] [--verbous] [--check_models=<model.pkl>]"
  parser = optparse.OptionParser(usage=usage)
  parser.add_option(
    '--accession', action='store', type='string', dest='accession',
    help="Accession ID of Protein (hint: P43088 is Vitamin_D_Receptor with ~200 compounds)",
    default='')
  parser.add_option('--rof', action='store_true', dest='onefile', help='remove obsolete Files',
                    default=False)
  parser.add_option('--dupl', action='store_true', dest='dupl', help='use only duplicates',
                    default=False)
  parser.add_option('--uniq', action='store_true', dest='uniq', help='use only uniques',
                    default=False)
  parser.add_option('--combine', action='store', type='string', dest='combine',
                    help='Combine 2 SDF/SDF.GZ Files', default='')
  parser.add_option('--IC50', action='store', type='string', dest='SD_tag',
                    help='name of IC50 field, default is \'value\'', default='value')
  parser.add_option('--cutoff', action='store', type='int', dest='cutoff',
                    help='cutoff-value for hERG-trafficlight, default is \'5000\'', default=5000)
  parser.add_option('--remove_descr', action='store', type='string', dest='remove_descr',
                    help='file with SDtags2remove, line-wise default:<internal list>', default='')
  parser.add_option('--proxy', action='store', type='string', dest='proxy', help='Use this Proxy',
                    default='')
  parser.add_option('--sdf', action='store', type='string', dest='sdf', help='load this SDF-File',
                    default='')
  parser.add_option('--verbous', action='store_true', dest='verbous', help='verbous', default=False)
  parser.add_option('--check_models', action='store', type='string', dest='modelfile',
                    help='check compounds with this model', default='')

  (options, args) = parser.parse_args()
  combineItems = options.combine.split(',')

  if len(combineItems) == 1 and len(combineItems[0]) > 0:
    print('need 2 files to combine')
    print(usage)
    sys.exit(-1)
  elif len(combineItems) == 2 and len(combineItems[0]) > 0 and len(combineItems[1]) > 0:
    cur_file = _04.combine(combineItems[0], combineItems[1])
    print("File: %s" % cur_file)
    sys.exit(0)

  code = options.accession.split(':')
  if len(code) == 1:
    accession = code[0]
  else:
    accession = code[1]

  if options.accession == '' and options.sdf == '':
    print("please offer Accession-Number or SDF-File")
    print("-h for help")
    sys.exit(-1)

  if options.dupl == False and options.uniq == False:
    print("Please select uniq or dupl -h for help")
    print("-h for help")
    sys.exit(-1)

  pco = p_con(accession, proxy=options.proxy)
  pco.verbous = options.verbous

  if options.sdf != '':
    print("load sdf from File: %s" % options.sdf)
    result = pco.load_mols(options.sdf)
    if not result:
      step_error("load SDF-File")
      sys.exit(-1)
  else:
    print("gather Data for Accession-ID \'%s\'" % accession)
    result = pco.step_0_get_chembl_data()
    if not result:
      step_error("download ChEMBL-Data")
      sys.exit(-1)

  result = pco.step_1_keeplargestfrag()
  if not result:
    step_error("keep largest Fragment")
    sys.exit(-1)

  if options.uniq:
    result = pco.step_2_remove_dupl()
    if not result:
      step_error("remove duplicates")
      sys.exit(-1)

  result = pco.step_3_merge_IC50()
  if not result:
    step_error("merge IC50-Values for same Smiles")
    sys.exit(-1)

  if options.modelfile != '':
    result = pco.load_models(options.modelfile.split(","))
    if not result:
      step_error("Load Model-Files")
      sys.exit(-1)
    print("\n#Model\tActive\tInactive")
    for i in range(len(pco.model)):
      act, inact = pco.predict(i)
      print("%d\t%d\t%d" % (i, act, inact))
    sys.exit(0)

  result = pco.step_4_set_TL(options.cutoff)
  if not result:
    step_error("set Trafficlight for cutoff")
    sys.exit(-1)

  result = pco.step_5_remove_descriptors()
  if not result:
    step_error("remove descriptors")
    sys.exit(-1)

  result = pco.step_6_calc_descriptors()
  if not result:
    step_error("calculate Descriptors")
    sys.exit(-1)

  result = pco.step_7_train_models()
  if not result:
    step_error("Training of Models")
    sys.exit(-1)

  pco.save_model_info("model_info.csv", mode="csv")
  pco.save_model_info("model_info.html", mode="html")

  for i in range(len(pco.model)):
    filename = "%s_%dnm_model_%d.pkl" % (accession, options.cutoff, i)
    pco.save_model(filename, i)
    print("Model %d saved into File: %s" % (i, filename))

  for i in range(len(pco.model)):
    act, inact = pco.predict(i)
    print("Model %d active: %d\tinactive: %d" % (i, act, inact))