File: GettingStartedInC%2B%2B.md

package info (click to toggle)
rdkit 201809.1%2Bdfsg-6
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 123,688 kB
  • sloc: cpp: 230,509; python: 70,501; java: 6,329; ansic: 5,427; sql: 1,899; yacc: 1,739; lex: 1,243; makefile: 445; xml: 229; fortran: 183; sh: 123; cs: 93
file content (1493 lines) | stat: -rw-r--r-- 55,433 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
# Getting Started with the RDKit in C++

## What is this?

This document is intended to provide an overview of how one can use
the RDKit functionality from C++. Like the 'Getting Started with the
RDKit in Python' it is not comprehensive and it's not a manual.  It is
modelled very closely on the Python version, and most of the text will
be similar if not identical.  It is a work-in-progress, and will be
added to over the coming months.

## Building and Running C++ RDKit Programs

Unlike Python scripts, which, once the environment is setup up
correctly, can be run directly from a script or Jupyter notebook
session, the C++ programs must be compiled and linked before they can
be run. This creates an additional step, which varies with operating
system.  Using the program cmake makes it easier, but you may need to
experiment and change settings to get this working.  You will
need a reasonably modern C++ compiler. On linux systems this will most
likely be the GNU compiler gcc, although it could be Clang.  On Macs,
the opposite is true, and on Windows machines it will probably be
Visual C++.  At present, RDKit uses a relatively old-fashioned (or, as
Greg prefers, "maximally backwards compatible") dialect
of C++, so gcc version 3.4 or higher is adequate, but this is due to
change within the next year.

C++ programs generally have quite a lot of extra verbiage in them
compared to, for example, python scripts, that is similar or identical
in all programs.  The would produce extraneous clutter in the example
code in this document.  Because of this, only the minimum code to
exemplify the point being made is shown in the text. Full programs for
all the examples (generally with multiple examples in the same
program) are given in the `$RDBASE/Docs/Book/C++Examples` directory in
the distribution. The particular program will be mentioned in the text.

The functions of the RDKit system are declared in a large number of
different header files spread across several directories in the
system, and defined across a number of different libraries.  The right
headers will need to be included in the source code, and libraries
linked to during linking.  Whilst it's possible to include all headers
and libraries in all executables this will result in slower compile
times, especially
if you are doing static linking.  When linking to the static (.a)
libraries rather than the shared-object (.so) ones, the order the
libraries appear in linking list can be important.  See the
CMakeLists.txt file in C++Examples directory for a good order.  In
this case, the same library list is used for all examples, so some
will be unnecessary for some of the programs. The first 3 programs
don't need the Depictor and SubstructMatch libraries, for instance,
although on my Ubuntu 16.04 system, the RDGeometryLib appears to need
to be included twice. Working out which libraries need to be linked to
and in what order can involve a tedious amount of trial and error.

## Should You Use C++ or Python?

There is no doubt that it is much easier get started with
Python.  If you follow the installation instructions, you will be able
to start programming and using scripts straightaway.  If all you are
going to do is use scripts to do relatively simple things,
essentially stitching RDKit function calls together, there should be
little or no speed issues with using the Python interpreted language,
as all the RDKit functions are compiled C++ and well optimised.
However, if you are going to do more complicated things, using a lot
of your own programming logic and only using the RDKit for peripheral
things like I/O, SMARTS matching, preparing 2D images and the like,
then it is likely that you will have good performance gains if you
write in C++ and compile to a native executable.  One reason for
faster executables from C++ is that because the code is only compiled
once, it can be worth the compiler spending more time optimising the
code for speed.  In Python, where the compilation is done each time at
run-time, this overhead is less acceptable.  Writing inefficient code
is relatively easy in any language, but the C++ compiler can save you
from yourself-at higher optimisation levels, it will re-arrange loops,
factorise expressions etc., so that the final executable may be
difficult to align with the original source code.  For example
(Huw!), the gcc will change sqrt(a) * sqrt(b) to sqrt(a*b) removing an
expensive square root operation.

Another consideration is the completeness of the API.  A lot of the
higher level functionality in RDKit is developed in Python, and
back-porting to C++ occurs on a demand-driven basis.  There are
therefore examples of quite useful functionality, such as computing
the RMS differences between conformers that are not available in C++.
Of course, if this affects you you can always implement the C++ version
and submit a Pull Request. Indeed, the RMS calculation is on its way.

## Memory Management

Memory leaks (where objects are created using `new` but never
destroyed using `delete`) are particularly insidious bugs that can be
difficult to track down
([Valgrind is your friend!](http://valgrind.org)) and may be a
surprise to people used to managed-memory languages like python and
java.  In RDKit, many of the functions return pointers to molecules
and accept such pointers as arguments.  The
[Boost libraries](http://boost.org) provide tools such as shared
(`boost::shared_ptr`) and scoped (`boost::scoped_ptr`) pointers that
can be very helpful in preventing memory leaks.  If an object is
created and a pointer to it is stored in a shared pointer, for
example, then when the shared pointer goes out of scope, the object
is automatically deleted.  Otherwise, the shared pointer is used
exactly as one would use an ordinary pointer.  To save some typing,
RDKit has a number of typedefs for shared pointers to its objects,
defined in the relevant header files.  Two particularly useful ones
are `RDKit::ROMOL_SPTR` and `RDKit::RWMOL_SPTR`, for `RDKit::ROMol`
and `RDKit::RWMol` objects respectively.

Something that isn't just relevant to the RDKit, but worth noting
generally, is that the new C++
standard also has `shared_ptr` and `scoped_ptr` in the standard
namespace (essentially, they've adopted the boost libraries).  As I
discovered the hard way, if you put `using namespace boost` and `using
namespace std` at the top of your source file (and let's face it, who
doesn't?), and use the unqualified name `shared_ptr` in your
code, then, when you start using C++11, you'll have to go all through
your code explicitly stating whether you're using `std::shared_ptr` or
`boost::shared_ptr`.  Worth getting in the habit now!

## The Molecule Classes

Unlike in the Python libraries, in C++ there are two different
molecule classes, `RDKit::ROMol` and `RDKit::RWMol`.  They are both
declared in GraphMol.h. ROMol (the Read-Only molecule) is used in
most instances. It can't be edited.  On those occasions where you will
need to edit the molecule, you'll need to use the RWMol (Read-Write).

## Reading and Writing Molecules

The majority of basic molecular functionality is found in the RDKit
namespace, and only a small number of header files will need to be included
to cover most use cases:

```c++
#include <GraphMol/GraphMol.h>
#include <GraphMol/FileParsers/MolSupplier.h>
#include <GraphMol/FileParsers/MolWriters.h>
```

### Reading Single Molecules
Individual molecules can be constructed using a variety of approaches [(example1)](./C++Examples/example1.cpp):

```c++
std::string file_root = getenv( "RDBASE" );
file_root += "/Docs/Book";
RDKit::ROMol *mol1 = RDKit::SmilesToMol( "Cc1ccccc1" );

std::string mol_file = file_root + "/data/input.mol";
RDKit::ROMOL_SPTR mol2( RDKit::MolFileToMol( mol_file ) );
std::cout << *mol2 << std::endl;

RDKit::ROMOL_SPTR mol3( RDKit::SmilesToMol( "Cc1cccc" ) );
```

All these return a pointer to an ROMol on success, or NULL on
failure. Obviously, the object must be deleted when finished with to
prevent memory leaks. In the example above, and henceforth in this
document, the molecules, apart from mol1, are wrapped in shared
pointers so that the objects are deleted as soon as the shared pointer
goes out of scope.

If the molecule can't be sanitized after SMILES parsing, an
`RDKit::MolSanitizeException` (derived
from `std::exception`) is thrown, and an attempt is made to provide
sensible error messages [(example1)](./C++Examples/example1.cpp):

```c++
try {
   RDKit::ROMOL_SPTR mol( RDKit::SmilesToMol( "CO(C)C" ) );
} catch( RDKit::MolSanitizeException &e ) {
   // empty catch
}
```

displays something like `[15:58:22] Explicit valence of atom # 1 O, 3,
is greater than permitted` and [(example1)](./C++Examples/example1.cpp)

```c++
try {
   RDKit::ROMOL_SPTR mol( RDKit::SmilesToMol( "c1cc1" ) );
} catch( RDKit::MolSanitizeException &e ) {
   // empty catch
}
```

displays something like: `[12:20:41] Can't kekulize mol`.

### Reading sets of molecules

Groups of molecules are read using a Supplier (for example, an
`RDKit::SDMolSupplier` or an `RDKit::SmilesMolSupplier`)
[(example2)](./C++Examples/example2.cpp):

```c++
RDKit::ROMOL_SPTR mol;
std::string file_root = getenv( "RDBASE" );
file_root += "/Docs/Book";
std::string sdf_file = file_root + "/data/5ht3ligs.sdf";
bool takeOwnership = true;
RDKit::SDMolSupplier mol_supplier( sdf_file , takeOwnership );
while( !mol_supplier.atEnd() ) {
  mol.reset( mol_supplier.next() );
  std::cout << mol->getProp<std::string>( "_Name" ) << " has " << mol->getNumAtoms() << " atoms." << std::endl;
}
```
gives
```
20
24
24
26
```

The supplier can be treated as a random-access object [(example2)](./C++Examples/example2.cpp):

```c++
RDKit::SDMolSupplier mol_supplier( "data/5ht3ligs.sdf" , takeOwnership );
for( int i = int( mol_supplier.length() ) - 1 ; i >= 0  ; --i ) {
  RDKit::ROMOL_SPTR mol( mol_supplier[i] );
  if( mol ) {
    std::cout << mol->getProp<std::string>( "_Name" ) << " has "
	          << mol->getNumAtoms() << " atoms." << std::endl;
  }
}
```
gives
```
mol-732 has 26 atoms.
mol-15 has 24 atoms.
mol-54 has 24 atoms.
mol-295 has 20 atoms.
```

A good practice is to test each molecule to see if it was correctly
read before working with it [(example2)](./C++Examples/example2.cpp):

```c++
bool takeOwnership = true;
RDKit::SDMolSupplier *mol_supplier = new RDKit::SDMolSupplier( "data/5ht3ligs.sdf" , takeOwnership );

for( int i = int( mol_supplier->length() ) - 1 ; i >= 0 ; --i ) {
  RDKit::ROMOL_SPTR mol( (*mol_supplier)[i] );
  if( !mol ) {
    continue;
  }
  std::cout << mol->getProp<std::string>( "_Name" ) << " has "
            << mol->getNumAtoms() << " atoms." << std::endl;
}
```

An alternative type of Supplier, the `RDKit::ForwardMolSupplier`
can be used to read from file-like objects.  This allows the reading
of compressed files, using, for example, the `boost::iostreams`
objects [(example2)](./C++Examples/example2.cpp):

```c++
std::string file_root = getenv( "RDBASE" );
file_root += "/Docs/Book";
boost::iostreams::filtering_istream ins;
ins.push( boost::iostreams::gzip_decompressor() );
std::string comp_sdf_file = file_root + "/data/actives_5ht3.sdf.gz";
ins.push( boost::iostreams::file_source( comp_sdf_file ) );
// takeOwnership must be false for this, as we don't want the SDWriter trying
// to delete the boost::iostream
bool takeOwnership = false;
RDKit::ForwardSDMolSupplier forward_supplier( &ins , takeOwnership );
while( !forward_supplier.atEnd() ) {
  mol.reset( forward_supplier.next() );
  if( mol ) {
    std::cout << mol->getProp<std::string>( "_Name" ) << " has " << mol->getNumAtoms() << " atoms." << std::endl;
  }
}
```

Note that the forward suppliers cannot be used in random-access mode,
and a compile-time error will result if you attempt to [(example2)](./C++Examples/example2.cpp):

```
error: no match for ‘operator[]’ (operand types are
‘RDKit::ForwardSDMolSupplier’ and ‘int’)
   mol = forward_supplier[1];
```

### Writing molecules

Single molecules can be converted to text using several functions
present in the `RDKit` namespace.

For example, for SMILES [(example3)](./C++Examples/example3.cpp):

```c++
#include <GraphMol/SmilesParse/SmilesWrite.h>
.
.
RDKit::ROMOL_SPTR mol( RDKit::MolFromMolFile( "data/chiral.mol" ) );
std::cout << RDKit::MolToSmiles( *mol ) << std::endl;
```
gives
```
C[C@H](O)c1ccccc1
```
and [(example3)](./C++Examples/example3.cpp)
```c++
bool isomeric = false;
std::cout << RDKit::MolToSmiles( *mol , isomeric ) << std::endl;
```
produces
```
CC(O)c1ccccc1
```
where the `isomeric` in the second function call specifies that isomeric
SMILES should not be produced.
Note that the SMILES produced is canonical, so the output should be
the same no matter how a particular molecule is input.  For example
[(example3)](./C++Examples/example3.cpp)

```c++
RDKit::ROMOL_SPTR mol1( RDKit::SmilesToMol( "C1=CC=CN=C1" ) );
std::cout << RDKit::MolToSmiles( *mol1 ) << std::endl;

RDKit::ROMOL_SPTR mol2( RDKit::SmilesToMol( "c1cccnc1" ) );
std::cout << RDKit::MolToSmiles( *mol2 ) << std::endl;

RDKit::ROMOL_SPTR mol3( RDKit::SmilesToMol( "n1ccccc1" ) );
std::cout << RDKit::MolToSmiles( *mol3 ) << std::endl;
```

all produce `c1ccncc1` as output.

If you'd like to have the Kekule form of the SMILES, you need to Kekulize
an RWMol copy of the molecule, using the Kekulize function declared in
MolOps.h [(example3)](./C++Examples/example3.cpp):

```c++
#include <GraphMol/MolOps.h>
.
.
RDKit::RWMOL_SPTR mol4( new RDKit::RWMol( *mol ) );
RDKit::MolOps::Kekulize( *mol4 );
std::cout << RDKit::MolToSmiles( *mol4, true, true ) << std::endl;
```
gives
```
C[C@H](O)C1=CC=CC=C1
```

Note: as of March 2017, the SMILES provided when one
requests kekuleSmiles are not canonical. The limitation is not in the
SMILES generation, but in the kekulization itself.

MDL Mol blocks are also available [(example3)](./C++Examples/example3.cpp):

```c++
RDKit::ROMOL_SPTR mol1( RDKit::SmilesToMol( "C1=CC=CN=C1" ) );
std::cout << RDKit::MolToMolBlock( *mol1 ) << std::endl;
```
gives
```

     RDKit          2D

  6  6  0  0  0  0  0  0  0  0999 V2000
    1.5000    0.0000    0.0000 C   0  0  0  0  0  0  0  0  0  0  0  0
    0.7500   -1.2990    0.0000 C   0  0  0  0  0  0  0  0  0  0  0  0
   -0.7500   -1.2990    0.0000 C   0  0  0  0  0  0  0  0  0  0  0  0
   -1.5000    0.0000    0.0000 C   0  0  0  0  0  0  0  0  0  0  0  0
   -0.7500    1.2990    0.0000 N   0  0  0  0  0  0  0  0  0  0  0  0
    0.7500    1.2990    0.0000 C   0  0  0  0  0  0  0  0  0  0  0  0
  1  2  2  0
  2  3  1  0
  3  4  2  0
  4  5  1  0
  5  6  2  0
  6  1  1  0
M  END
```

To include names in the mol blocks, set the molecule's “\_Name”
property [(example3)](./C++Examples/example3.cpp):

```c++
mol1 = RDKit::SmilesToMol( "C1CCC1" );
mol1->setProp( "_Name" , "cyclobutane" );
std::cout << RDKit::MolToMolBlock( *mol1 ) << std::endl;
```
gives
```
cyclobutane
     RDKit          2D

  4  4  0  0  0  0  0  0  0  0999 V2000
    1.0607    0.0000    0.0000 C   0  0  0  0  0  0  0  0  0  0  0  0
   -0.0000   -1.0607    0.0000 C   0  0  0  0  0  0  0  0  0  0  0  0
   -1.0607    0.0000    0.0000 C   0  0  0  0  0  0  0  0  0  0  0  0
    0.0000    1.0607    0.0000 C   0  0  0  0  0  0  0  0  0  0  0  0
  1  2  1  0
  2  3  1  0
  3  4  1  0
  4  1  1  0
M  END
```

Note that setProp, which is a general function, can be called on an
ROMol as well as an RWMol, which came as a surprise to me as I had
assumed a read-only molecule would be less changeable than that.

In order for atom or bond stereochemistry to be recognised correctly by most
software, it's essential that the mol block have atomic coordinates.
It's also convenient for many reasons, such as drawing the molecules.
Generating a mol block for a molecule that does not have coordinates will, by
default, automatically cause coordinates to be generated. These are not,
however, stored with the molecule.

You can either include 2D coordinates (i.e. a depiction), using the
function in the RDDepict namespace and declared in RDDepictor.h
[(example4)](./C++Examples/example4.cpp):

```c++
#include <GraphMol/Depictor/RDDepictor.h>
.
.
RDKit::ROMOL_SPTR mol1( RDKit::SmilesToMol( "C1CCC1" ) );
RDDepict::compute2DCoords( *mol1 );
std::cout << RDKit::MolToMolBlock( *mol1 ) << std::endl;
```
gives
```

     RDKit          2D

  4  4  0  0  0  0  0  0  0  0999 V2000
    1.0607    0.0000    0.0000 C   0  0  0  0  0  0  0  0  0  0  0  0
   -0.0000   -1.0607    0.0000 C   0  0  0  0  0  0  0  0  0  0  0  0
   -1.0607    0.0000    0.0000 C   0  0  0  0  0  0  0  0  0  0  0  0
    0.0000    1.0607    0.0000 C   0  0  0  0  0  0  0  0  0  0  0  0
  1  2  1  0
  2  3  1  0
  3  4  1  0
  4  1  1  0
M  END
```

Or you can add 3D coordinates by embedding the molecule [(example4)](./C++Examples/example4.cpp):

```c++
#include <GraphMol/DistGeomHelpers/Embedder.h>
#include <GraphMol/ForceFieldHelpers/MMFF/MMFF.h>
.
.
RDKit::ROMOL_SPTR mol2( RDKit::SmilesToMol( "C1CCC1" ) );
mol2->setProp( "_Name" , "cyclobutane3D" );
RDKit::DGeomHelpers::EmbedMolecule( *mol2 );
RDKit::MMFF::MMFFOptimizeMolecule( *mol2 , 1000 , "MMFF94s" );
std::cout << RDKit::MolToMolBlock( *mol2 ) << std::endl;
```
gives
```
cyclobutane3D
     RDKit          3D

  4  4  0  0  0  0  0  0  0  0999 V2000
   -0.8321    0.5405   -0.1981 C   0  0  0  0  0  0  0  0  0  0  0  0
   -0.3456   -0.8799   -0.2639 C   0  0  0  0  0  0  0  0  0  0  0  0
    0.7190   -0.5613    0.7314 C   0  0  0  0  0  0  0  0  0  0  0  0
    0.4587    0.9006    0.5008 C   0  0  0  0  0  0  0  0  0  0  0  0
  1  2  1  0
  2  3  1  0
  3  4  1  0
  4  1  1  0
M  END
```

The optimization step isn't necessary, but it substantially improves
the quality of the conformation.

To get good 3D conformations, it's almost always a good idea to add
hydrogens to the molecule first [(example4)](./C++Examples/example4.cpp):

```c++
RDKit::ROMOL_SPTR mol3( RDKit::MolOps::addHs( *mol2 ) );
RDKit::MMFF::MMFFOptimizeMolecule( *mol3 , 1000 , "MMFF94s" );

RDKit::RWMOL_SPTR mol4( new RDKit::RWMol( *mol3 ) );
RDKit::MolOps::addHs( *mol4 );
```

<a name="twoAddHs"></a>Note that there are 2 overloaded versions of
addHs. The first takes an
ROMol and, because that can't be edited, returns a pointer to a new
ROMol with the result.  If you use this version be careful not to leak
memory by not deleting mol2 when you are finished with it. The second
takes an RWMol which it is able to modify in place.  With shared
pointers, memory leaks can be avoided [(example4)](./C++Examples/example4.cpp):
```c++
RDKit::ROMOL_SPTR mol3sp( RDKit::MolOps::addHs( *mol2 ) );
mol3sp->setProp( "_Name" , "cyclobutaneSP" );
RDKit::MMFF::MMFFOptimizeMolecule( *mol3sp , 1000 , "MMFF94s" );
```

Once the optimisation is complete, the hydrogens can be removed
again [(example4)](./C++Examples/example4.cpp):

```c++
RDKit::ROMOL_SPTR mol5( RDKit::MolOps::removeHs( *mol3 );
RDKit::MolOps::removeHs( *mol4 );
```

Again, there are two versions, one of which has an opportunity for a
memory leak.

If you'd like write the molecules to file, use the normal C++
streams [(example4)](./C++Examples/example4.cpp):

```c++
    #include <fstream>
    .
    .
    std::ofstream ofs( "data/foo.mol" );
    ofs << RDKit::MolToMolBlock( *mol5 );
```

### Writing sets of molecules

Multiple molecules can be written to a file using an object of a
concrete subclass of the `MolWriter` class [(example5)](./C++Examples/example5.cpp):

```c++
#include <GraphMol/FileParsers/MolWriters.h>
.
.
std::string file_root = getenv( "RDBASE" );
file_root += "/Docs/Book";

std::string sdf_file = file_root + "/data/5ht3ligs.sdf";
bool takeOwnership = true;
RDKit::SDMolSupplier mol_supplier( sdf_file , takeOwnership );
std::vector<RDKit::ROMOL_SPTR> mols;
while( !mol_supplier.atEnd() ) {
  RDKit::ROMOL_SPTR mol( mol_supplier.next() );
  if( mol ) {
    mols.push_back( mol );
  }
}

RDKit::PDBWriter pdb_writer( "data/5ht3ligs.pdb" );
for( std::size_t i = 0 , is = mols.size() ; i < is ; ++i ) {
  pdb_writer.write( *mols[i] );
}
```

A MolWriter can also be initialised to a file-like object, so
compressed files can be written or molecules can be written to a
string in memory [(example5)](./C++Examples/example5.cpp):

```c++
#include <sstream>
.
.
std::ostringstream oss;
// takeOwnership must be false for this, as we don't want the SDWriter trying
// to delete the std::ostringstream.
takeOwnership = false;
boost::shared_ptr<RDKit::SDWriter> sdf_writer( new RDKit::SDWriter( &oss , takeOwnership ) );
for( std::vector<RDKit::ROMOL_SPTR>::iterator it = mols.begin() ; it != mols.end() ; ++it ) {
  sdf_writer->write( *(*it) );
}
std::cout << oss.str() << std::endl;
```

Other available writers include SmilesWriter and TDTWriter (for those
of you with an interest in historical Cheminformatics).

## Working with Molecules

### Looping over Atoms and Bonds

Once you have a molecule, it's relatively easy to loop over its atoms
and bonds so long as you remember that an atom is a Vertex and a bond
is an Edge and accept the odd syntax [(example6)](./C++Examples/example6.cpp):

```c++
RDKit::ROMOL_SPTR mol( RDKit::SmilesToMol( "C1OC1" ) );
RDKit::ROMol::VERTEX_ITER it , end;
boost::tie( it , end ) = mol->getVertices();
while( it != end ) {
  const RDKit::Atom *atom = (*mol)[*it].get();
  std::cout << atom->getAtomicNum() << std::endl;
  ++it;
}
```
gives
```
6 8 6
```
As an alternative, there are AtomIterators and
BondIterators[(example6)](./C++Examples/example6.cpp):
```c++
#include <GraphMol/AtomIterators.h>
.
.
for( RDKit::ROMol::AtomIterator ai = mol->beginAtoms() ; ai != mol->endAtoms() ; ++ai) {
  std::cout << (*ai)->getAtomicNum() << " ";
}
std::cout << std::endl;   
```
which is functionally equivalent to the above.
Finally, there's a method that uses the fact that atoms and bonds
can be selected by index number
[(example6)](./C++Examples/example6.cpp):
```c++
for( unsigned int i = 0 , is = mol->getNumAtoms() ; i < is ; ++i ) {
  const RDKit::Atom *atom = mol->getAtomWithIdx( i );
  std::cout << atom->getAtomicNum() << std::endl;
}
```
Likewise with bonds [(example6)](./C++Examples/example6.cpp):
```c++
RDKit::ROMol::EDGE_ITER bond_it , bond_end;
boost::tie( bond_it , bond_end ) = mol->getEdges();
while( bond_it != bond_end ) {
  const RDKit::Bond *bond = (*mol)[*bond_it].get();
  std::cout << bond->getBondType() << std::endl;
  ++bond_it;
}

for( unsigned int i = 0 , is = mol->getNumBonds() ; i < is ; ++i ) {
  const RDKit::Bond *bond = mol->getBondWithIdx( i );
  std::cout << bond->getIsAromatic() << std::endl;
}
```
gives
```
1 1 1
0 0 0
```

A bond can be specified by the atoms at its ends, with
a NULL pointer being returned if there isn't one [(example6)](./C++Examples/example6.cpp):
```c++
RDKit::ROMOL_SPTR mol2( RDKit::SmilesToMol( "C1OC1Cl" ) );
const RDKit::Bond *bond = mol2->getBondBetweenAtoms( 0 , 1 );
std::cout << bond->getBeginAtomIdx() << " to "
          << bond->getBeginAtomIdx() << " is "
          << bond->getBondType() << std::endl;
if( !mol2->getBondBetweenAtoms( 0 , 3 ) ) {
  std::cout << "No bond between 0 and 3" << std::endl;
}
```

The neighbours of an atom can also be extracted, but note that you
need an ADJ\_ITER rather than a VERTEX\_ITER [(example6)](./C++Examples/example6.cpp):
```c++
const RDKit::Atom *atom = mol2->getAtomWithIdx( 2 );
RDKit::ROMol::ADJ_ITER nbr , end_nbr;
boost::tie( nbr , end_nbr ) = mol2->getAtomNeighbors( atom );
while( nbr != end_nbr ) {
  const RDKit::Atom *nbr_atom = (*mol2)[*nbr].get();
  std::cout << nbr_atom->getIdx() << " : " << nbr_atom->getAtomicNum() << std::endl;
  ++nbr;
}
```
gives
```
1 : 8
3 : 17
0 : 6
```

### Ring Information

It is relatively easy to obtain ring information for atoms and bonds
[(example7)](./C++Examples/example7.cpp):
```c++
#include <GraphMol/MolOps.h>
.
.
RDKit::ROMOL_SPTR mol( RDKit::SmilesToMol( "OC1C2C1CC2" ) );

if( !mol->getRingInfo()->isInitialized() ) {
  RDKit::MolOps::findSSSR( *mol );
}
for( unsigned int i = 0 , is = mol->getNumAtoms() ; i < is ; ++i ) {
  const RDKit::Atom *atom = mol->getAtomWithIdx( i );
  std::cout << mol->getRingInfo()->numAtomRings( atom->getIdx() ) << " ";
}
std::cout << std::endl;

for( unsigned int i = 0 , is = mol->getNumBonds() ; i < is ; ++i ) {
  const RDKit::Bond *bond = mol->getBondWithIdx( i );
  std::cout << mol->getRingInfo()->numBondRings( bond->getIdx() ) << " ";
}
std::cout << std::endl;
```
gives
```
0 1 2 1 1 1
0 1 2 1 1 1 1
```
Obviously, findSSSR only needs to be called once for the molecule. If
you only need to know whether the atom or bond is in a ring, just test
whether or not the return value is zero [(example7)](./C++Examples/example7.cpp):
```c++
const RDKit::Bond *bond = mol->getBondWithIdx( 1 );
if( mol->getRingInfo()->numBondRings( bond->getIdx() )) {
  std::cout <<  "Bond " << bond->getIdx() << " is in a ring" << std::endl;;
}

```
gives
```
Bond 1 is in a ring
```
Other information about presence in smallest rings can also be
obtained from the RingInfo object of the molecule [(example7)](./C++Examples/example7.cpp):
```c++
std::cout << "Atom 2 is in ring of size 3 : "
          << mol->getRingInfo()->isAtomInRingOfSize( 2 , 3 ) << std::endl;
std::cout << "Atom 2 is in ring of size 4 : "
          << mol->getRingInfo()->isAtomInRingOfSize( 2 , 4 ) << std::endl;
std::cout << "Atom 2 is in ring of size 5 : "
          << mol->getRingInfo()->isAtomInRingOfSize( 2 , 5 ) << std::endl;
std::cout << "Bond 1 is in ring of size 3 : "
          << mol->getRingInfo()->isBondInRingOfSize( 1 , 3 ) << std::endl;

```
gives
```
Atom 2 is in ring of size 3 : 1
Atom 2 is in ring of size 4 : 1
Atom 2 is in ring of size 5 : 0
Bond 1 is in ring of size 3 : 1
```
More detail about the smallest set of smallest rings (SSSR) is
available [(example7)](./C++Examples/example7.cpp):
```c++
RDKit::VECT_INT_VECT rings;
RDKit::MolOps::symmetrizeSSSR( *mol , rings );
std::cout << "Number of symmetric SSSR rings : " << rings.size() << std::endl;
for( auto it1 = rings.begin() , it1_end = rings.end() ; it1 != it1_end ; ++it1 ) {
  for( auto it2 = it1->begin() , it2_end = it1->end() ; it2 != it2_end ; ++it2 ) {
    std::cout << *it2 << " ";
  }
  std::cout << std::endl;
}
```
gives
```
Number of symmetric SSSR rings : 2
1 2 3
4 5 2 3
```
As the name suggests, this is a symmetrized SSSR; if you are
interested in the number of "true" SSSR, use the `findSSSR` function
[(example7)](./C++Examples/example7.cpp):
```c++
std::cout << "Number of SSSR rings : " << RDKit::MolOps::findSSSR( *mol ) << std::endl;
```
gives
```
2
```
The distinction between symmetrized and non-symmetrized SSSR is
discussed in more detail below in the section
[The SSSR Problem](#TheSSSRProblem).

### Modifying molecules

Normally molecules are stored in the RDKit with the hydrogen atoms
implicit (i.e. not explicitly present in the molecular graph).  When
it is useful to have the hydrogens explicitly present, for example
when generating or optimizing the 3D geometry, the
`RDKit::MolOps::addHs` function can be used
[(example8)](./C++Examples/example8.cpp).
```c++
RDKit::ROMOL_SPTR mol1( RDKit::SmilesToMol( "CCO" ) );
std::cout << "Number of atoms : " << mol1->getNumAtoms() << std::endl;
RDKit::ROMOL_SPTR mol2( RDKit::MolOps::addHs( *mol1 ) );
std::cout << "Number of atoms : " << mol2->getNumAtoms() << std::endl;
```
gives
```
Number of atoms : 3
Number of atoms : 9
```
Recall that there are two versions of `RDKit::MolOps::addHs`, as
described [above](#twoAddHs).
The Hs can be removed again using the `RDKit::MolOps::RemoveHs`
function, which again has two forms
[(example8)](./C++Examples/example8.cpp):
```c++
RDKit::RWMOL_SPTR mol3( new RDKit::RWMol( *mol2 ) );
RDKit::MolOps::removeHs( *mol3 );
std::cout << "Number of atoms : " << mol3->getNumAtoms() << std::endl;
```
which returns the atom count to 3.

RDKit molecules are usually stored with the bonds in aromatic rings
having aromatic bond types. This can be changed with the
`RDKit::MolOps::Kekulize` function, which must be called with an RWMol
[(example9)](./C++Examples/example9.cpp):
```c++
RDKit::RWMOL_SPTR mol( new RDKit::RWMol( *RDKit::SmilesToMol( "c1ccccc1" ) ) );
std::cout << "Order : " << mol->getBondWithIdx( 0 )->getBondType() << std::endl;
std::cout << "Aromatic : " << mol->getBondWithIdx( 0 )->getIsAromatic() << std::endl;

RDKit::MolOps::Kekulize( *mol );
std::cout << "After default Kekulize : Order : " << mol->getBondWithIdx( 0 )->getBondType() << std::endl;
std::cout << "After default Kekulize : Aromatic : " << mol->getBondWithIdx( 0 )->getIsAromatic() << std::endl;
```
gives
```
Order : 12
Aromatic : 1
After default Kekulize : Order : 2
After default Kekulize : Aromatic : 0
```
The bond orders are defined as the enum BondType in
[Bond.h](../../Code/GraphMol/Bond.h), and an aromatic bond
currently has the value 12.
Note that by default the Kekulize function clears the aromatic flags
on the atoms and bonds. **This is in contrast to the Python version of
Kekulize, which preserves the flags by default.**  The behaviour can be
forced explicitly [(example9.cpp)](./C++Examples/example9.cpp):
```c++
RDKit::RWMOL_SPTR mol1( new RDKit::RWMol( *RDKit::SmilesToMol( "c1ccccc1" ) ) );
RDKit::MolOps::Kekulize( *mol1 , false );
std::cout << "After Kekulize, markAtomsBonds false : Aromatic : " << mol1->getBondWithIdx( 0 )->getIsAromatic() << std::endl;

RDKit::RWMOL_SPTR mol2( new RDKit::RWMol( *RDKit::SmilesToMol( "c1ccccc1" ) ) );
RDKit::MolOps::Kekulize( *mol2 , true );
std::cout << "After Kekulize, markAtomsBonds true : Aromatic : " << mol2->getBondWithIdx( 0 )->getIsAromatic() << std::endl;
```
gives
```
After Kekulize, markAtomsBonds false : Aromatic : 1
After Kekulize, markAtomsBonds true : Aromatic : 0
```

Bonds can be restored to the aromatic bond type using the
`RDKit::MolOps::sanitizeMol` function:
```c++
RDKit::MolOps::sanitizeMol( *mol );
std::cout << "Order : " << mol->getBondWithIdx( 0 )->getBondType() << std::endl;
std::cout << "Aromatic : " << mol->getBondWithIdx( 0 )->getIsAromatic() << std::endl;
```
gives
```
Order : 12
Aromatic : 1
```
once more.

### Working with 2D molecules: Generating Depictions

The RDKit has a library for generating depictions (sets of 2D
coordinates) for molecules.  This library, which is part of the
RDDepict namespace, is accessed via the `RDDepict::Compute2DCoords`
function [(example10.cpp)](./C++Examples/example10.cpp):
```c++
#include <GraphMol/Depictor/RDDepictor.h>
.
.
RDKit::RWMOL_SPTR mol( new RDKit::RWMol( *RDKit::SmilesToMol( "c1nccc2n1ccc2" ) ) );
RDDepict::compute2DCoords( *mol );
```

The 2D conformation is constructed to minimize intramolecular clashes,
i.e. to maximize the clarity of the drawing.  Unlike the Python
equivalent, the depiction is not placed in a canonical orientation by
default. This can be forced by passing `true` as the third parameter
[(example10.cpp)](./C++Examples/example10.cpp):
```c++
#include <Geometry/point.h>
.
.
RDDepict::compute2DCoords( *mol , static_cast<RDGeom::INT_POINT2D_MAP *>( 0 ) , true );
```

The `point.h` must be included for the typedef that defines
`INT_POINT2D_MAP`, of which more later.
By default, all existing conformations are removed when the 2D
coordinates are created.  This can be changed by passing false as a
4th parameter.  The 2D coordinates are added as another conformation
of the molecule so it's a bit tricky combining them both in the same
molecule, and probably best avoided.

The Python API has a convenience function
`GenerateDepictionMatching2DStructure` which forces the 2D coordinate
generation to orientate molecules according to a template structure.
A C++ version of the function, generateDepictionMatching2DStructure
was included in late December 2016.  If that is later than the version
of RDKit you are using, then the effect can be achieved thus:
[(example10.cpp)](./C++Examples/example10.cpp):
```c++
#include <GraphMol/Substruct/SubstructMatch.h>
.
.
RDKit::ROMol *templ = RDKit::SmilesToMol( "c1nccc2n1ccc2" );
RDDepict::compute2DCoords( *templ );
RDKit::ROMol *mol1 = RDKit::SmilesToMol( "c1cccc2ncn3cccc3c21" );

RDKit::MatchVectType matchVect;
if( RDKit::SubstructMatch( *mol1 , *templ , matchVect ) ) {
  RDKit::Conformer &conf = templ->getConformer();
  RDGeom::INT_POINT2D_MAP coordMap;
  for( RDKit::MatchVectType::const_iterator mv = matchVect.begin() ; mv != matchVect.end() ; ++mv ) {
    RDGeom::Point3D pt3 = conf.getAtomPos( mv->first );
    RDGeom::Point2D pt2( pt3.x , pt3.y );
    coordMap[mv->second] = pt2;
  }
  RDDepict::compute2DCoords( *mol1 , &coordMap );
}
```
Here, `coordMap` maps the coordinates of atoms in the target
molecule templ onto corresponding atoms in the reference molecule.

It is also possible to produce a 2D picture that attempts to mimic as
closely as possible a 3D conformation.  Again, an equivalent of the
Python function
`rdkit.Chem.AllChem.GenerateDepictionMatching3DStructure` was
incorporated in December 2016.

### Working with 3D Molecules

The RDKit can generate conformations for molecules using two different
methods.  The original method uses distance geometry [[1]](#blaney).
The algorithm followed is:

1. The molecule's distance bounds matrix is calculated based on the
   connection table and a set of rules.

2. The bounds matrix is smoothed using a triangle-bounds smoothing
   algorithm.

3. A random distance matrix that satisfies the bounds matrix is
   generated.

4. This distance matrix is embedded in 3D dimensions (producing
   coordinates for each atom).

5. The resulting coordinates are cleaned up somewhat using a crude
   force field and the bounds matrix.

Note that the conformations that result from this procedure tend to be
fairly ugly. They should be cleaned up using a force field.
This can be done within the RDKit using its implementation of the
Universal Force Field UFF[[2]](#rappe).

More recently, there is an implementation of the method of Riniker and
Landrum [[3]](#riniker2) which uses torsion angle preferences from the
Cambridge Structural Database (CSD) to correct the conformers after
distance geometry has been used to generate them.  With this method,
there should be no need to use a minimisation step to clean up the
structures; indeed, it is often undesirable as it may move the
torsions away from the CSD-based distributions, somewhat negating the
point.

The full process of embedding and optimizing a molecule is easier than
all the above verbiage makes it sound
[(example11.cpp)](./C++Examples/example11.cpp):
```c++
#include <GraphMol/DistGeomHelpers/Embedder.h>
#include <GraphMol/ForceFieldHelpers/UFF/UFF.h>
.
.
RDKit::ROMOL_SPTR mol( RDKit::SmilesToMol( "C1CCC1OC" ) );
RDKit::ROMOL_SPTR mol1( RDKit::MolOps::addHs( *mol ) );
// Original distance geometry embedding
RDKit::DGeomHelpers::EmbedMolecule( *mol1 , 0 , 1234 );
RDKit::UFF::UFFOptimizeMolecule( *mol1 );

// new Riniker and Landrum CSD-based method
// using the parameters class
RDKit::DGeomHelpers::EmbedParameters params( RDKit::DGeomHelpers::ETKDG );
params.randomSeed = 1234;
RDKit::DGeomHelpers::EmbedMolecule( *mol2 , params );
```
The Riniker and Landrum method has a number of parameters that may be
altered for various reasons beyond the scope of this document. One
that you may want to alter is the random number seed; setting the
random number seed to other than the default -1 ensures that the same
conformations are produced each time the code is run.  This is
convenient when testing to ensure reproducibility of results.  To make
it easier to vary the parameters, there is the EmbedParameters class
which is initialised to the default values on construction, and whose
individual values can be varied as desired.

The RDKit also has an implementation of the MMFF94 force field
available [[4]](#mmff1), [[5]](#mmff2), [[6]](#mmff3),
[[7]](#mmff4), [[8]](#mmffs).
[(example11.cpp)](./C++Examples/example11.cpp):
```c++
#include <GraphMol/ForceFieldHelpers/MMFF/MMFF.h>
.
.
RDKit::MMFF::MMFFOptimizeMolecule( *mol2 , 1000 , "MMFF94s" );
```
Please note that the MMFF atom typing code uses its own aromaticity model,
so the aromaticity flags of the molecule will be modified after calling
MMFF-related methods.
Note the calls to `RDKit::MolOps::addHs()` in the examples above. By
default RDKit molecules do not have H atoms explicitly present in the
graph, but they are important for getting realistic geometries, so
they generally should be added.  They can always be removed afterwards
if necessary with a call to `RDKit::MolOps::removeHs()`

With the RDKit, multiple conformers can also be generated using the two
different embedding methods. In both cases this is simply a matter of
running the distance geometry calculation multiple times from
different random start points. The 2nd parameter to
`EmbedMultipleConfs` allows the user to
set the number of conformers that should be generated.  Otherwise the
procedures are similar to before
[(example11.cpp)](./C++Examples/example11.cpp):
```c++
RDKit::INT_VECT mol1_cids = RDKit::DGeomHelpers::EmbedMultipleConfs( *mol1 , 10 );
std::cout << "Number of conformations : " << mol1_cids.size() << std::endl;

RDKit::INT_VECT mol2_cids;
int numConfs = 20;
RDKit::DGeomHelpers::EmbedMultipleConfs( *mol2 , mol2_cids , numConfs , params );
std::cout << "Number of conformations : " << mol2_cids.size()
          << std::endl;
```
The conformer ids are returned in `mol1_cids` and `mol2_cids` and
there are two overloaded functions with different ways of supplying
the information.  As before, the CSD-based method is invoked by
EmbedParameters object, and in the example above the default
number of conformations to be produced has been changed from 10 to 20.
The conformers so generated can be aligned
to each other and the RMS values calculated
[(example11.cpp)](./C++Examples/example11.cpp):
```c++
#include <GraphMol/MolAlign/AlignMolecules.h>
.
.
std::vector<double> rms_list;
std::vector<unsigned int> m2cids( mol2_cids.begin() , mol2_cids.end() );
RDKit::MolAlign::alignMolConformers( *mol2 ,
                                     static_cast<const std::vector<unsigned int> *>( 0 ) ,
                                     &m2cids ,
                                     static_cast<const RDNumeric::DoubleVector *>( 0 ) ,
                                     false , 50 , &rms_list );
```
The RMS values for the overlays will be fed into rms_list on return.
Note the somewhat inconvenient issue that `EmbedMultipleConfs` returns
a vector of `ints` for the conformer ids, but `alignMolConformers`
requires a vector of `unsigned ints`. The reason for this is that
`EmbedMultipleConfs` uses -1 to denote a failed embedding.  The first
vector of `unsigned
ints` in the `alignMolConformers` declaration is atom ids, and allows
the alignment to be performed on just a subset of atoms which can be
convenient for overlaying a core and seeing how the other bits of the
molecule varied in the different conformations.

There is no C++ equivalent to the Python function
`AllChem.GetConformerRMS()` to compute the RMS between two specific
conformers (e.g. 1 and 9) although it is coming.

It is important to remember that unless you specify a random number
seed, you will not necessarily get the same conformations each time
you run the embedding on the same molecule, especially if you only
generate a small number of conformations relative to the number of
torsions in the structure.  If it's important in your use-case that
you have a good sampling of the conformations including all the
low-energy ones, you should be sure to
specify a large maximum number of conformations.

*Disclaimer/Warning*: Conformation generation is a difficult and
subtle task. The original, default, 2D->3D conversion provided with
the RDKit is not intended to be a replacement for a “real”
conformational analysis tool; it merely provides quick 3D structures
for cases when they are required. On the other hand, the second
method, when a sufficiently large number of conformers are generated,
should be adequate for most purposes. It is probably better to ignore
the first, historical, method entirely. It is only left as the default
method to avoid breaking existing code.

### Preserving Molecules

Molecules can be preserved, or serialised, or pickled, using the class
MolPickler in the namespace of the same name:
[(example12.cpp)](./C++Examples/example12.cpp):
```c++
#include <GraphMol/MolPickler.h>
.
.
RDKit::ROMol *mol1 = RDKit::SmilesToMol( "c1ccncc1" );
std::string pickle;
RDKit::MolPickler::pickleMol( *mol1 , pickle );
RDKit::ROMol mol2;
RDKit::MolPickler::molFromPickle( pickle , mol2 );
std::cout << RDKit::MolToSmiles( mol2 ) << std::endl;
```
Note that the string is in binary format and will appear
as gibberish if printed to a screen. The RDKit pickle format is fairly
compact and it is much, much faster to build a molecule from a pickle
than from a Mol file or SMILES string, so storing pickles of molecules
you will be working with repeatedly can be a good idea:
[(example12.cpp)](./C++Examples/example12.cpp):
```c++
// writing to pickle file
std::string smi_file = getenv("RDBASE");
smi_file += "/Code/GraphMol/test_data/canonSmiles.long.smi";
std::string pkl_name = "canonSmiles.long.pkl";

// tab-delimited file, SMILES in column 0, name in 1, no title line
RDKit::SmilesMolSupplier suppl( smi_file , "\t" , 0 , 1 , false );
std::ofstream pickle_ostream( pkl_name , std::ios_base::binary );
int write_cnt = 0;
while( !suppl.atEnd() ) {
  RDKit::ROMol *mol = suppl.next();
  RDKit::MolPickler::pickleMol( *mol , pickle_ostream );
  delete mol;
  ++write_cnt;
}
pickle_ostream.close();  
std::cout << "Wrote " << write_cnt << " molecules" << std::endl;

// reading from pickle file
std::ifstream pickle_istream( pkl_name , std::ios_base::binary );
int read_cnt = 0;
while( !pickle_istream.eof() ) {
  RDKit::ROMol mol3;
  try {
    RDKit::MolPickler::molFromPickle( pickle_istream , mol3 );
  } catch( RDKit::MolPicklerException &e ) {
    break;
  }
  ++read_cnt;
}
pickle_istream.close();
std::cout << "Read " << read_cnt << " molecules." << std::endl;
```
However, currently the pickling process does not preserve and
properties attached to the molecule, which included the molecule name
(property "_Name"). This will change in the 2017.03 release.

### Drawing Molecules
The RDKit has some built-in functionality for drawing molecules, found
in the RDKit namespace, with header files in
`$RDBASE/Code/GraphMol/MolDraw2D`.  There is an abstract base class
MolDraw2D which defines the interface and does the drawing, with
concrete classes for drawing to SVG or PNG files and Qt and wx
widgets.  Only the SVG output is built by default, Cairo support
requires the argument `-DRDK_BUILD_CAIRO_SUPPORT=ON` to cmake, and Qt
support `-DRDK_BUILD_QT_SUPPORT=ON`. To create an SVG file:
[(example13.cpp)](./C++Examples/example13.cpp):
```c++
#include <GraphMol/MolDraw2D/MolDraw2DSVG.h>
.
.
RDKit::SDMolSupplier mol_supplier( "data/cdk2.sdf" , true );
RDKit::ROMol *mol1 = mol_supplier.next();
RDDepict::compute2DCoords( *mol1 );
std::ofstream outs("cdk_mol1.svg");
RDKit::MolDraw2DSVG svg_drawer(300, 300, outs);
svg_drawer.drawMolecule( *mol1 );
svg_drawer.finishDrawing();
outs.close();
```
The procedure for a PNG is slightly different:
[(example13.cpp)](./C++Examples/example13.cpp):
```c++
#include <GraphMol/MolDraw2D/MolDraw2DSVG.h>
.
.
RDKit::MolDraw2DCairo cairo_drawer(300, 300);
cairo_drawer.drawMolecule(*mol1);
cairo_drawer.finishDrawing();
cairo_drawer.writeDrawingText("cdk_mol1.png");
```
The Python wrapper includes the function `Chem.MolsToGridImage`.
There is, as yet, no equivalent in the C++ version although
`test11DrawMolGrid` in `$RDBASE/Code/GraphMol/MolDraw2D/test1.cpp`
shows that it can be achieved relatively simply.

### Substructure Searching

Substructure matching can be done using query molecules built from
SMARTS.
[(example14.cpp)](./C++Examples/example14.cpp):
```c++
#include <GraphMol/Substruct/SubstructMatch.h>
.
.
RDKit::ROMol *mol1 = RDKit::SmilesToMol( "c1ccccc1O" );
RDKit::RWMol *patt = RDKit::SmartsToMol( "ccO" );
RDKit::MatchVectType res;
if( RDKit::SubstructMatch( *mol1 , *patt , res ) ) {
  std::cout << "Pattern matched molecule" << std::endl;
}
for( size_t i = 0 ; i < res.size() ; ++i ) {
  std::cout << "(" << res[i].first << "," << res[i].second << ") ";
}
std::cout << std::endl;
```
`SubstructMatch` returns a bool to flag whether there was a match, and
replaces the contents of `res` with a mapping of the atom indices in
the pattern and a set of atoms that match in the molecule. In the
above example, the output is:
```
Pattern matched molecule
(0,0)(1,5)(2,6)
```
showing that atoms 0, 5 and 6 in the phenol matched the query. If the
pattern matches multiple times (as in this case, where 4, 5, 6 is also
a match), a single arbitrary set is returned.

All possible matches can also be returned:
[(example14.cpp)](./C++Examples/example14.cpp):
```c++
std::vector<RDKit::MatchVectType> hits_vect;
if( RDKit::SubstructMatch( *mol1 , *patt , hits_vect ) ) {
  for( size_t i = 0 ; i < hits_vect.size() ; ++i ) {
    std::cout << "Match " << i + 1 << " : ";
    for( size_t j = 0 ; j < hits_vect[i].size() ; ++j ) {
	std::cout << "(" << hits_vect[i][j].first << ","
		  << hits_vect[i][j].second << ")";
    }
    std::cout << std::endl;
  }
}
```
This gives
```
Match 1 : (0,0)(1,5)(2,6)
Match 2 : (0,4)(1,5)(2,6)

```
It is easy to filter lists of molecules:
[(example14.cpp)](./C++Examples/example14.cpp):
```c++
RDKit::SDMolSupplier mol_supplier( "data/actives_5ht3.sdf" , true );
RDKit::RWMol *patt1 = RDKit::SmartsToMol( "c[NH1]" );
std::vector<RDKit::ROMol *> matches;
while( !mol_supplier.atEnd() ) {
  RDKit::ROMol *mol3 = mol_supplier.next();
  if( mol3 && RDKit::SubstructMatch( *mol3 , *patt1 , res ) ) {
    matches.push_back( mol3 );
  } else {
    delete mol3;
  }
}
std::cout << "There were " << matches.size() << " hits in the file." << std::endl;
```
There should be 22 matches in the file.

Substructure matching can also be done using molecules built from
SMILES instead of SMARTS:
[(example14.cpp)](./C++Examples/example14.cpp):
```c++
RDKit::ROMol *mol4 = RDKit::SmilesToMol( "C1=CC=CC=C1OC" );
RDKit::RWMol *smi_mol1 = RDKit::SmilesToMol( "CO" );
if( RDKit::SubstructMatch( *mol4 , *smi_mol1 , res ) ) {
  std::cout << "SMILES match" << std::endl;
} else {
  std::cout << "Not SMILES match" << std::endl;
}
RDKit::RWMol *smt_mol1 = RDKit::SmartsToMol( "CO" );
if( RDKit::SubstructMatch( *mol4 , *smt_mol1 , res ) ) {
  std::cout << "SMARTS match" << std::endl;
} else {
  std::cout << "Not SMARTS match" << std::endl;
}
```
But don't forget that the semantics of the two languages are not
exactly equivalent:
[(example14.cpp)](./C++Examples/example14.cpp):
```c++
RDKit::ROMol *mol4 = RDKit::SmilesToMol( "C1=CC=CC=C1OC" );
RDKit::RWMol *smi_mol2 = RDKit::SmilesToMol( "COC" );
if( RDKit::SubstructMatch( *mol4 , *smi_mol2 , res ) ) {
  std::cout << "SMILES match" << std::endl;
} else {
  std::cout << "Not SMILES match" << std::endl;
}
RDKit::RWMol *smt_mol2 = RDKit::SmartsToMol( "COC" );
if( RDKit::SubstructMatch( *mol4 , *smt_mol2 , res ) ) {
  std::cout << "SMARTS match" << std::endl;
} else {
  std::cout << "Not SMARTS match" << std::endl;
}
// Needs aromatic C
RDKit::RWMol *smt_mol3 = RDKit::SmartsToMol( "COc" );
if( RDKit::SubstructMatch( *mol4 , *smt_mol3 , res ) ) {
  std::cout << "SMARTS match" << std::endl;
} else {
  std::cout << "Not SMARTS match" << std::endl;
}
```
gives
```
SMILES match
Not SMARTS match
SMARTS match
```

### Stereochemistry in substructure matches
By default, information about stereochemistry is not used in
substructure searches:
[(example15.cpp)](./C++Examples/example15.cpp):
```c++
RDKit::ROMol *mol1 = RDKit::SmilesToMol( "CC[C@H](F)Cl" );
RDKit::RWMol *patt1 = RDKit::SmartsToMol( "C[C@H](F)Cl" );
RDKit::MatchVectType res;
if( RDKit::SubstructMatch( *mol1 , *patt1 , res ) ) {
  std::cout << "SMARTS 1 match" << std::endl;
} else {
  std::cout << "Not SMARTS 1 match" << std::endl;
}
RDKit::RWMol *patt2 = RDKit::SmartsToMol( "C[C@@H](F)Cl" );
if( RDKit::SubstructMatch( *mol1 , *patt2 , res ) ) {
  std::cout << "SMARTS 2 match" << std::endl;
} else {
  std::cout << "Not SMARTS 2 match" << std::endl;
}
RDKit::RWMol *patt3 = RDKit::SmartsToMol( "CC(F)Cl" );
if( RDKit::SubstructMatch( *mol1 , *patt3 , res ) ) {
  std::cout << "SMARTS 3 match" << std::endl;
} else {
  std::cout << "Not SMARTS 3 match" << std::endl;
}
```
All 3 SMARTS patterns match the molecule. To use the chirality
information, you need to pass `true` as the optional fourth parameter,
corresponding to useChirality:
[(example15.cpp)](./C++Examples/example15.cpp):
```c++
RDKit::ROMol *mol1 = RDKit::SmilesToMol( "CC[C@H](F)Cl" );
RDKit::RWMol *patt1 = RDKit::SmartsToMol( "C[C@H](F)Cl" );
RDKit::MatchVectType res;
if( RDKit::SubstructMatch( *mol1 , *patt1 , res , true , true ) ) {
  std::cout << "SMARTS 1 chiral match" << std::endl;
} else {
  std::cout << "Not SMARTS 1 chiral match" << std::endl;
}
RDKit::RWMol *patt2 = RDKit::SmartsToMol( "C[C@@H](F)Cl" );
if( RDKit::SubstructMatch( *mol1 , *patt2 , res , true , true ) ) {
  std::cout << "SMARTS 2 chiral match" << std::endl;
} else {
  std::cout << "Not SMARTS 2 chiral match" << std::endl;
}
RDKit::RWMol *patt3 = RDKit::SmartsToMol( "CC(F)Cl" );
if( RDKit::SubstructMatch( *mol1 , *patt3 , res , true , true ) ) {
  std::cout << "SMARTS 3 chiral match" << std::endl;
} else {
  std::cout << "Not SMARTS 3 chiral match" << std::endl;
}
```
gives
```
SMARTS 1 chiral match
Not SMARTS 2 chiral match
SMARTS 3 chiral match
```
Notice that when useChirality is true, a non-chiral query __does__
match a chiral molecule. The same is not true for a chiral query and a
non-chiral molecule:
[(example15.cpp)](./C++Examples/example15.cpp):
```c++
RDKit::ROMol *mol1 = RDKit::SmilesToMol( "CC[C@H](F)Cl" );
RDKit::RWMol *mol2 = RDKit::SmilesToMol( "CC(F)Cl" );
if( RDKit::SubstructMatch( *mol1 , *mol2 , res , true , true ) ) {
  std::cout << "Chiral mol, non-chiral query : match" << std::endl;
} else {
  std::cout << "Chiral mol, non-chiral query : NO match" << std::endl;
}

RDKit::RWMol *patt5 = RDKit::SmilesToMol( "C[C@H](F)Cl" );
if( RDKit::SubstructMatch( *mol2 , *patt5 , res , true , true ) ) {
  std::cout << "Non-chiral mol, chiral query : match" << std::endl;
} else {
  std::cout << "Non-chiral mol, chiral query : NO match" << std::endl;
}
```
gives
```
Chiral mol, non-chiral query : match
Non-chiral mol, chiral query : NO match
```

### Atom Map Indices in SMARTS

It is possible to attach indices to the atoms in the SMARTS
pattern. This is most often done in reaction SMARTS (see Chemical
Reactions), but is more general than that. For example, in the SMARTS
patterns for torsion angle analysis published by Guba et
al. [[9]](#guba) indices are used to define the four atoms of the
torsion of interest. This allows additional atoms to be used to define
the environment of the four torsion atoms, as in
`[cH0:1][c:2]([cH0])!@[CX3!r:3]=[NX2!r:4]` for an aromatic C=N
torsion. We might wonder in passing why they didn’t use recursive
SMARTS for this, which would have made life easier, but it is what it
is. The atom lists from GetSubstructureMatches are guaranteed to be in
order of the SMARTS, but in this case we’ll get five atoms so we need
a way of picking out, in the correct order, the four of interest. When
the SMARTS is parsed, the relevant atoms are assigned an atom map
number property that we can easily extract:
[(example16.cpp)](./C++Examples/example16.cpp):
```c++
RDKit::RWMol *patt1 = RDKit::SmartsToMol( "[cH0:1][c:2]([cH0])!@[CX3!r:3]=[NX2!r:4]" );
std::map<int,unsigned int> ind_map;
RDKit::ROMol::VERTEX_ITER it , end;
boost::tie( it , end ) = patt1->getVertices();
while( it != end ) {
  const RDKit::Atom *atom = (*patt1)[*it].get();
  int map_num = atom->getAtomMapNum();
  if( map_num ) {
    ind_map[map_num-1] = atom->getIdx();
  }
  ++it;
}
std::vector<unsigned int> map_list;
for( std::map<int,unsigned int>::iterator i = ind_map.begin() ; i != ind_map.end() ; ++i ) {
  map_list.push_back( i->second );
}
for( size_t i = 0 , is = map_list.size() ; i < is ; ++i ) {
  std::cout << map_list[i] << " ";
}
std::cout << std::endl;
```
gives
```
0 1 3 4
```
Then, when using the query on a molecule, you can get the indices of
the four matching atoms like this:
[(example16.cpp)](./C++Examples/example16.cpp):
```c++
RDKit::ROMol *mol1 = RDKit::SmilesToMol( "Cc1cccc(C)c1C(C)=NC" );
std::vector<RDKit::MatchVectType> hits_vect;
if( RDKit::SubstructMatch( *mol1 , *patt1 , hits_vect ) ) {
  for( size_t i = 0 ; i < hits_vect.size() ; ++i ) {
    std::cout << "Match " << i + 1 << " : ";
    for( size_t j = 0 ; j < map_list.size() ; ++j ) {
	std::cout << hits_vect[i][map_list[j]].second << " ";
    }
    std::cout << std::endl;
  }
}
```
gives
```
Match 1 : 1 7 8 10
```

## <a name="TheSSSRProblem"></a>The SSSR Problem

As others have ranted about with more energy and eloquence than I
intend to, the definition of a molecule's smallest set of smallest
rings is not unique.  In some high symmetry molecules, a “true” SSSR
will give results that are unappealing.  For example, the SSSR for
cubane only contains 5 rings, even though there are
“obviously” 6. This problem can be fixed by implementing a *small*
(instead of *smallest*) set of smallest rings algorithm that returns
symmetric results.  This is the approach that we took with the RDKit.

Because it is sometimes useful to be able to count how many SSSR rings
are present in the molecule, there is a
`rdkit.Chem.rdmolops.GetSSSR` function, but this only returns the
SSSR count, not the potentially non-unique set of rings.

## Footnotes
1. <a name="blaney"></a>Blaney, J. M.; Dixon, J. S. "Distance Geometry
in Molecular Modeling".  *Reviews in Computational Chemistry*; VCH:
New York, 1994.
2. <a name="rappe"></a>Rappé, A. K.; Casewit, C. J.; Colwell, K. S.;
Goddard III, W. A.; Skiff, W. M. "UFF, a full periodic table force
field for molecular mechanics and molecular dynamics
simulations". *J. Am. Chem. Soc.* **114**:10024-35 (1992) .
3. <a name="riniker2"></a>Riniker, S.; Landrum, G. A. "Better Informed
Distance Geometry: Using What We Know To Improve Conformation
Generation" *J. Chem. Inf. Comp. Sci.* **55**:2562-74 (2015)
4. <a name="mmff1"></a>Halgren, T. A. "Merck molecular force
field. I. Basis, form, scope, parameterization, and performance of
MMFF94." *J. Comp. Chem.* **17**:490–19 (1996).
5. <a name="mmff2"></a>Halgren, T. A. "Merck molecular force
field. II. MMFF94 van der Waals and electrostatic parameters for
intermolecular interactions." *J. Comp. Chem.* **17**:520–52 (1996).
6. <a name="mmff3"></a>Halgren, T. A. "Merck molecular force
field. III. Molecular geometries and vibrational frequencies for
MMFF94." *J. Comp. Chem.* **17**:553–86 (1996).
7. <a name="mmff4"></a>Halgren, T. A. & Nachbar, R. B. "Merck
molecular force field. IV. conformational energies and geometries
for MMFF94." *J. Comp. Chem.* **17**:587-615 (1996).
8. <a name="mmffs"></a>Halgren, T. A. "MMFF VI. MMFF94s option for
energy minimization studies." *J. Comp. Chem.* **20**:720–9
(1999).
9. <a name="guba"></a>Guba, W.; Meyder, A.; Rarey, M.; Hert,
J. "Torsion Library Reloaded: A New Version of Expert-Derived
SMARTS Rules for Assessing Conformations of Small
Molecules". *J. Chem. Inf. Model.* ** 56**:1-5 (2016)