1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938
|
Getting Started with the RDKit in Python
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
What is this?
*************
This document is intended to provide an overview of how one can use
the RDKit functionality from Python. It's not comprehensive and it's
not a manual.
If you find mistakes, or have suggestions for improvements, please
either fix them yourselves in the source document (the .rst file) or
send them to the mailing list: rdkit-devel@lists.sourceforge.net
In particular, if you find yourself spending time working out how to
do something that doesn't appear to be documented please contribute by writing
it up for this document. Contributing to the documentation is a great service
both to the RDKit community and to your future self.
Reading and Writing Molecules
*****************************
Reading single molecules
========================
The majority of the basic molecular functionality is found in module :py:mod:`rdkit.Chem`:
.. doctest::
>>> from __future__ import print_function
>>> from rdkit import Chem
Individual molecules can be constructed using a variety of approaches:
.. doctest::
>>> m = Chem.MolFromSmiles('Cc1ccccc1')
>>> m = Chem.MolFromMolFile('data/input.mol')
>>> stringWithMolData=open('data/input.mol','r').read()
>>> m = Chem.MolFromMolBlock(stringWithMolData)
All of these functions return a :py:class:`rdkit.Chem.rdchem.Mol` object on success:
.. doctest::
>>> m
<rdkit.Chem.rdchem.Mol object at 0x...>
or None on failure:
.. doctest::
>>> m = Chem.MolFromMolFile('data/invalid.mol')
>>> m is None
True
An attempt is made to provide sensible error messages:
.. doctest::
>>> m1 = Chem.MolFromSmiles('CO(C)C')
displays a message like: ``[12:18:01] Explicit valence for atom # 1 O greater than permitted`` and
.. doctest::
>>> m2 = Chem.MolFromSmiles('c1cc1')
displays something like: ``[12:20:41] Can't kekulize mol``. In each case the value ``None`` is returned:
.. doctest::
>>> m1 is None
True
>>> m2 is None
True
Reading sets of molecules
=========================
Groups of molecules are read using a Supplier (for example, an :py:class:`rdkit.Chem.rdmolfiles.SDMolSupplier` or a :py:class:`rdkit.Chem.rdmolfiles.SmilesMolSupplier`):
.. doctest::
>>> suppl = Chem.SDMolSupplier('data/5ht3ligs.sdf')
>>> for mol in suppl:
... print(mol.GetNumAtoms())
...
20
24
24
26
You can easily produce lists of molecules from a Supplier:
.. doctest::
>>> mols = [x for x in suppl]
>>> len(mols)
4
or just treat the Supplier itself as a random-access object:
.. doctest::
>>> suppl[0].GetNumAtoms()
20
A good practice is to test each molecule to see if it was correctly read before working with it:
.. doctest::
>>> suppl = Chem.SDMolSupplier('data/5ht3ligs.sdf')
>>> for mol in suppl:
... if mol is None: continue
... print(mol.GetNumAtoms())
...
20
24
24
26
An alternate type of Supplier, the :py:class:`rdkit.Chem.rdmolfiles.ForwardSDMolSupplier` can be used to read from file-like objects:
.. doctest::
>>> inf = open('data/5ht3ligs.sdf','rb')
>>> fsuppl = Chem.ForwardSDMolSupplier(inf)
>>> for mol in fsuppl:
... if mol is None: continue
... print(mol.GetNumAtoms())
...
20
24
24
26
This means that they can be used to read from compressed files:
.. doctest::
>>> import gzip
>>> inf = gzip.open('data/actives_5ht3.sdf.gz')
>>> gzsuppl = Chem.ForwardSDMolSupplier(inf)
>>> ms = [x for x in gzsuppl if x is not None]
>>> len(ms)
180
Note that ForwardSDMolSuppliers cannot be used as random-access objects:
.. doctest::
>>> fsuppl[0]
Traceback (most recent call last):
...
TypeError: 'ForwardSDMolSupplier' object does not support indexing
Writing molecules
=================
Single molecules can be converted to text using several functions present in the :py:mod:`rdkit.Chem` module.
For example, for SMILES:
.. doctest::
>>> m = Chem.MolFromMolFile('data/chiral.mol')
>>> Chem.MolToSmiles(m)
'C[C@H](O)c1ccccc1'
>>> Chem.MolToSmiles(m,isomericSmiles=False)
'CC(O)c1ccccc1'
Note that the SMILES provided is canonical, so the output should be the same no matter how a particular molecule is input:
.. doctest::
>>> Chem.MolToSmiles(Chem.MolFromSmiles('C1=CC=CN=C1'))
'c1ccncc1'
>>> Chem.MolToSmiles(Chem.MolFromSmiles('c1cccnc1'))
'c1ccncc1'
>>> Chem.MolToSmiles(Chem.MolFromSmiles('n1ccccc1'))
'c1ccncc1'
If you'd like to have the Kekule form of the SMILES, first Kekulize the molecule, then use the “kekuleSmiles” option:
.. doctest::
>>> Chem.Kekulize(m)
>>> Chem.MolToSmiles(m,kekuleSmiles=True)
'C[C@H](O)C1=CC=CC=C1'
Note: as of this writing (Aug 2008), the smiles provided when one requests kekuleSmiles are not canonical.
The limitation is not in the SMILES generation, but in the kekulization itself.
MDL Mol blocks are also available:
.. doctest::
>>> m2 = Chem.MolFromSmiles('C1CCC1')
>>> print(Chem.MolToMolBlock(m2)) # doctest: +NORMALIZE_WHITESPACE
<BLANKLINE>
RDKit 2D
<BLANKLINE>
4 4 0 0 0 0 0 0 0 0999 V2000
1.0607 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0
-0.0000 -1.0607 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0
-1.0607 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0
0.0000 1.0607 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0
1 2 1 0
2 3 1 0
3 4 1 0
4 1 1 0
M END
<BLANKLINE>
To include names in the mol blocks, set the molecule's “_Name” property:
.. doctest::
>>> m2.SetProp("_Name","cyclobutane")
>>> print(Chem.MolToMolBlock(m2)) # doctest: +NORMALIZE_WHITESPACE
cyclobutane
RDKit 2D
<BLANKLINE>
4 4 0 0 0 0 0 0 0 0999 V2000
1.0607 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0
-0.0000 -1.0607 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0
-1.0607 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0
0.0000 1.0607 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0
1 2 1 0
2 3 1 0
3 4 1 0
4 1 1 0
M END
<BLANKLINE>
In order for atom or bond stereochemistry to be recognised correctly by most
software, it's essential that the mol block have atomic coordinates.
It's also convenient for many reasons, such as drawing the molecules.
Generating a mol block for a molecule that does not have coordinates will, by
default, automatically cause coordinates to be generated. These are not,
however, stored with the molecule.
Coordinates can be generated and stored with the molecule using functionality
in the :py:mod:`rdkit.Chem.AllChem` module (see the `Chem vs AllChem`_ section for
more information).
You can either include 2D coordinates (i.e. a depiction):
.. doctest::
>>> from rdkit.Chem import AllChem
>>> AllChem.Compute2DCoords(m2)
0
>>> print(Chem.MolToMolBlock(m2)) # doctest: +NORMALIZE_WHITESPACE
cyclobutane
RDKit 2D
<BLANKLINE>
4 4 0 0 0 0 0 0 0 0999 V2000
1.0607 -0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0
-0.0000 -1.0607 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0
-1.0607 0.0000 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0
0.0000 1.0607 0.0000 C 0 0 0 0 0 0 0 0 0 0 0 0
1 2 1 0
2 3 1 0
3 4 1 0
4 1 1 0
M END
<BLANKLINE>
Or you can add 3D coordinates by embedding the molecule (this uses the ETKDG
method, which is described in more detail below):
.. doctest::
>>> AllChem.EmbedMolecule(m2)
0
>>> print(Chem.MolToMolBlock(m2)) # doctest: +NORMALIZE_WHITESPACE
cyclobutane
RDKit 3D
<BLANKLINE>
4 4 0 0 0 0 0 0 0 0999 V2000
-0.8321 0.5405 -0.1981 C 0 0 0 0 0 0 0 0 0 0 0 0
-0.3467 -0.8825 -0.2651 C 0 0 0 0 0 0 0 0 0 0 0 0
0.7190 -0.5613 0.7314 C 0 0 0 0 0 0 0 0 0 0 0 0
0.4599 0.9032 0.5020 C 0 0 0 0 0 0 0 0 0 0 0 0
1 2 1 0
2 3 1 0
3 4 1 0
4 1 1 0
M END
<BLANKLINE>
To get good 3D conformations, it's almost always a good idea to add
hydrogens to the molecule first:
.. doctest::
>>> m3 = Chem.AddHs(m2)
>>> AllChem.EmbedMolecule(m3)
0
These can then be removed:
.. doctest::
>>> m3 = Chem.RemoveHs(m3)
>>> print(Chem.MolToMolBlock(m3)) # doctest: +NORMALIZE_WHITESPACE
cyclobutane
RDKit 3D
<BLANKLINE>
4 4 0 0 0 0 0 0 0 0999 V2000
0.3497 0.9755 -0.2202 C 0 0 0 0 0 0 0 0 0 0 0 0
0.9814 -0.3380 0.2534 C 0 0 0 0 0 0 0 0 0 0 0 0
-0.3384 -1.0009 -0.1474 C 0 0 0 0 0 0 0 0 0 0 0 0
-0.9992 0.3532 0.1458 C 0 0 0 0 0 0 0 0 0 0 0 0
1 2 1 0
2 3 1 0
3 4 1 0
4 1 1 0
M END
<BLANKLINE>
If you'd like to write the molecules to a file, use Python file objects:
.. doctest::
>>> print(Chem.MolToMolBlock(m2),file=open('data/foo.mol','w+'))
>>>
Writing sets of molecules
=========================
Multiple molecules can be written to a file using an :py:class:`rdkit.Chem.rdmolfiles.SDWriter` object:
.. doctest::
>>> w = Chem.SDWriter('data/foo.sdf')
>>> for m in mols: w.write(m)
...
>>>
An SDWriter can also be initialized using a file-like object:
.. doctest::
>>> from rdkit.six import StringIO
>>> sio = StringIO()
>>> w = Chem.SDWriter(sio)
>>> for m in mols: w.write(m)
...
>>> w.flush()
>>> print(sio.getvalue())
mol-295
RDKit 3D
<BLANKLINE>
20 22 0 0 1 0 0 0 0 0999 V2000
2.3200 0.0800 -0.1000 C 0 0 0 0 0 0 0 0 0 0 0 0
1.8400 -1.2200 0.1200 C 0 0 0 0 0 0 0 0 0 0 0 0
...
1 3 1 0
1 4 1 0
2 5 1 0
M END
$$$$
<BLANKLINE>
Other available Writers include the :py:class:`rdkit.Chem.rdmolfiles.SmilesWriter` and the :py:class:`rdkit.Chem.rdmolfiles.TDTWriter`.
Working with Molecules
**********************
Looping over Atoms and Bonds
============================
Once you have a molecule, it's easy to loop over its atoms and bonds:
.. doctest::
>>> m = Chem.MolFromSmiles('C1OC1')
>>> for atom in m.GetAtoms():
... print(atom.GetAtomicNum())
...
6
8
6
>>> print(m.GetBonds()[0].GetBondType())
SINGLE
You can also request individual bonds or atoms:
.. doctest::
>>> m.GetAtomWithIdx(0).GetSymbol()
'C'
>>> m.GetAtomWithIdx(0).GetExplicitValence()
2
>>> m.GetBondWithIdx(0).GetBeginAtomIdx()
0
>>> m.GetBondWithIdx(0).GetEndAtomIdx()
1
>>> m.GetBondBetweenAtoms(0,1).GetBondType()
rdkit.Chem.rdchem.BondType.SINGLE
Atoms keep track of their neighbors:
.. doctest::
>>> atom = m.GetAtomWithIdx(0)
>>> [x.GetAtomicNum() for x in atom.GetNeighbors()]
[8, 6]
>>> len(atom.GetNeighbors()[-1].GetBonds())
2
Ring Information
================
Atoms and bonds both carry information about the molecule's rings:
.. doctest::
>>> m = Chem.MolFromSmiles('OC1C2C1CC2')
>>> m.GetAtomWithIdx(0).IsInRing()
False
>>> m.GetAtomWithIdx(1).IsInRing()
True
>>> m.GetAtomWithIdx(2).IsInRingSize(3)
True
>>> m.GetAtomWithIdx(2).IsInRingSize(4)
True
>>> m.GetAtomWithIdx(2).IsInRingSize(5)
False
>>> m.GetBondWithIdx(1).IsInRingSize(3)
True
>>> m.GetBondWithIdx(1).IsInRing()
True
But note that the information is only about the smallest rings:
.. doctest::
>>> m.GetAtomWithIdx(1).IsInRingSize(5)
False
More detail about the smallest set of smallest rings (SSSR) is available:
.. doctest::
>>> ssr = Chem.GetSymmSSSR(m)
>>> len(ssr)
2
>>> list(ssr[0])
[1, 2, 3]
>>> list(ssr[1])
[4, 5, 2, 3]
As the name indicates, this is a symmetrized SSSR; if you are interested in the number of “true” SSSR, use the GetSSSR function.
.. doctest::
>>> Chem.GetSSSR(m)
2
The distinction between symmetrized and non-symmetrized SSSR is discussed in more detail below in the section `The SSSR Problem`_.
For more efficient queries about a molecule's ring systems (avoiding repeated calls to Mol.GetAtomWithIdx), use the :py:class:`rdkit.Chem.rdchem.RingInfo` class:
.. doctest::
>>> m = Chem.MolFromSmiles('OC1C2C1CC2')
>>> ri = m.GetRingInfo()
>>> ri.NumAtomRings(0)
0
>>> ri.NumAtomRings(1)
1
>>> ri.NumAtomRings(2)
2
>>> ri.IsAtomInRingOfSize(1,3)
True
>>> ri.IsBondInRingOfSize(1,3)
True
Modifying molecules
===================
Normally molecules are stored in the RDKit with the hydrogen atoms implicit (e.g. not explicitly present in the molecular graph.
When it is useful to have the hydrogens explicitly present, for example when generating or optimizing the 3D geometry, the :py:func:rdkit.Chem.rdmolops.AddHs function can be used:
.. doctest::
>>> m=Chem.MolFromSmiles('CCO')
>>> m.GetNumAtoms()
3
>>> m2 = Chem.AddHs(m)
>>> m2.GetNumAtoms()
9
The Hs can be removed again using the :py:func:`rdkit.Chem.rdmolops.RemoveHs` function:
.. doctest::
>>> m3 = Chem.RemoveHs(m2)
>>> m3.GetNumAtoms()
3
RDKit molecules are usually stored with the bonds in aromatic rings having aromatic bond types.
This can be changed with the :py:func:`rdkit.Chem.rdmolops.Kekulize` function:
.. doctest::
>>> m = Chem.MolFromSmiles('c1ccccc1')
>>> m.GetBondWithIdx(0).GetBondType()
rdkit.Chem.rdchem.BondType.AROMATIC
>>> Chem.Kekulize(m)
>>> m.GetBondWithIdx(0).GetBondType()
rdkit.Chem.rdchem.BondType.DOUBLE
>>> m.GetBondWithIdx(1).GetBondType()
rdkit.Chem.rdchem.BondType.SINGLE
By default, the bonds are still marked as being aromatic:
.. doctest::
>>> m.GetBondWithIdx(1).GetIsAromatic()
True
because the flags in the original molecule are not cleared (clearAromaticFlags defaults to False).
You can explicitly force or decline a clearing of the flags:
.. doctest::
>>> m = Chem.MolFromSmiles('c1ccccc1')
>>> m.GetBondWithIdx(0).GetIsAromatic()
True
>>> m1 = Chem.MolFromSmiles('c1ccccc1')
>>> Chem.Kekulize(m1, clearAromaticFlags=True)
>>> m1.GetBondWithIdx(0).GetIsAromatic()
False
Bonds can be restored to the aromatic bond type using the :py:func:`rdkit.Chem.rdmolops.SanitizeMol` function:
.. doctest::
>>> Chem.SanitizeMol(m)
rdkit.Chem.rdmolops.SanitizeFlags.SANITIZE_NONE
>>> m.GetBondWithIdx(0).GetBondType()
rdkit.Chem.rdchem.BondType.AROMATIC
The value returned by `SanitizeMol()` indicates that no problems were encountered.
Working with 2D molecules: Generating Depictions
================================================
The RDKit has a library for generating depictions (sets of 2D) coordinates for molecules.
This library, which is part of the AllChem module, is accessed using the :py:func:`rdkit.Chem.rdDepictor.Compute2DCoords` function:
.. doctest::
>>> m = Chem.MolFromSmiles('c1nccc2n1ccc2')
>>> AllChem.Compute2DCoords(m)
0
The 2D conformation is constructed in a canonical orientation and is
built to minimize intramolecular clashes, i.e. to maximize the clarity
of the drawing.
If you have a set of molecules that share a common template and you'd
like to align them to that template, you can do so as follows:
.. doctest::
>>> template = Chem.MolFromSmiles('c1nccc2n1ccc2')
>>> AllChem.Compute2DCoords(template)
0
>>> AllChem.GenerateDepictionMatching2DStructure(m,template)
Running this process for a couple of other molecules gives the
following depictions:
+---------------+---------------+---------------+
| |picture_1| | |picture_0| | |picture_3| |
+---------------+---------------+---------------+
Another option for Compute2DCoords allows you to generate 2D depictions for molecules that closely mimic 3D conformations.
This is available using the function :py:func:`rdkit.Chem.AllChem.GenerateDepictionMatching3DStructure`.
Here is an illustration of the results using the ligand from PDB structure 1XP0:
+---------------+---------------+
| |picture_2| | |picture_4| |
+---------------+---------------+
More fine-grained control can be obtained using the core function
:py:func:`rdkit.Chem.rdDepictor.Compute2DCoordsMimicDistmat`, but that is
beyond the scope of this document. See the implementation of
GenerateDepictionMatching3DStructure in AllChem.py for an example of
how it is used.
Working with 3D Molecules
=========================
The RDKit can generate conformations for molecules using two different
methods. The original method used distance geometry. [#blaney]_
The algorithm followed is:
1. The molecule's distance bounds matrix is calculated based on the connection table and a set of rules.
2. The bounds matrix is smoothed using a triangle-bounds smoothing algorithm.
3. A random distance matrix that satisfies the bounds matrix is generated.
4. This distance matrix is embedded in 3D dimensions (producing coordinates for each atom).
5. The resulting coordinates are cleaned up somewhat using a crude force field and the bounds matrix.
Note that the conformations that result from this procedure tend to be fairly ugly.
They should be cleaned up using a force field.
This can be done within the RDKit using its implementation of the Universal Force Field (UFF). [#rappe]_
More recently, there is an implementation of the method of Riniker and
Landrum [#riniker2]_ which uses torsion angle preferences from the
Cambridge Structural Database (CSD) to correct the conformers after
distance geometry has been used to generate them. With this method,
there should be no need to use a minimisation step to clean up the
structures.
Since the 2018.09 release of the RDKit, ETKDG is the default conformation generation method.
The full process of embedding a molecule is easier than all the above verbiage makes it sound:
.. doctest::
>>> m2=Chem.AddHs(m)
>>> AllChem.EmbedMolecule(m2)
0
The RDKit also has an implementation of the MMFF94 force field available. [#mmff1]_, [#mmff2]_, [#mmff3]_, [#mmff4]_, [#mmffs]_
Please note that the MMFF atom typing code uses its own aromaticity model,
so the aromaticity flags of the molecule will be modified after calling
MMFF-related methods.
Here's an example of using MMFF94 to minimize an RDKit-generated conformer:
.. doctest::
>>> m = Chem.MolFromSmiles('C1CCC1OC')
>>> m2=Chem.AddHs(m)
>>> AllChem.EmbedMolecule(m2)
0
>>> AllChem.MMFFOptimizeMolecule(m2)
0
Note the calls to `Chem.AddHs()` in the examples above. By default
RDKit molecules do not have H atoms explicitly present in the graph,
but they are important for getting realistic geometries, so they
generally should be added. They can always be removed afterwards
if necessary with a call to `Chem.RemoveHs()`.
With the RDKit, multiple conformers can also be generated using the
different embedding methods. In both cases this is simply a matter of
running the distance geometry calculation multiple times from
different random start points. The option `numConfs` allows the user to
set the number of conformers that should be generated. Otherwise the
procedures are as before. The conformers so generated can be aligned
to each other and the RMS values calculated.
.. doctest::
>>> m = Chem.MolFromSmiles('C1CCC1OC')
>>> m2=Chem.AddHs(m)
>>> # run ETKDG 10 times
>>> cids = AllChem.EmbedMultipleConfs(m2, numConfs=10)
>>> print(len(cids))
10
>>> rmslist = []
>>> AllChem.AlignMolConformers(m2, RMSlist=rmslist)
>>> print(len(rmslist))
9
rmslist contains the RMS values between the first conformer and all others.
The RMS between two specific conformers (e.g. 1 and 9) can also be calculated.
The flag prealigned lets the user specify if the conformers are already aligned
(by default, the function aligns them).
.. doctest::
>>> rms = AllChem.GetConformerRMS(m2, 1, 9, prealigned=True)
If you are interested in running MMFF94 on a molecule's conformers (note that
this is often not necessary when using ETKDG), there's a convenience
function available:
.. doctest::
>>> res = AllChem.MMFFOptimizeMoleculeConfs(m2)
The result is a list a containing 2-tuples: `(not_converged, energy)` for
each conformer. If `not_converged` is 0, the minimization for that conformer
converged.
By default `AllChem.EmbedMultipleConfs` and `AllChem.MMFFOptimizeMoleculeConfs()`
run single threaded, but you can cause them to use
multiple threads simultaneously for these embarassingly parallel tasks
via the `numThreads` argument:
.. doctest::
>>> cids = AllChem.EmbedMultipleConfs(m2, numThreads=0)
>>> res = AllChem.MMFFOptimizeMoleculeConfs(m2, numThreads=0)
Setting `numThreads` to zero causes the software to use the maximum number
of threads allowed on your computer.
*Disclaimer/Warning*: Conformation generation is a difficult and subtle task.
The original 2D->3D conversion provided with the RDKit was not intended
to be a replacement for a “real” conformational analysis tool; it
merely provides quick 3D structures for cases when they are
required. We believe, however, that the newer ETKDG method[#riniker2]_ should be
adequate for most purposes.
Preserving Molecules
====================
Molecules can be converted to and from text using Python's pickling machinery:
.. doctest::
>>> m = Chem.MolFromSmiles('c1ccncc1')
>>> import pickle
>>> pkl = pickle.dumps(m)
>>> m2=pickle.loads(pkl)
>>> Chem.MolToSmiles(m2)
'c1ccncc1'
The RDKit pickle format is fairly compact and it is much, much faster to build a molecule from a pickle than from a Mol file or SMILES string, so storing molecules you will be working with repeatedly as pickles can be a good idea.
The raw binary data that is encapsulated in a pickle can also be directly obtained from a molecule:
.. doctest::
>>> binStr = m.ToBinary()
This can be used to reconstruct molecules using the Chem.Mol constructor:
.. doctest::
>>> m2 = Chem.Mol(binStr)
>>> Chem.MolToSmiles(m2)
'c1ccncc1'
>>> len(binStr)
123
Note that this is smaller than the pickle:
.. doctest::
>>> len(binStr) < len(pkl)
True
The small overhead associated with python's pickling machinery normally doesn't end up making much of a difference for collections of larger molecules (the extra data associated with the pickle is independent of the size of the molecule, while the binary string increases in length as the molecule gets larger).
*Tip*: The performance difference associated with storing molecules in a pickled form on disk instead of constantly reparsing an SD file or SMILES table is difficult to overstate.
In a test I just ran on my laptop, loading a set of 699 drug-like molecules from an SD file took 10.8 seconds; loading the same molecules from a pickle file took 0.7 seconds.
The pickle file is also smaller – 1/3 the size of the SD file – but this difference is not always so dramatic (it's a particularly fat SD file).
Drawing Molecules
=================
The RDKit has some built-in functionality for creating images from
molecules found in the :py:mod:`rdkit.Chem.Draw` package:
.. doctest::
>>> suppl = Chem.SDMolSupplier('data/cdk2.sdf')
>>> ms = [x for x in suppl if x is not None]
>>> for m in ms: tmp=AllChem.Compute2DCoords(m)
>>> from rdkit.Chem import Draw
>>> Draw.MolToFile(ms[0],'images/cdk2_mol1.o.png')
>>> Draw.MolToFile(ms[1],'images/cdk2_mol2.o.png')
Producing these images:
+----------------------------------+----------------------------------+
| .. image:: images/cdk2_mol1.png | .. image:: images/cdk2_mol2.png |
+----------------------------------+----------------------------------+
It's also possible to produce an image grid out of a set of molecules:
.. doctest::
>>> img=Draw.MolsToGridImage(ms[:8],molsPerRow=4,subImgSize=(200,200),legends=[x.GetProp("_Name") for x in ms[:8]])
This returns a PIL image, which can then be saved to a file:
.. doctest::
>>> img.save('images/cdk2_molgrid.o.png')
The result looks like this:
.. image:: images/cdk2_molgrid.png
These would of course look better if the common core were
aligned. This is easy enough to do:
.. doctest::
>>> p = Chem.MolFromSmiles('[nH]1cnc2cncnc21')
>>> subms = [x for x in ms if x.HasSubstructMatch(p)]
>>> len(subms)
14
>>> AllChem.Compute2DCoords(p)
0
>>> for m in subms: AllChem.GenerateDepictionMatching2DStructure(m,p)
>>> img=Draw.MolsToGridImage(subms,molsPerRow=4,subImgSize=(200,200),legends=[x.GetProp("_Name") for x in subms])
>>> img.save('images/cdk2_molgrid.aligned.o.png')
The result looks like this:
.. image:: images/cdk2_molgrid_aligned.png
Substructure Searching
**********************
Substructure matching can be done using query molecules built from SMARTS:
.. doctest::
>>> m = Chem.MolFromSmiles('c1ccccc1O')
>>> patt = Chem.MolFromSmarts('ccO')
>>> m.HasSubstructMatch(patt)
True
>>> m.GetSubstructMatch(patt)
(0, 5, 6)
Those are the atom indices in ``m``, ordered as ``patt``'s atoms. To get all of the matches:
.. doctest::
>>> m.GetSubstructMatches(patt)
((0, 5, 6), (4, 5, 6))
This can be used to easily filter lists of molecules:
.. doctest::
>>> suppl = Chem.SDMolSupplier('data/actives_5ht3.sdf')
>>> patt = Chem.MolFromSmarts('c[NH1]')
>>> matches = []
>>> for mol in suppl:
... if mol.HasSubstructMatch(patt):
... matches.append(mol)
...
>>> len(matches)
22
We can write the same thing more compactly using Python's list comprehension syntax:
.. doctest::
>>> matches = [x for x in suppl if x.HasSubstructMatch(patt)]
>>> len(matches)
22
Substructure matching can also be done using molecules built from SMILES instead of SMARTS:
.. doctest::
>>> m = Chem.MolFromSmiles('C1=CC=CC=C1OC')
>>> m.HasSubstructMatch(Chem.MolFromSmarts('CO'))
True
>>> m.HasSubstructMatch(Chem.MolFromSmiles('CO'))
True
But don't forget that the semantics of the two languages are not exactly equivalent:
.. doctest::
>>> m.HasSubstructMatch(Chem.MolFromSmiles('COC'))
True
>>> m.HasSubstructMatch(Chem.MolFromSmarts('COC'))
False
>>> m.HasSubstructMatch(Chem.MolFromSmarts('COc')) #<- need an aromatic C
True
Stereochemistry in substructure matches
=======================================
By default information about stereochemistry is not used in
substructure searches:
.. doctest::
>>> m = Chem.MolFromSmiles('CC[C@H](F)Cl')
>>> m.HasSubstructMatch(Chem.MolFromSmiles('C[C@H](F)Cl'))
True
>>> m.HasSubstructMatch(Chem.MolFromSmiles('C[C@@H](F)Cl'))
True
>>> m.HasSubstructMatch(Chem.MolFromSmiles('CC(F)Cl'))
True
But this can be changed via the `useChirality` argument:
.. doctest::
>>> m.HasSubstructMatch(Chem.MolFromSmiles('C[C@H](F)Cl'),useChirality=True)
True
>>> m.HasSubstructMatch(Chem.MolFromSmiles('C[C@@H](F)Cl'),useChirality=True)
False
>>> m.HasSubstructMatch(Chem.MolFromSmiles('CC(F)Cl'),useChirality=True)
True
Notice that when `useChirality` is set a non-chiral query **does** match a chiral
molecule. The same is not true for a chiral query and a non-chiral molecule:
.. doctest::
>>> m.HasSubstructMatch(Chem.MolFromSmiles('CC(F)Cl'))
True
>>> m2 = Chem.MolFromSmiles('CCC(F)Cl')
>>> m2.HasSubstructMatch(Chem.MolFromSmiles('C[C@H](F)Cl'),useChirality=True)
False
Atom Map Indices in SMARTS
==========================
It is possible to attach indices to the atoms in the SMARTS
pattern. This is most often done in reaction SMARTS (see `Chemical
Reactions`_), but is more general than that. For example, in the
SMARTS patterns for torsion angle analysis published by Guba `et al.`
(``DOI: acs.jcim.5b00522``) indices are used to define the four atoms of
the torsion of interest. This allows additional atoms to be used to
define the environment of the four torsion atoms, as in
``[cH0:1][c:2]([cH0])!@[CX3!r:3]=[NX2!r:4]`` for an aromatic C=N
torsion. We might wonder in passing why they didn't use
recursive SMARTS for this, which would have made life easier, but it
is what it is. The atom lists from ``GetSubstructureMatches`` are
guaranteed to be in order of the SMARTS, but in this case we'll get five
atoms so we need a way of picking out, in the correct order, the four of
interest. When the SMARTS is parsed, the relevant atoms are assigned an
atom map number property that we can easily extract:
.. doctest::
>>> qmol = Chem.MolFromSmarts( '[cH0:1][c:2]([cH0])!@[CX3!r:3]=[NX2!r:4]' )
>>> ind_map = {}
>>> for atom in qmol.GetAtoms() :
... map_num = atom.GetAtomMapNum()
... if map_num:
... ind_map[map_num-1] = atom.GetIdx()
>>> ind_map
{0: 0, 1: 1, 2: 3, 3: 4}
>>> map_list = [ind_map[x] for x in sorted(ind_map)]
>>> map_list
[0, 1, 3, 4]
Then, when using the query on a molecule you can get the indices of the four
matching atoms like this:
.. doctest::
>>> mol = Chem.MolFromSmiles('Cc1cccc(C)c1C(C)=NC')
>>> for match in mol.GetSubstructMatches( qmol ) :
... mas = [match[x] for x in map_list]
... print(mas)
[1, 7, 8, 10]
Chemical Transformations
************************
The RDKit contains a number of functions for modifying molecules. Note
that these transformation functions are intended to provide an easy
way to make simple modifications to molecules.
For more complex transformations, use the `Chemical Reactions`_ functionality.
Substructure-based transformations
==================================
There's a variety of functionality for using the RDKit's
substructure-matching machinery for doing quick molecular transformations.
These transformations include deleting substructures:
.. doctest::
>>> m = Chem.MolFromSmiles('CC(=O)O')
>>> patt = Chem.MolFromSmarts('C(=O)[OH]')
>>> rm = AllChem.DeleteSubstructs(m,patt)
>>> Chem.MolToSmiles(rm)
'C'
replacing substructures:
.. doctest::
>>> repl = Chem.MolFromSmiles('OC')
>>> patt = Chem.MolFromSmarts('[$(NC(=O))]')
>>> m = Chem.MolFromSmiles('CC(=O)N')
>>> rms = AllChem.ReplaceSubstructs(m,patt,repl)
>>> rms
(<rdkit.Chem.rdchem.Mol object at 0x...>,)
>>> Chem.MolToSmiles(rms[0])
'COC(C)=O'
as well as simple SAR-table transformations like removing side chains:
.. doctest::
>>> m1 = Chem.MolFromSmiles('BrCCc1cncnc1C(=O)O')
>>> core = Chem.MolFromSmiles('c1cncnc1')
>>> tmp = Chem.ReplaceSidechains(m1,core)
>>> Chem.MolToSmiles(tmp)
'[1*]c1cncnc1[2*]'
and removing cores:
.. doctest::
>>> tmp = Chem.ReplaceCore(m1,core)
>>> Chem.MolToSmiles(tmp)
'[1*]CCBr.[2*]C(=O)O'
By default the sidechains are labeled based on the order they are found.
They can also be labeled according by the number of that core-atom they're attached to:
.. doctest::
>>> m1 = Chem.MolFromSmiles('c1c(CCO)ncnc1C(=O)O')
>>> tmp=Chem.ReplaceCore(m1,core,labelByIndex=True)
>>> Chem.MolToSmiles(tmp)
'[1*]CCO.[5*]C(=O)O'
:py:func:`rdkit.Chem.rdmolops.ReplaceCore` returns the sidechains in a single molecule.
This can be split into separate molecules using :py:func:`rdkit.Chem.rdmolops.GetMolFrags` :
.. doctest::
>>> rs = Chem.GetMolFrags(tmp,asMols=True)
>>> len(rs)
2
>>> Chem.MolToSmiles(rs[0])
'[1*]CCO'
>>> Chem.MolToSmiles(rs[1])
'[5*]C(=O)O'
Murcko Decomposition
====================
The RDKit provides standard Murcko-type decomposition [#bemis1]_ of molecules
into scaffolds:
.. doctest::
>>> from rdkit.Chem.Scaffolds import MurckoScaffold
>>> cdk2mols = Chem.SDMolSupplier('data/cdk2.sdf')
>>> m1 = cdk2mols[0]
>>> core = MurckoScaffold.GetScaffoldForMol(m1)
>>> Chem.MolToSmiles(core)
'c1ncc2nc[nH]c2n1'
or into a generic framework:
.. doctest::
>>> fw = MurckoScaffold.MakeScaffoldGeneric(core)
>>> Chem.MolToSmiles(fw)
'C1CCC2CCCC2C1'
Maximum Common Substructure
***************************************
The FindMCS function find a maximum common substructure (MCS) of two
or more molecules:
.. doctest::
>>> from rdkit.Chem import rdFMCS
>>> mol1 = Chem.MolFromSmiles("O=C(NCc1cc(OC)c(O)cc1)CCCC/C=C/C(C)C")
>>> mol2 = Chem.MolFromSmiles("CC(C)CCCCCC(=O)NCC1=CC(=C(C=C1)O)OC")
>>> mol3 = Chem.MolFromSmiles("c1(C=O)cc(OC)c(O)cc1")
>>> mols = [mol1,mol2,mol3]
>>> res=rdFMCS.FindMCS(mols)
>>> res
<rdkit.Chem.rdFMCS.MCSResult object at 0x...>
>>> res.numAtoms
10
>>> res.numBonds
10
>>> res.smartsString
'[#6]1(-[#6]):[#6]:[#6](-[#8]-[#6]):[#6](:[#6]:[#6]:1)-[#8]'
>>> res.canceled
False
It returns an MCSResult instance with information about the number of
atoms and bonds in the MCS, the SMARTS string which matches the
identified MCS, and a flag saying if the algorithm timed out. If no
MCS is found then the number of atoms and bonds is set to 0 and the
SMARTS to ``''``.
By default, two atoms match if they are the same element and two bonds
match if they have the same bond type. Specify ``atomCompare`` and
``bondCompare`` to use different comparison functions, as in:
.. doctest::
>>> mols = (Chem.MolFromSmiles('NCC'),Chem.MolFromSmiles('OC=C'))
>>> rdFMCS.FindMCS(mols).smartsString
''
>>> rdFMCS.FindMCS(mols, atomCompare=rdFMCS.AtomCompare.CompareAny).smartsString
'[#7,#8]-[#6]'
>>> rdFMCS.FindMCS(mols, bondCompare=rdFMCS.BondCompare.CompareAny).smartsString
'[#6]-,=[#6]'
The options for the atomCompare argument are: CompareAny says that any
atom matches any other atom, CompareElements compares by element type,
and CompareIsotopes matches based on the isotope label. Isotope labels
can be used to implement user-defined atom types. A bondCompare of
CompareAny says that any bond matches any other bond, CompareOrderExact says
bonds are equivalent if and only if they have the same bond type, and
CompareOrder allows single and aromatic bonds to match each other, but
requires an exact order match otherwise:
.. doctest::
>>> mols = (Chem.MolFromSmiles('c1ccccc1'),Chem.MolFromSmiles('C1CCCC=C1'))
>>> rdFMCS.FindMCS(mols,bondCompare=rdFMCS.BondCompare.CompareAny).smartsString
'[#6]1:,-[#6]:,-[#6]:,-[#6]:,-[#6]:,=[#6]:,-1'
>>> rdFMCS.FindMCS(mols,bondCompare=rdFMCS.BondCompare.CompareOrderExact).smartsString
''
>>> rdFMCS.FindMCS(mols,bondCompare=rdFMCS.BondCompare.CompareOrder).smartsString
'[#6](:,-[#6]:,-[#6]:,-[#6]):,-[#6]:,-[#6]'
A substructure has both atoms and bonds. By default, the algorithm
attempts to maximize the number of bonds found. You can change this by
setting the ``maximizeBonds`` argument to False.
Maximizing the number of bonds tends to maximize the number of rings,
although two small rings may have fewer bonds than one large ring.
You might not want a 3-valent nitrogen to match one which is 5-valent.
The default ``matchValences`` value of False ignores valence
information. When True, the atomCompare setting is modified to also
require that the two atoms have the same valency.
.. doctest::
>>> mols = (Chem.MolFromSmiles('NC1OC1'),Chem.MolFromSmiles('C1OC1[N+](=O)[O-]'))
>>> rdFMCS.FindMCS(mols).numAtoms
4
>>> rdFMCS.FindMCS(mols, matchValences=True).numBonds
3
It can be strange to see a linear carbon chain match a carbon ring,
which is what the ``ringMatchesRingOnly`` default of False does. If
you set it to True then ring bonds will only match ring bonds.
.. doctest::
>>> mols = [Chem.MolFromSmiles("C1CCC1CCC"), Chem.MolFromSmiles("C1CCCCCC1")]
>>> rdFMCS.FindMCS(mols).smartsString
'[#6](-[#6]-[#6])-[#6]-[#6]-[#6]-[#6]'
>>> rdFMCS.FindMCS(mols, ringMatchesRingOnly=True).smartsString
'[#6](-[#6]-[#6])-[#6]'
You can further restrict things and require that partial rings (as in
this case) are not allowed. That is, if an atom is part of the MCS and
the atom is in a ring of the entire molecule then that atom is also in
a ring of the MCS. Set ``completeRingsOnly`` to True to toggle this
requirement and also sets ringMatchesRingOnly to True.
.. doctest::
>>> mols = [Chem.MolFromSmiles("CCC1CC2C1CN2"), Chem.MolFromSmiles("C1CC2C1CC2")]
>>> rdFMCS.FindMCS(mols).smartsString
'[#6]1-[#6]-[#6](-[#6]-1-[#6])-[#6]'
>>> rdFMCS.FindMCS(mols, ringMatchesRingOnly=True).smartsString
'[#6](-[#6]-[#6]-[#6]-[#6])-[#6]'
>>> rdFMCS.FindMCS(mols, completeRingsOnly=True).smartsString
'[#6]1-[#6]-[#6]-[#6]-1'
The MCS algorithm will exhaustively search for a maximum common substructure.
Typically this takes a fraction of a second, but for some comparisons this
can take minutes or longer. Use the ``timeout`` parameter to stop the search
after the given number of seconds (wall-clock seconds, not CPU seconds) and
return the best match found in that time. If timeout is reached then the
``canceled`` property of the MCSResult will be True instead of False.
.. doctest::
>>> mols = [Chem.MolFromSmiles("Nc1ccccc1"*10), Chem.MolFromSmiles("Nc1ccccccccc1"*10)]
>>> rdFMCS.FindMCS(mols, timeout=1).canceled
True
(The MCS after 50 seconds contained 511 atoms.)
Fingerprinting and Molecular Similarity
***************************************
The RDKit has a variety of built-in functionality for generating molecular fingerprints and using them to calculate molecular similarity.
Topological Fingerprints
========================
.. doctest::
>>> from rdkit import DataStructs
>>> from rdkit.Chem.Fingerprints import FingerprintMols
>>> ms = [Chem.MolFromSmiles('CCOC'), Chem.MolFromSmiles('CCO'),
... Chem.MolFromSmiles('COC')]
>>> fps = [FingerprintMols.FingerprintMol(x) for x in ms]
>>> DataStructs.FingerprintSimilarity(fps[0],fps[1])
0.6...
>>> DataStructs.FingerprintSimilarity(fps[0],fps[2])
0.4...
>>> DataStructs.FingerprintSimilarity(fps[1],fps[2])
0.25
The fingerprinting algorithm used is similar to that used in the
Daylight fingerprinter: it identifies and hashes topological paths
(e.g. along bonds) in the molecule and then uses them to set bits in a
fingerprint of user-specified lengths. After all paths have been identified, the fingerprint is typically folded down until a particular density of set bits is obtained.
The default set of parameters used by the fingerprinter is:
- minimum path size: 1 bond
- maximum path size: 7 bonds
- fingerprint size: 2048 bits
- number of bits set per hash: 2
- minimum fingerprint size: 64 bits
- target on-bit density 0.3
You can control these by calling
:py:func:`rdkit.Chem.rdmolops.RDKFingerprint` directly; this will return
an unfolded fingerprint that you can then fold to the desired density.
The function
:py:func:`rdkit.Chem.Fingerprints.FingerprintMols.FingerprintMol` (written
in python) shows how this is done.
The default similarity metric used by
:py:func:`rdkit.DataStructs.FingerprintSimilarity` is the Tanimoto
similarity. One can use different similarity metrics:
>>> DataStructs.FingerprintSimilarity(fps[0],fps[1], metric=DataStructs.DiceSimilarity)
0.75
Available similarity metrics include Tanimoto, Dice, Cosine, Sokal, Russel, Kulczynski, McConnaughey, and Tversky.
MACCS Keys
==========
There is a SMARTS-based implementation of the 166 public MACCS keys.
.. doctest::
>>> from rdkit.Chem import MACCSkeys
>>> fps = [MACCSkeys.GenMACCSKeys(x) for x in ms]
>>> DataStructs.FingerprintSimilarity(fps[0],fps[1])
0.5
>>> DataStructs.FingerprintSimilarity(fps[0],fps[2])
0.538...
>>> DataStructs.FingerprintSimilarity(fps[1],fps[2])
0.214...
The MACCS keys were critically evaluated and compared to other MACCS implementations in Q3 2008. In cases where the public keys are fully defined, things looked pretty good.
Atom Pairs and Topological Torsions
===================================
Atom-pair descriptors [#carhart]_ are available in several different forms.
The standard form is as fingerprint including counts for each bit instead of just zeros and ones:
.. doctest::
>>> from rdkit.Chem.AtomPairs import Pairs
>>> ms = [Chem.MolFromSmiles('C1CCC1OCC'),Chem.MolFromSmiles('CC(C)OCC'),Chem.MolFromSmiles('CCOCC')]
>>> pairFps = [Pairs.GetAtomPairFingerprint(x) for x in ms]
Because the space of bits that can be included in atom-pair fingerprints is huge, they are stored in a sparse manner.
We can get the list of bits and their counts for each fingerprint as a dictionary:
.. doctest::
>>> d = pairFps[-1].GetNonzeroElements()
>>> d[541732]
1
>>> d[1606690]
2
Descriptions of the bits are also available:
.. doctest::
>>> Pairs.ExplainPairScore(558115)
(('C', 1, 0), 3, ('C', 2, 0))
The above means: C with 1 neighbor and 0 pi electrons which is 3 bonds
from a C with 2 neighbors and 0 pi electrons
The usual metric for similarity between atom-pair fingerprints is Dice similarity:
.. doctest::
>>> from rdkit import DataStructs
>>> DataStructs.DiceSimilarity(pairFps[0],pairFps[1])
0.333...
>>> DataStructs.DiceSimilarity(pairFps[0],pairFps[2])
0.258...
>>> DataStructs.DiceSimilarity(pairFps[1],pairFps[2])
0.56
It's also possible to get atom-pair descriptors encoded as a standard
bit vector fingerprint (ignoring the count information):
.. doctest::
>>> pairFps = [Pairs.GetAtomPairFingerprintAsBitVect(x) for x in ms]
Since these are standard bit vectors, the :py:mod:`rdkit.DataStructs`
module can be used for similarity:
.. doctest::
>>> from rdkit import DataStructs
>>> DataStructs.DiceSimilarity(pairFps[0],pairFps[1])
0.48
>>> DataStructs.DiceSimilarity(pairFps[0],pairFps[2])
0.380...
>>> DataStructs.DiceSimilarity(pairFps[1],pairFps[2])
0.625
Topological torsion descriptors [#nilakantan]_ are calculated in
essentially the same way:
.. doctest::
>>> from rdkit.Chem.AtomPairs import Torsions
>>> tts = [Torsions.GetTopologicalTorsionFingerprintAsIntVect(x) for x in ms]
>>> DataStructs.DiceSimilarity(tts[0],tts[1])
0.166...
At the time of this writing, topological torsion fingerprints have too many bits to be encodeable using the BitVector machinery, so there is no GetTopologicalTorsionFingerprintAsBitVect function.
Morgan Fingerprints (Circular Fingerprints)
===========================================
This family of fingerprints, better known as circular fingerprints
[#rogers]_, is built by applying the Morgan algorithm to a set of
user-supplied atom invariants. When generating Morgan fingerprints,
the radius of the fingerprint must also be provided :
.. doctest::
>>> from rdkit.Chem import AllChem
>>> m1 = Chem.MolFromSmiles('Cc1ccccc1')
>>> fp1 = AllChem.GetMorganFingerprint(m1,2)
>>> fp1
<rdkit.DataStructs.cDataStructs.UIntSparseIntVect object at 0x...>
>>> m2 = Chem.MolFromSmiles('Cc1ncccc1')
>>> fp2 = AllChem.GetMorganFingerprint(m2,2)
>>> DataStructs.DiceSimilarity(fp1,fp2)
0.55...
Morgan fingerprints, like atom pairs and topological torsions, use
counts by default, but it's also possible to calculate them as bit
vectors:
.. doctest::
>>> fp1 = AllChem.GetMorganFingerprintAsBitVect(m1,2,nBits=1024)
>>> fp1
<rdkit.DataStructs.cDataStructs.ExplicitBitVect object at 0x...>
>>> fp2 = AllChem.GetMorganFingerprintAsBitVect(m2,2,nBits=1024)
>>> DataStructs.DiceSimilarity(fp1,fp2)
0.51...
The default atom invariants use connectivity information similar to
those used for the well known ECFP family of fingerprints.
Feature-based invariants, similar to those used for the FCFP
fingerprints, can also be used. The feature definitions used are
defined in the section `Feature Definitions Used in the Morgan
Fingerprints`_. At times this can lead to quite different similarity
scores:
.. doctest::
>>> m1 = Chem.MolFromSmiles('c1ccccn1')
>>> m2 = Chem.MolFromSmiles('c1ccco1')
>>> fp1 = AllChem.GetMorganFingerprint(m1,2)
>>> fp2 = AllChem.GetMorganFingerprint(m2,2)
>>> ffp1 = AllChem.GetMorganFingerprint(m1,2,useFeatures=True)
>>> ffp2 = AllChem.GetMorganFingerprint(m2,2,useFeatures=True)
>>> DataStructs.DiceSimilarity(fp1,fp2)
0.36...
>>> DataStructs.DiceSimilarity(ffp1,ffp2)
0.90...
When comparing the ECFP/FCFP fingerprints and the Morgan fingerprints
generated by the RDKit, remember that the 4 in ECFP4 corresponds to
the diameter of the atom environments considered, while the Morgan
fingerprints take a radius parameter. So the examples above, with
radius=2, are roughly equivalent to ECFP4 and FCFP4.
The user can also provide their own atom invariants using the optional
invariants argument to
:py:func:`rdkit.Chem.rdMolDescriptors.GetMorganFingerprint`. Here's a
simple example that uses a constant for the invariant; the resulting
fingerprints compare the topology of molecules:
.. doctest::
>>> m1 = Chem.MolFromSmiles('Cc1ccccc1')
>>> m2 = Chem.MolFromSmiles('Cc1ncncn1')
>>> fp1 = AllChem.GetMorganFingerprint(m1,2,invariants=[1]*m1.GetNumAtoms())
>>> fp2 = AllChem.GetMorganFingerprint(m2,2,invariants=[1]*m2.GetNumAtoms())
>>> fp1==fp2
True
Note that bond order is by default still considered:
.. doctest::
>>> m3 = Chem.MolFromSmiles('CC1CCCCC1')
>>> fp3 = AllChem.GetMorganFingerprint(m3,2,invariants=[1]*m3.GetNumAtoms())
>>> fp1==fp3
False
But this can also be turned off:
.. doctest::
>>> fp1 = AllChem.GetMorganFingerprint(m1,2,invariants=[1]*m1.GetNumAtoms(),
... useBondTypes=False)
>>> fp3 = AllChem.GetMorganFingerprint(m3,2,invariants=[1]*m3.GetNumAtoms(),
... useBondTypes=False)
>>> fp1==fp3
True
Explaining bits from Morgan Fingerprints
----------------------------------------
Information is available about the atoms that contribute to particular
bits in the Morgan fingerprint via the bitInfo argument. The
dictionary provided is populated with one entry per bit set in the
fingerprint, the keys are the bit ids, the values are lists of (atom
index, radius) tuples.
.. doctest::
>>> m = Chem.MolFromSmiles('c1cccnc1C')
>>> info={}
>>> fp = AllChem.GetMorganFingerprint(m,2,bitInfo=info)
>>> len(fp.GetNonzeroElements())
16
>>> len(info)
16
>>> info[98513984]
((1, 1), (2, 1))
>>> info[4048591891]
((5, 2),)
Interpreting the above: bit 98513984 is set twice: once by atom 1 and
once by atom 2, each at radius 1. Bit 4048591891 is set once by atom 5
at radius 2.
Focusing on bit 4048591891, we can extract the submolecule consisting
of all atoms within a radius of 2 of atom 5:
.. doctest::
>>> env = Chem.FindAtomEnvironmentOfRadiusN(m,2,5)
>>> amap={}
>>> submol=Chem.PathToSubmol(m,env,atomMap=amap)
>>> submol.GetNumAtoms()
6
>>> amap
{0: 3, 1: 5, 3: 4, 4: 0, 5: 1, 6: 2}
And then “explain” the bit by generating SMILES for that submolecule:
.. doctest::
>>> Chem.MolToSmiles(submol)
'ccc(C)nc'
This is more useful when the SMILES is rooted at the central atom:
.. doctest::
>>> Chem.MolToSmiles(submol,rootedAtAtom=amap[5],canonical=False)
'c(nc)(C)cc'
An alternate (and faster, particularly for large numbers of molecules)
approach to do the same thing, using the function :py:func:`rdkit.Chem.MolFragmentToSmiles` :
.. doctest::
>>> atoms=set()
>>> for bidx in env:
... atoms.add(m.GetBondWithIdx(bidx).GetBeginAtomIdx())
... atoms.add(m.GetBondWithIdx(bidx).GetEndAtomIdx())
...
>>> Chem.MolFragmentToSmiles(m,atomsToUse=list(atoms),bondsToUse=env,rootedAtAtom=5)
'c(C)(cc)nc'
Generating images of fingerprint bits
=====================================
For the Morgan and RDKit fingerprint types, it's possible to generate images of
the atom environment that defines the bit using the functions
:py:func:`rdkit.Chem.Draw.DrawMorganBit()` and :py:func:`rdkit.Chem.Draw.DrawRDKitBit()`
.. doctest::
>>> from rdkit.Chem import Draw
>>> mol = Chem.MolFromSmiles('c1ccccc1CC1CC1')
>>> bi = {}
>>> fp = AllChem.GetMorganFingerprintAsBitVect(mol, radius=2, bitInfo=bi)
>>> bi[872]
((6, 2),)
>>> mfp2_svg = Draw.DrawMorganBit(mol, 872, bi)
>>> rdkbi = {}
>>> rdkfp = Chem.RDKFingerprint(mol, maxPath=5, bitInfo=rdkbi)
>>> rdkbi[1553]
[[0, 1, 9, 5, 4], [2, 3, 4, 9, 5]]
>>> rdk_svg = Draw.DrawRDKitBit(mol, 1553, rdkbi)
Producing these images:
+-----------------------------------+-----------------------------------+
| .. image:: images/mfp2_bit872.svg | .. image:: images/rdk_bit1553.svg |
+-----------------------------------+-----------------------------------+
| Morgan bit | RDKit bit |
+-----------------------------------+-----------------------------------+
The default highlight colors for the Morgan bits indicate:
- blue: the central atom in the environment
- yellow: aromatic atoms
- gray: aliphatic ring atoms
The default highlight colors for the RDKit bits indicate:
- yellow: aromatic atoms
Note that in cases where the same bit is set by multiple atoms in the molecule
(as for bit 1553 for the RDKit fingerprint in the example above), the drawing
functions will display the first example. You can change this by specifying which
example to show:
.. doctest::
>>> rdk_svg = Draw.DrawRDKitBit(mol, 1553, rdkbi, whichExample=1)
Producing this image:
+-------------------------------------+
| .. image:: images/rdk_bit1553_2.svg |
+-------------------------------------+
| RDKit bit |
+-------------------------------------+
Picking Diverse Molecules Using Fingerprints
============================================
A common task is to pick a small subset of diverse molecules from a
larger set. The RDKit provides a number of approaches for doing this
in the :py:mod:`rdkit.SimDivFilters` module. The most efficient of these uses the
MaxMin algorithm. [#ashton]_ Here's an example:
Start by reading in a set of molecules and generating Morgan fingerprints:
.. doctest::
>>> from rdkit import Chem
>>> from rdkit.Chem.rdMolDescriptors import GetMorganFingerprint
>>> from rdkit import DataStructs
>>> from rdkit.SimDivFilters.rdSimDivPickers import MaxMinPicker
>>> ms = [x for x in Chem.SDMolSupplier('data/actives_5ht3.sdf')]
>>> while ms.count(None): ms.remove(None)
>>> fps = [GetMorganFingerprint(x,3) for x in ms]
>>> nfps = len(fps)
The algorithm requires a function to calculate distances between
objects, we'll do that using DiceSimilarity:
.. doctest::
>>> def distij(i,j,fps=fps):
... return 1-DataStructs.DiceSimilarity(fps[i],fps[j])
Now create a picker and grab a set of 10 diverse molecules:
.. doctest::
>>> picker = MaxMinPicker()
>>> pickIndices = picker.LazyPick(distij,nfps,10,seed=23)
>>> list(pickIndices)
[93, 109, 154, 6, 95, 135, 151, 61, 137, 139]
Note that the picker just returns indices of the fingerprints; we can
get the molecules themselves as follows:
.. doctest::
>>> picks = [ms[x] for x in pickIndices]
Generating Similarity Maps Using Fingerprints
=============================================
Similarity maps are a way to visualize the atomic contributions to
the similarity between a molecule and a reference molecule. The
methodology is described in Ref. [#riniker]_ .
They are in the :py:mod:`rdkit.Chem.Draw.SimilarityMaps` module :
Start by creating two molecules:
.. doctest::
>>> from rdkit import Chem
>>> mol = Chem.MolFromSmiles('COc1cccc2cc(C(=O)NCCCCN3CCN(c4cccc5nccnc54)CC3)oc21')
>>> refmol = Chem.MolFromSmiles('CCCN(CCCCN1CCN(c2ccccc2OC)CC1)Cc1ccc2ccccc2c1')
The SimilarityMaps module supports three kind of fingerprints:
atom pairs, topological torsions and Morgan fingerprints.
.. doctest::
>>> from rdkit.Chem import Draw
>>> from rdkit.Chem.Draw import SimilarityMaps
>>> fp = SimilarityMaps.GetAPFingerprint(mol, fpType='normal')
>>> fp = SimilarityMaps.GetTTFingerprint(mol, fpType='normal')
>>> fp = SimilarityMaps.GetMorganFingerprint(mol, fpType='bv')
The types of atom pairs and torsions are normal (default), hashed and bit vector (bv).
The types of the Morgan fingerprint are bit vector (bv, default) and count vector (count).
The function generating a similarity map for two fingerprints requires the
specification of the fingerprint function and optionally the similarity metric.
The default for the latter is the Dice similarity. Using all the default arguments
of the Morgan fingerprint function, the similarity map can be generated like this:
.. doctest::
>>> fig, maxweight = SimilarityMaps.GetSimilarityMapForFingerprint(refmol, mol, SimilarityMaps.GetMorganFingerprint)
Producing this image:
.. image:: images/similarity_map_fp1.png
For a different type of Morgan (e.g. count) and radius = 1 instead of 2, as well as a different
similarity metric (e.g. Tanimoto), the call becomes:
.. doctest::
>>> from rdkit import DataStructs
>>> fig, maxweight = SimilarityMaps.GetSimilarityMapForFingerprint(refmol, mol, lambda m,idx: SimilarityMaps.GetMorganFingerprint(m, atomId=idx, radius=1, fpType='count'), metric=DataStructs.TanimotoSimilarity)
Producing this image:
.. image:: images/similarity_map_fp2.png
The convenience function GetSimilarityMapForFingerprint involves the normalisation
of the atomic weights such that the maximum absolute weight is 1. Therefore, the
function outputs the maximum weight that was found when creating the map.
.. doctest::
>>> print(maxweight)
0.05747...
If one does not want the normalisation step, the map can be created like:
.. doctest::
>>> weights = SimilarityMaps.GetAtomicWeightsForFingerprint(refmol, mol, SimilarityMaps.GetMorganFingerprint)
>>> print(["%.2f " % w for w in weights])
['0.05 ', ...
>>> fig = SimilarityMaps.GetSimilarityMapFromWeights(mol, weights)
Producing this image:
.. image:: images/similarity_map_fp3.png
Descriptor Calculation
**********************
A variety of descriptors are available within the RDKit.
The complete list is provided in `List of Available Descriptors`_.
Most of the descriptors are straightforward to use from Python via the
centralized :py:mod:`rdkit.Chem.Descriptors` module :
.. doctest::
>>> from rdkit.Chem import Descriptors
>>> m = Chem.MolFromSmiles('c1ccccc1C(=O)O')
>>> Descriptors.TPSA(m)
37.3
>>> Descriptors.MolLogP(m)
1.3848
Partial charges are handled a bit differently:
.. doctest::
>>> m = Chem.MolFromSmiles('c1ccccc1C(=O)O')
>>> AllChem.ComputeGasteigerCharges(m)
>>> float(m.GetAtomWithIdx(0).GetProp('_GasteigerCharge'))
-0.047...
Visualization of Descriptors
============================
Similarity maps can be used to visualize descriptors that can be divided into
atomic contributions.
The Gasteiger partial charges can be visualized as (using a different color scheme):
.. doctest::
>>> from rdkit.Chem.Draw import SimilarityMaps
>>> mol = Chem.MolFromSmiles('COc1cccc2cc(C(=O)NCCCCN3CCN(c4cccc5nccnc54)CC3)oc21')
>>> AllChem.ComputeGasteigerCharges(mol)
>>> contribs = [float(mol.GetAtomWithIdx(i).GetProp('_GasteigerCharge')) for i in range(mol.GetNumAtoms())]
>>> fig = SimilarityMaps.GetSimilarityMapFromWeights(mol, contribs, colorMap='jet', contourLines=10)
Producing this image:
.. image:: images/similarity_map_charges.png
Or for the Crippen contributions to logP:
.. doctest::
>>> from rdkit.Chem import rdMolDescriptors
>>> contribs = rdMolDescriptors._CalcCrippenContribs(mol)
>>> fig = SimilarityMaps.GetSimilarityMapFromWeights(mol,[x for x,y in contribs], colorMap='jet', contourLines=10)
Producing this image:
.. image:: images/similarity_map_crippen.png
Chemical Reactions
******************
The RDKit also supports applying chemical reactions to sets of
molecules. One way of constructing chemical reactions is to use a
SMARTS-based language similar to Daylight's Reaction SMILES
[#rxnsmarts]_:
.. doctest::
>>> rxn = AllChem.ReactionFromSmarts('[C:1](=[O:2])-[OD1].[N!H0:3]>>[C:1](=[O:2])[N:3]')
>>> rxn
<rdkit.Chem.rdChemReactions.ChemicalReaction object at 0x...>
>>> rxn.GetNumProductTemplates()
1
>>> ps = rxn.RunReactants((Chem.MolFromSmiles('CC(=O)O'),Chem.MolFromSmiles('NC')))
>>> len(ps) # one entry for each possible set of products
1
>>> len(ps[0]) # each entry contains one molecule for each product
1
>>> Chem.MolToSmiles(ps[0][0])
'CNC(C)=O'
>>> ps = rxn.RunReactants((Chem.MolFromSmiles('C(COC(=O)O)C(=O)O'),Chem.MolFromSmiles('NC')))
>>> len(ps)
2
>>> Chem.MolToSmiles(ps[0][0])
'CNC(=O)OCCC(=O)O'
>>> Chem.MolToSmiles(ps[1][0])
'CNC(=O)CCOC(=O)O'
Reactions can also be built from MDL rxn files:
.. doctest::
>>> rxn = AllChem.ReactionFromRxnFile('data/AmideBond.rxn')
>>> rxn.GetNumReactantTemplates()
2
>>> rxn.GetNumProductTemplates()
1
>>> ps = rxn.RunReactants((Chem.MolFromSmiles('CC(=O)O'), Chem.MolFromSmiles('NC')))
>>> len(ps)
1
>>> Chem.MolToSmiles(ps[0][0])
'CNC(C)=O'
It is, of course, possible to do reactions more complex than amide
bond formation:
.. doctest::
>>> rxn = AllChem.ReactionFromSmarts('[C:1]=[C:2].[C:3]=[*:4][*:5]=[C:6]>>[C:1]1[C:2][C:3][*:4]=[*:5][C:6]1')
>>> ps = rxn.RunReactants((Chem.MolFromSmiles('OC=C'), Chem.MolFromSmiles('C=CC(N)=C')))
>>> Chem.MolToSmiles(ps[0][0])
'NC1=CCCC(O)C1'
Note in this case that there are multiple mappings of the reactants
onto the templates, so we have multiple product sets:
.. doctest::
>>> len(ps)
4
You can use canonical smiles and a python dictionary to get the unique products:
.. doctest::
>>> uniqps = {}
>>> for p in ps:
... smi = Chem.MolToSmiles(p[0])
... uniqps[smi] = p[0]
...
>>> sorted(uniqps.keys())
['NC1=CCC(O)CC1', 'NC1=CCCC(O)C1']
Note that the molecules that are produced by the chemical reaction
processing code are not sanitized, as this artificial reaction
demonstrates:
.. doctest::
>>> rxn = AllChem.ReactionFromSmarts('[C:1]=[C:2][C:3]=[C:4].[C:5]=[C:6]>>[C:1]1=[C:2][C:3]=[C:4][C:5]=[C:6]1')
>>> ps = rxn.RunReactants((Chem.MolFromSmiles('C=CC=C'), Chem.MolFromSmiles('C=C')))
>>> Chem.MolToSmiles(ps[0][0])
'C1=CC=CC=C1'
>>> p0 = ps[0][0]
>>> Chem.SanitizeMol(p0)
rdkit.Chem.rdmolops.SanitizeFlags.SANITIZE_NONE
>>> Chem.MolToSmiles(p0)
'c1ccccc1'
Advanced Reaction Functionality
===============================
Protecting Atoms
----------------
Sometimes, particularly when working with rxn files, it is difficult
to express a reaction exactly enough to not end up with extraneous
products. The RDKit provides a method of "protecting" atoms to
disallow them from taking part in reactions.
This can be demonstrated re-using the amide-bond formation reaction used
above. The query for amines isn't specific enough, so it matches any
nitrogen that has at least one H attached. So if we apply the reaction
to a molecule that already has an amide bond, the amide N is also
treated as a reaction site:
.. doctest::
>>> rxn = AllChem.ReactionFromRxnFile('data/AmideBond.rxn')
>>> acid = Chem.MolFromSmiles('CC(=O)O')
>>> base = Chem.MolFromSmiles('CC(=O)NCCN')
>>> ps = rxn.RunReactants((acid,base))
>>> len(ps)
2
>>> Chem.MolToSmiles(ps[0][0])
'CC(=O)N(CCN)C(C)=O'
>>> Chem.MolToSmiles(ps[1][0])
'CC(=O)NCCNC(C)=O'
The first product corresponds to the reaction at the amide N.
We can prevent this from happening by protecting all amide Ns. Here we
do it with a substructure query that matches amides and thioamides and
then set the "_protected" property on matching atoms:
.. doctest::
>>> amidep = Chem.MolFromSmarts('[N;$(NC=[O,S])]')
>>> for match in base.GetSubstructMatches(amidep):
... base.GetAtomWithIdx(match[0]).SetProp('_protected','1')
Now the reaction only generates a single product:
.. doctest::
>>> ps = rxn.RunReactants((acid,base))
>>> len(ps)
1
>>> Chem.MolToSmiles(ps[0][0])
'CC(=O)NCCNC(C)=O'
Recap Implementation
====================
Associated with the chemical reaction functionality is an
implementation of the Recap algorithm. [#lewell]_ Recap uses a set of
chemical transformations mimicking common reactions carried out in the
lab in order to decompose a molecule into a series of reasonable
fragments.
The RDKit :py:mod:`rdkit.Chem.Recap` implementation keeps track of the hierarchy of
transformations that were applied:
.. doctest::
>>> from rdkit import Chem
>>> from rdkit.Chem import Recap
>>> m = Chem.MolFromSmiles('c1ccccc1OCCOC(=O)CC')
>>> hierarch = Recap.RecapDecompose(m)
>>> type(hierarch)
<class 'rdkit.Chem.Recap.RecapHierarchyNode'>
The hierarchy is rooted at the original molecule:
.. doctest::
>>> hierarch.smiles
'CCC(=O)OCCOc1ccccc1'
and each node tracks its children using a dictionary keyed by SMILES:
.. doctest::
>>> ks=hierarch.children.keys()
>>> sorted(ks)
['*C(=O)CC', '*CCOC(=O)CC', '*CCOc1ccccc1', '*OCCOc1ccccc1', '*c1ccccc1']
The nodes at the bottom of the hierarchy (the leaf nodes) are easily
accessible, also as a dictionary keyed by SMILES:
.. doctest::
>>> ks=hierarch.GetLeaves().keys()
>>> ks=sorted(ks)
>>> ks
['*C(=O)CC', '*CCO*', '*CCOc1ccccc1', '*c1ccccc1']
Notice that dummy atoms are used to mark points where the molecule was fragmented.
The nodes themselves have associated molecules:
.. doctest::
>>> leaf = hierarch.GetLeaves()[ks[0]]
>>> Chem.MolToSmiles(leaf.mol)
'*C(=O)CC'
BRICS Implementation
====================
The RDKit also provides an implementation of the BRICS
algorithm. [#degen]_ BRICS provides another
method for fragmenting molecules along synthetically accessible bonds:
.. doctest::
>>> from rdkit.Chem import BRICS
>>> cdk2mols = Chem.SDMolSupplier('data/cdk2.sdf')
>>> m1 = cdk2mols[0]
>>> sorted(BRICS.BRICSDecompose(m1))
['[14*]c1nc(N)nc2[nH]cnc12', '[3*]O[3*]', '[4*]CC(=O)C(C)C']
>>> m2 = cdk2mols[20]
>>> sorted(BRICS.BRICSDecompose(m2))
['[1*]C(=O)NN(C)C', '[14*]c1[nH]nc2c1C(=O)c1c([16*])cccc1-2', '[16*]c1ccc([16*])cc1', '[3*]OC', '[5*]N[5*]']
Notice that RDKit BRICS implementation returns the unique fragments
generated from a molecule and that the dummy atoms are tagged to
indicate which type of reaction applies.
It's quite easy to generate the list of all fragments for a
group of molecules:
.. doctest::
>>> allfrags=set()
>>> for m in cdk2mols:
... pieces = BRICS.BRICSDecompose(m)
... allfrags.update(pieces)
>>> len(allfrags)
90
>>> sorted(allfrags)[:5]
['NS(=O)(=O)c1ccc(N/N=C2\\C(=O)Nc3ccc(Br)cc32)cc1', '[1*]C(=O)C(C)C', '[1*]C(=O)NN(C)C', '[1*]C(=O)NN1CC[NH+](C)CC1', '[1*]C(C)=O']
The BRICS module also provides an option to apply the BRICS rules to a
set of fragments to create new molecules:
.. doctest::
>>> import random
>>> random.seed(127)
>>> fragms = [Chem.MolFromSmiles(x) for x in sorted(allfrags)]
>>> ms = BRICS.BRICSBuild(fragms)
The result is a generator object:
.. doctest::
>>> ms
<generator object BRICSBuild at 0x...>
That returns molecules on request:
.. doctest::
>>> prods = [next(ms) for x in range(10)]
>>> prods[0]
<rdkit.Chem.rdchem.Mol object at 0x...>
The molecules have not been sanitized, so it's a good idea to at least update the valences before continuing:
.. doctest::
>>> for prod in prods:
... prod.UpdatePropertyCache(strict=False)
...
>>> Chem.MolToSmiles(prods[0],True)
'COCCO'
>>> Chem.MolToSmiles(prods[1],True)
'O=C1Nc2ccc3ncsc3c2/C1=C/NCCO'
>>> Chem.MolToSmiles(prods[2],True)
'O=C1Nc2ccccc2/C1=C/NCCO'
Other fragmentation approaches
==============================
In addition to the methods described above, the RDKit provide a very
flexible generic function for fragmenting molecules along
user-specified bonds.
Here's a quick demonstration of using that to break all bonds between
atoms in rings and atoms not in rings. We start by finding all the
atom pairs:
.. doctest::
>>> m = Chem.MolFromSmiles('CC1CC(O)C1CCC1CC1')
>>> bis = m.GetSubstructMatches(Chem.MolFromSmarts('[!R][R]'))
>>> bis
((0, 1), (4, 3), (6, 5), (7, 8))
then we get the corresponding bond indices:
.. doctest::
>>> bs = [m.GetBondBetweenAtoms(x,y).GetIdx() for x,y in bis]
>>> bs
[0, 3, 5, 7]
then we use those bond indices as input to the fragmentation function:
.. doctest::
>>> nm = Chem.FragmentOnBonds(m,bs)
the output is a molecule that has dummy atoms marking the places where
bonds were broken:
.. doctest::
>>> Chem.MolToSmiles(nm,True)
'*C1CC([4*])C1[6*].[1*]C.[3*]O.[5*]CC[8*].[7*]C1CC1'
By default the attachment points are labelled (using isotopes) with
the index of the atom that was removed. We can also provide our own set of
atom labels in the form of pairs of unsigned integers. The first value
in each pair is used as the label for the dummy that replaces the
bond's begin atom, the second value in each pair is for the dummy that
replaces the bond's end atom. Here's an example, repeating the
analysis above and marking the positions where the non-ring atoms were
with the label 10 and marking the positions where the ring atoms were
with label 1:
.. doctest::
>>> bis = m.GetSubstructMatches(Chem.MolFromSmarts('[!R][R]'))
>>> bs = []
>>> labels=[]
>>> for bi in bis:
... b = m.GetBondBetweenAtoms(bi[0],bi[1])
... if b.GetBeginAtomIdx()==bi[0]:
... labels.append((10,1))
... else:
... labels.append((1,10))
... bs.append(b.GetIdx())
>>> nm = Chem.FragmentOnBonds(m,bs,dummyLabels=labels)
>>> Chem.MolToSmiles(nm,True)
'[1*]C.[1*]CC[1*].[1*]O.[10*]C1CC([10*])C1[10*].[10*]C1CC1'
Chemical Features and Pharmacophores
************************************
Chemical Features
=================
Chemical features in the RDKit are defined using a SMARTS-based feature definition language (described in detail in the RDKit book).
To identify chemical features in molecules, you first must build a feature factory:
.. doctest::
>>> from rdkit import Chem
>>> from rdkit.Chem import ChemicalFeatures
>>> from rdkit import RDConfig
>>> import os
>>> fdefName = os.path.join(RDConfig.RDDataDir,'BaseFeatures.fdef')
>>> factory = ChemicalFeatures.BuildFeatureFactory(fdefName)
and then use the factory to search for features:
.. doctest::
>>> m = Chem.MolFromSmiles('OCc1ccccc1CN')
>>> feats = factory.GetFeaturesForMol(m)
>>> len(feats)
8
The individual features carry information about their family (e.g. donor, acceptor, etc.), type (a more detailed description), and the atom(s) that is/are associated with the feature:
.. doctest::
>>> feats[0].GetFamily()
'Donor'
>>> feats[0].GetType()
'SingleAtomDonor'
>>> feats[0].GetAtomIds()
(0,)
>>> feats[4].GetFamily()
'Aromatic'
>>> feats[4].GetAtomIds()
(2, 3, 4, 5, 6, 7)
If the molecule has coordinates, then the features will also have reasonable locations:
.. doctest::
>>> from rdkit.Chem import AllChem
>>> AllChem.Compute2DCoords(m)
0
>>> feats[0].GetPos()
<rdkit.Geometry.rdGeometry.Point3D object at 0x...>
>>> list(feats[0].GetPos())
[2.07..., -2.335..., 0.0]
2D Pharmacophore Fingerprints
=============================
Combining a set of chemical features with the 2D (topological)
distances between them gives a 2D pharmacophore. When the distances
are binned, unique integer ids can be assigned to each of these
pharmacophores and they can be stored in a fingerprint. Details of
the encoding are in the :doc:`RDKit_Book`.
Generating pharmacophore fingerprints requires chemical features
generated via the usual RDKit feature-typing mechanism:
.. doctest::
>>> from rdkit import Chem
>>> from rdkit.Chem import ChemicalFeatures
>>> fdefName = 'data/MinimalFeatures.fdef'
>>> featFactory = ChemicalFeatures.BuildFeatureFactory(fdefName)
The fingerprints themselves are calculated using a signature
(fingerprint) factory, which keeps track of all the parameters
required to generate the pharmacophore:
.. doctest::
>>> from rdkit.Chem.Pharm2D.SigFactory import SigFactory
>>> sigFactory = SigFactory(featFactory,minPointCount=2,maxPointCount=3)
>>> sigFactory.SetBins([(0,2),(2,5),(5,8)])
>>> sigFactory.Init()
>>> sigFactory.GetSigSize()
885
The signature factory is now ready to be used to generate
fingerprints, a task which is done using the
:py:mod:`rdkit.Chem.Pharm2D.Generate` module:
.. doctest::
>>> from rdkit.Chem.Pharm2D import Generate
>>> mol = Chem.MolFromSmiles('OCC(=O)CCCN')
>>> fp = Generate.Gen2DFingerprint(mol,sigFactory)
>>> fp
<rdkit.DataStructs.cDataStructs.SparseBitVect object at 0x...>
>>> len(fp)
885
>>> fp.GetNumOnBits()
57
Details about the bits themselves, including the features that are
involved and the binned distance matrix between the features, can be
obtained from the signature factory:
.. doctest::
>>> list(fp.GetOnBits())[:5]
[1, 2, 6, 7, 8]
>>> sigFactory.GetBitDescription(1)
'Acceptor Acceptor |0 1|1 0|'
>>> sigFactory.GetBitDescription(2)
'Acceptor Acceptor |0 2|2 0|'
>>> sigFactory.GetBitDescription(8)
'Acceptor Donor |0 2|2 0|'
>>> list(fp.GetOnBits())[-5:]
[704, 706, 707, 708, 714]
>>> sigFactory.GetBitDescription(707)
'Donor Donor PosIonizable |0 1 2|1 0 1|2 1 0|'
>>> sigFactory.GetBitDescription(714)
'Donor Donor PosIonizable |0 2 2|2 0 0|2 0 0|'
For the sake of convenience (to save you from having to edit the fdef
file every time) it is possible to disable particular feature types
within the SigFactory:
.. doctest::
>>> sigFactory.skipFeats=['PosIonizable']
>>> sigFactory.Init()
>>> sigFactory.GetSigSize()
510
>>> fp2 = Generate.Gen2DFingerprint(mol,sigFactory)
>>> fp2.GetNumOnBits()
36
Another possible set of feature definitions for 2D pharmacophore
fingerprints in the RDKit are those published by Gobbi and
Poppinger. [#gobbi]_ The module
:py:mod:`rdkit.Chem.Pharm2D.Gobbi_Pharm2D` has a pre-configured signature
factory for these fingerprint types. Here's an example of using it:
.. doctest::
>>> from rdkit import Chem
>>> from rdkit.Chem.Pharm2D import Gobbi_Pharm2D,Generate
>>> m = Chem.MolFromSmiles('OCC=CC(=O)O')
>>> fp = Generate.Gen2DFingerprint(m,Gobbi_Pharm2D.factory)
>>> fp
<rdkit.DataStructs.cDataStructs.SparseBitVect object at 0x...>
>>> fp.GetNumOnBits()
8
>>> list(fp.GetOnBits())
[23, 30, 150, 154, 157, 185, 28878, 30184]
>>> Gobbi_Pharm2D.factory.GetBitDescription(157)
'HA HD |0 3|3 0|'
>>> Gobbi_Pharm2D.factory.GetBitDescription(30184)
'HA HD HD |0 3 0|3 0 3|0 3 0|'
Molecular Fragments
*******************
The RDKit contains a collection of tools for fragmenting molecules and
working with those fragments. Fragments are defined to be made up of
a set of connected atoms that may have associated functional groups.
This is more easily demonstrated than explained:
.. doctest::
>>> fName=os.path.join(RDConfig.RDDataDir,'FunctionalGroups.txt')
>>> from rdkit.Chem import FragmentCatalog
>>> fparams = FragmentCatalog.FragCatParams(1,6,fName)
>>> fparams.GetNumFuncGroups()
39
>>> fcat=FragmentCatalog.FragCatalog(fparams)
>>> fcgen=FragmentCatalog.FragCatGenerator()
>>> m = Chem.MolFromSmiles('OCC=CC(=O)O')
>>> fcgen.AddFragsFromMol(m,fcat)
3
>>> fcat.GetEntryDescription(0)
'C<-O>C'
>>> fcat.GetEntryDescription(1)
'C=C<-C(=O)O>'
>>> fcat.GetEntryDescription(2)
'C<-C(=O)O>=CC<-O>'
The fragments are stored as entries in a
:py:class:`rdkit.Chem.rdfragcatalog.FragCatalog`. Notice that the
entry descriptions include pieces in angular brackets (e.g. between
'<' and '>'). These describe the functional groups attached to the
fragment. For example, in the above example, the catalog entry 0
corresponds to an ethyl fragment with an alcohol attached to one of
the carbons and entry 1 is an ethylene with a carboxylic acid on one
carbon. Detailed information about the functional groups can be
obtained by asking the fragment for the ids of the functional groups
it contains and then looking those ids up in the
:py:class:`rdkit.Chem.rdfragcatalog.FragCatParams`
object:
.. doctest::
>>> list(fcat.GetEntryFuncGroupIds(2))
[34, 1]
>>> fparams.GetFuncGroup(1)
<rdkit.Chem.rdchem.Mol object at 0x...>
>>> Chem.MolToSmarts(fparams.GetFuncGroup(1))
'*-C(=O)[O&D1]'
>>> Chem.MolToSmarts(fparams.GetFuncGroup(34))
'*-[O&D1]'
>>> fparams.GetFuncGroup(1).GetProp('_Name')
'-C(=O)O'
>>> fparams.GetFuncGroup(34).GetProp('_Name')
'-O'
The catalog is hierarchical: smaller fragments are combined to form
larger ones. From a small fragment, one can find the larger fragments
to which it contributes using the
:py:meth:`rdkit.Chem.rdfragcatalog.FragCatalog.GetEntryDownIds`
method:
.. doctest::
>>> fcat=FragmentCatalog.FragCatalog(fparams)
>>> m = Chem.MolFromSmiles('OCC(NC1CC1)CCC')
>>> fcgen.AddFragsFromMol(m,fcat)
15
>>> fcat.GetEntryDescription(0)
'C<-O>C'
>>> fcat.GetEntryDescription(1)
'CN<-cPropyl>'
>>> list(fcat.GetEntryDownIds(0))
[3, 4]
>>> fcat.GetEntryDescription(3)
'C<-O>CC'
>>> fcat.GetEntryDescription(4)
'C<-O>CN<-cPropyl>'
The fragments from multiple molecules can be added to a catalog:
.. doctest::
>>> suppl = Chem.SmilesMolSupplier('data/bzr.smi')
>>> ms = [x for x in suppl]
>>> fcat=FragmentCatalog.FragCatalog(fparams)
>>> for m in ms: nAdded=fcgen.AddFragsFromMol(m,fcat)
>>> fcat.GetNumEntries()
1169
>>> fcat.GetEntryDescription(0)
'Cc'
>>> fcat.GetEntryDescription(100)
'cc-nc(C)n'
The fragments in a catalog are unique, so adding a molecule a second
time doesn't add any new entries:
.. doctest::
>>> fcgen.AddFragsFromMol(ms[0],fcat)
0
>>> fcat.GetNumEntries()
1169
Once a :py:class:`rdkit.Chem.rdfragcatalog.FragCatalog` has been
generated, it can be used to fingerprint molecules:
.. doctest::
>>> fpgen = FragmentCatalog.FragFPGenerator()
>>> fp = fpgen.GetFPForMol(ms[8],fcat)
>>> fp
<rdkit.DataStructs.cDataStructs.ExplicitBitVect object at 0x...>
>>> fp.GetNumOnBits()
189
The rest of the machinery associated with fingerprints can now be
applied to these fragment fingerprints. For example, it's easy to
find the fragments that two molecules have in common by taking the
intersection of their fingerprints:
.. doctest::
>>> fp2 = fpgen.GetFPForMol(ms[7],fcat)
>>> andfp = fp&fp2
>>> obl = list(andfp.GetOnBits())
>>> fcat.GetEntryDescription(obl[-1])
'ccc(cc)NC<=O>'
>>> fcat.GetEntryDescription(obl[-5])
'c<-X>ccc(N)cc'
or we can find the fragments that distinguish one molecule from
another:
.. doctest::
>>> combinedFp=fp&(fp^fp2) # can be more efficent than fp&(!fp2)
>>> obl = list(combinedFp.GetOnBits())
>>> fcat.GetEntryDescription(obl[-1])
'cccc(N)cc'
Or we can use the bit ranking functionality from the
:py:class:`rdkit.ML.InfoTheory.rdInfoTheory.InfoBitRanker` class to identify fragments
that distinguish actives from inactives:
.. doctest::
>>> suppl = Chem.SDMolSupplier('data/bzr.sdf')
>>> sdms = [x for x in suppl]
>>> fps = [fpgen.GetFPForMol(x,fcat) for x in sdms]
>>> from rdkit.ML.InfoTheory import InfoBitRanker
>>> ranker = InfoBitRanker(len(fps[0]),2)
>>> acts = [float(x.GetProp('ACTIVITY')) for x in sdms]
>>> for i,fp in enumerate(fps):
... act = int(acts[i]>7)
... ranker.AccumulateVotes(fp,act)
...
>>> top5 = ranker.GetTopN(5)
>>> for id,gain,n0,n1 in top5:
... print(int(id),'%.3f'%gain,int(n0),int(n1))
...
702 0.081 20 17
328 0.073 23 25
341 0.073 30 43
173 0.073 30 43
1034 0.069 5 53
The columns above are: bitId, infoGain, nInactive, nActive. Note that
this approach isn't particularly effective for this artificial
example.
Non-Chemical Functionality
**************************
Bit vectors
===========
Bit vectors are containers for efficiently storing a set number of binary values, e.g. for fingerprints.
The RDKit includes two types of fingerprints differing in how they store the values internally; the two types are easily interconverted but are best used for different purpose:
- SparseBitVects store only the list of bits set in the vector; they are well suited for storing very large, very sparsely occupied vectors like pharmacophore fingerprints.
Some operations, such as retrieving the list of on bits, are quite fast.
Others, such as negating the vector, are very, very slow.
- ExplicitBitVects keep track of both on and off bits.
They are generally faster than SparseBitVects, but require more memory to store.
Discrete value vectors
======================
3D grids
========
Points
======
Getting Help
************
There is a reasonable amount of documentation available within from the RDKit's docstrings.
These are accessible using Python's help command:
.. doctest::
>>> m = Chem.MolFromSmiles('Cc1ccccc1')
>>> m.GetNumAtoms()
7
>>> help(m.GetNumAtoms)
Help on method GetNumAtoms:
<BLANKLINE>
GetNumAtoms(...) method of rdkit.Chem.rdchem.Mol instance
GetNumAtoms( (Mol)arg1 [, (int)onlyHeavy=-1 [, (bool)onlyExplicit=True]]) -> int :
Returns the number of atoms in the molecule.
<BLANKLINE>
ARGUMENTS:
- onlyExplicit: (optional) include only explicit atoms (atoms in the molecular graph)
defaults to 1.
NOTE: the onlyHeavy argument is deprecated
<BLANKLINE>
<BLANKLINE>
C++ signature :
int GetNumAtoms(RDKit::ROMol [,int=-1 [,bool=True]])
<BLANKLINE>
>>> m.GetNumAtoms(onlyExplicit=False)
15
When working in an environment that does command completion or tooltips, one can see the available methods quite easily.
Here's a sample screenshot from within the Jupyter notebook:
.. image:: images/picture_6.png
Advanced Topics/Warnings
************************
Editing Molecules
=================
Some of the functionality provided allows molecules to be edited “in place”:
.. doctest::
>>> m = Chem.MolFromSmiles('c1ccccc1')
>>> m.GetAtomWithIdx(0).SetAtomicNum(7)
>>> Chem.SanitizeMol(m)
rdkit.Chem.rdmolops.SanitizeFlags.SANITIZE_NONE
>>> Chem.MolToSmiles(m)
'c1ccncc1'
Do not forget the sanitization step, without it one can end up with results that look ok (so long as you don't think):
.. doctest::
>>> m = Chem.MolFromSmiles('c1ccccc1')
>>> m.GetAtomWithIdx(0).SetAtomicNum(8)
>>> Chem.MolToSmiles(m)
'c1ccocc1'
but that are, of course, complete nonsense, as sanitization will indicate:
.. doctest::
>>> Chem.SanitizeMol(m)
Traceback (most recent call last):
File "/usr/lib/python2.6/doctest.py", line 1253, in __run
compileflags, 1) in test.globs
File "<doctest default[0]>", line 1, in <module>
Chem.SanitizeMol(m)
ValueError: Sanitization error: Can't kekulize mol
<BLANKLINE>
More complex transformations can be carried out using the
:py:class:`rdkit.Chem.rdchem.RWMol` class:
.. doctest::
>>> m = Chem.MolFromSmiles('CC(=O)C=CC=C')
>>> mw = Chem.RWMol(m)
>>> mw.ReplaceAtom(4,Chem.Atom(7))
>>> mw.AddAtom(Chem.Atom(6))
7
>>> mw.AddAtom(Chem.Atom(6))
8
>>> mw.AddBond(6,7,Chem.BondType.SINGLE)
7
>>> mw.AddBond(7,8,Chem.BondType.DOUBLE)
8
>>> mw.AddBond(8,3,Chem.BondType.SINGLE)
9
>>> mw.RemoveAtom(0)
>>> mw.GetNumAtoms()
8
The RWMol can be used just like an ROMol:
.. doctest::
>>> Chem.MolToSmiles(mw)
'O=CC1=NC=CC=C1'
>>> Chem.SanitizeMol(mw)
rdkit.Chem.rdmolops.SanitizeFlags.SANITIZE_NONE
>>> Chem.MolToSmiles(mw)
'O=Cc1ccccn1'
It is even easier to generate nonsense using the RWMol than it
is with standard molecules. If you need chemically reasonable
results, be certain to sanitize the results.
Miscellaneous Tips and Hints
****************************
Chem vs AllChem
===============
The majority of “basic” chemical functionality (e.g. reading/writing
molecules, substructure searching, molecular cleanup, etc.) is in the
:py:mod:`rdkit.Chem` module. More advanced, or less frequently used,
functionality is in :py:mod:`rdkit.Chem.AllChem`. The distinction has
been made to speed startup and lower import times; there's no sense in
loading the 2D->3D library and force field implementation if one is
only interested in reading and writing a couple of molecules. If you
find the Chem/AllChem thing annoying or confusing, you can use
python's “import ... as ...” syntax to remove the irritation:
.. doctest::
>>> from rdkit.Chem import AllChem as Chem
>>> m = Chem.MolFromSmiles('CCC')
The SSSR Problem
================
As others have ranted about with more energy and eloquence than I
intend to, the definition of a molecule's smallest set of smallest
rings is not unique. In some high symmetry molecules, a “true” SSSR
will give results that are unappealing. For example, the SSSR for
cubane only contains 5 rings, even though there are
“obviously” 6. This problem can be fixed by implementing a *small*
(instead of *smallest*) set of smallest rings algorithm that returns
symmetric results. This is the approach that we took with the RDKit.
Because it is sometimes useful to be able to count how many SSSR rings
are present in the molecule, there is a
:py:func:`rdkit.Chem.rdmolops.GetSSSR` function, but this only returns the
SSSR count, not the potentially non-unique set of rings.
List of Available Descriptors
*****************************
+-----------------------------------------------------+------------------------------------------------------------+----------+
|Descriptor/Descriptor |Notes | Language |
|Family | | |
+-----------------------------------------------------+------------------------------------------------------------+----------+
|Gasteiger/Marsili |*Tetrahedron* | C++ |
|Partial Charges |**36**:3219\-28 | |
| |(1980) | |
+-----------------------------------------------------+------------------------------------------------------------+----------+
|BalabanJ |*Chem. Phys. Lett.* | Python |
| |**89**:399\-404 | |
| |(1982) | |
+-----------------------------------------------------+------------------------------------------------------------+----------+
|BertzCT |*J. Am. Chem. Soc.* | Python |
| |**103**:3599\-601 | |
| |(1981) | |
+-----------------------------------------------------+------------------------------------------------------------+----------+
|Ipc |*J. Chem. Phys.* | Python |
| |**67**:4517\-33 | |
| |(1977) | |
+-----------------------------------------------------+------------------------------------------------------------+----------+
|HallKierAlpha |*Rev. Comput. Chem.* | C++ |
| |**2**:367\-422 | |
| |(1991) | |
+-----------------------------------------------------+------------------------------------------------------------+----------+
|Kappa1 \- Kappa3 |*Rev. Comput. Chem.* | C++ |
| |**2**:367\-422 | |
| |(1991) | |
+-----------------------------------------------------+------------------------------------------------------------+----------+
|Chi0, Chi1 |*Rev. Comput. Chem.* | Python |
| |**2**:367\-422 | |
| |(1991) | |
+-----------------------------------------------------+------------------------------------------------------------+----------+
|Chi0n \- Chi4n |*Rev. Comput. Chem.* | C++ |
| |**2**:367\-422 | |
| |(1991) | |
+-----------------------------------------------------+------------------------------------------------------------+----------+
|Chi0v \- Chi4v |*Rev. Comput. Chem.* | C++ |
| |**2**:367\-422 | |
| |(1991) | |
+-----------------------------------------------------+------------------------------------------------------------+----------+
|MolLogP |Wildman and Crippen | C++ |
| |*JCICS* | |
| |**39**:868\-73 | |
| |(1999) | |
+-----------------------------------------------------+------------------------------------------------------------+----------+
|MolMR |Wildman and Crippen | C++ |
| |*JCICS* | |
| |**39**:868\-73 | |
| |(1999) | |
+-----------------------------------------------------+------------------------------------------------------------+----------+
|MolWt | | C++ |
+-----------------------------------------------------+------------------------------------------------------------+----------+
|ExactMolWt | | C++ |
+-----------------------------------------------------+------------------------------------------------------------+----------+
|HeavyAtomCount | | C++ |
+-----------------------------------------------------+------------------------------------------------------------+----------+
|HeavyAtomMolWt | | C++ |
+-----------------------------------------------------+------------------------------------------------------------+----------+
|NHOHCount | | C++ |
+-----------------------------------------------------+------------------------------------------------------------+----------+
|NOCount | | C++ |
+-----------------------------------------------------+------------------------------------------------------------+----------+
|NumHAcceptors | | C++ |
+-----------------------------------------------------+------------------------------------------------------------+----------+
|NumHDonors | | C++ |
+-----------------------------------------------------+------------------------------------------------------------+----------+
|NumHeteroatoms | | C++ |
+-----------------------------------------------------+------------------------------------------------------------+----------+
|NumRotatableBonds | | C++ |
+-----------------------------------------------------+------------------------------------------------------------+----------+
|NumValenceElectrons | | C++ |
+-----------------------------------------------------+------------------------------------------------------------+----------+
|NumAmideBonds | | C++ |
+-----------------------------------------------------+------------------------------------------------------------+----------+
|Num{Aromatic,Saturated,Aliphatic}Rings | | C++ |
+-----------------------------------------------------+------------------------------------------------------------+----------+
|Num{Aromatic,Saturated,Aliphatic}{Hetero,Carbo}cycles| | C++ |
+-----------------------------------------------------+------------------------------------------------------------+----------+
|RingCount | | C++ |
+-----------------------------------------------------+------------------------------------------------------------+----------+
|FractionCSP3 | | C++ |
+-----------------------------------------------------+------------------------------------------------------------+----------+
|NumSpiroAtoms | Number of spiro atoms | C++ |
| | (atoms shared between rings that share | |
| | exactly one atom) | |
+-----------------------------------------------------+------------------------------------------------------------+----------+
|NumBridgeheadAtoms | Number of bridgehead atoms | C++ |
| | (atoms shared between rings that share | |
| | at least two bonds) | |
+-----------------------------------------------------+------------------------------------------------------------+----------+
|TPSA |*J. Med. Chem.* | C++ |
| |**43**:3714\-7, | |
| |(2000) | |
| | See the section in the RDKit book describing differences | |
| | to the original publication. | |
+-----------------------------------------------------+------------------------------------------------------------+----------+
|LabuteASA |*J. Mol. Graph. Mod.* | C++ |
| |**18**:464\-77 (2000) | |
+-----------------------------------------------------+------------------------------------------------------------+----------+
|PEOE_VSA1 \- PEOE_VSA14 |MOE\-type descriptors using partial charges | C++ |
| |and surface area contributions | |
| |http://www.chemcomp.com/journal/vsadesc.htm | |
+-----------------------------------------------------+------------------------------------------------------------+----------+
|SMR_VSA1 \- SMR_VSA10 |MOE\-type descriptors using MR | C++ |
| |contributions and surface area | |
| |contributions | |
| |http://www.chemcomp.com/journal/vsadesc.htm | |
+-----------------------------------------------------+------------------------------------------------------------+----------+
|SlogP_VSA1 \- SlogP_VSA12 |MOE\-type descriptors using LogP | C++ |
| |contributions and surface area | |
| |contributions | |
| |http://www.chemcomp.com/journal/vsadesc.htm | |
+-----------------------------------------------------+------------------------------------------------------------+----------+
|EState_VSA1 \- EState_VSA11 |MOE\-type descriptors using EState indices | Python |
| |and surface area contributions (developed | |
| |at RD, not described in the CCG paper) | |
+-----------------------------------------------------+------------------------------------------------------------+----------+
|VSA_EState1 \- VSA_EState10 |MOE\-type descriptors using EState indices | Python |
| |and surface area contributions (developed | |
| |at RD, not described in the CCG paper) | |
+-----------------------------------------------------+------------------------------------------------------------+----------+
|MQNs |Nguyen et al. *ChemMedChem* **4**:1803\-5 | C++ |
| |(2009) | |
+-----------------------------------------------------+------------------------------------------------------------+----------+
|Topliss fragments |implemented using a set of SMARTS | Python |
| |definitions in | |
| |$(RDBASE)/Data/FragmentDescriptors.csv | |
+-----------------------------------------------------+------------------------------------------------------------+----------+
|Autocorr2D |New in 2017.09 release. Todeschini and Consoni "Descriptors | C++ |
| |from Molecular Geometry" Handbook of Chemoinformatics | |
| |http://dx.doi.org/10.1002/9783527618279.ch37 | |
+-----------------------------------------------------+------------------------------------------------------------+----------+
List of Available 3D Descriptors
********************************
These all require the molecule to have a 3D conformer.
+-----------------------------------------------------+-------------------------------------------------------------+----------+
|Descriptor/Descriptor |Notes | Language |
|Family | | |
+-----------------------------------------------------+-------------------------------------------------------------+----------+
|Plane of best fit (PBF) |Nicholas C. Firth, Nathan Brown, and Julian | C++ |
| |Blagg, *JCIM* **52**:2516\-25 | |
+-----------------------------------------------------+-------------------------------------------------------------+----------+
|PMI1, PMI2, PMI3 |Principal moments of inertia | C++ |
+-----------------------------------------------------+-------------------------------------------------------------+----------+
|NPR1, NPR2 |Normalized principal moments ratios Sauer | C++ |
| |and Schwarz *JCIM* **43**:987\-1003 (2003) | |
+-----------------------------------------------------+-------------------------------------------------------------+----------+
|Radius of gyration |G. A. Arteca "Molecular Shape Descriptors" | C++ |
| |Reviews in Computational Chemistry vol 9 | |
| |http://dx.doi.org/10.1002/9780470125861.ch5 | |
+-----------------------------------------------------+-------------------------------------------------------------+----------+
|Inertial shape factor |Todeschini and Consoni "Descriptors from Molecular Geometry" | C++ |
| |Handbook of Chemoinformatics | |
| |http://dx.doi.org/10.1002/9783527618279.ch37 | |
+-----------------------------------------------------+-------------------------------------------------------------+----------+
|Eccentricity |G. A. Arteca "Molecular Shape Descriptors" | C++ |
| |Reviews in Computational Chemistry vol 9 | |
| |http://dx.doi.org/10.1002/9780470125861.ch5 | |
+-----------------------------------------------------+-------------------------------------------------------------+----------+
|Asphericity |A. Baumgaertner, "Shapes of flexible vesicles" | C++ |
| |J. Chem. Phys. 98:7496 | |
| |(1993) | |
| |http://dx.doi.org/10.1063/1.464689 | |
+-----------------------------------------------------+-------------------------------------------------------------+----------+
|Spherocity Index |Todeschini and Consoni "Descriptors from Molecular Geometry" | C++ |
| |Handbook of Chemoinformatics | |
| |http://dx.doi.org/10.1002/9783527618279.ch37 | |
+-----------------------------------------------------+-------------------------------------------------------------+----------+
|Autocorr3D |New in 2017.09 release. Todeschini and Consoni "Descriptors | C++ |
| |from Molecular Geometry" Handbook of Chemoinformatics | |
| |http://dx.doi.org/10.1002/9783527618279.ch37 | |
+-----------------------------------------------------+-------------------------------------------------------------+----------+
|RDF |New in 2017.09 release. Todeschini and Consoni "Descriptors | C++ |
| |from Molecular Geometry" Handbook of Chemoinformatics | |
| |http://dx.doi.org/10.1002/9783527618279.ch37 | |
+-----------------------------------------------------+-------------------------------------------------------------+----------+
|MORSE |New in 2017.09 release. Todeschini and Consoni "Descriptors | C++ |
| |from Molecular Geometry" Handbook of Chemoinformatics | |
| |http://dx.doi.org/10.1002/9783527618279.ch37 | |
+-----------------------------------------------------+-------------------------------------------------------------+----------+
|WHIM |New in 2017.09 release. Todeschini and Consoni "Descriptors | C++ |
| |from Molecular Geometry" Handbook of Chemoinformatics | |
| |http://dx.doi.org/10.1002/9783527618279.ch37 | |
| | | |
| |**Note** insufficient information is available to exactly | |
| |reproduce values from DRAGON for these descriptors. We | |
| |believe that this is close. | |
+-----------------------------------------------------+-------------------------------------------------------------+----------+
|GETAWAY |New in 2017.09 release. Todeschini and Consoni "Descriptors | C++ |
| |from Molecular Geometry" Handbook of Chemoinformatics | |
| |http://dx.doi.org/10.1002/9783527618279.ch37 | |
| | | |
| |**Note** insufficient information is available to exactly | |
| |reproduce values from DRAGON for these descriptors. We | |
| |believe that this is close. | |
+-----------------------------------------------------+-------------------------------------------------------------+----------+
List of Available Fingerprints
******************************
+----------------------+-----------------------------------------------------------------------------------------------------------+----------+
| Fingerprint Type | Notes | Language |
+----------------------+-----------------------------------------------------------------------------------------------------------+----------+
| RDKit | a Daylight\-like fingerprint based on hashing molecular subgraphs | C++ |
+----------------------+-----------------------------------------------------------------------------------------------------------+----------+
| Atom Pairs | *JCICS* **25**:64\-73 (1985) | C++ |
+----------------------+-----------------------------------------------------------------------------------------------------------+----------+
| Topological Torsions | *JCICS* **27**:82\-5 (1987) | C++ |
+----------------------+-----------------------------------------------------------------------------------------------------------+----------+
| MACCS keys | Using the 166 public keys implemented as SMARTS | C++ |
+----------------------+-----------------------------------------------------------------------------------------------------------+----------+
| Morgan/Circular | Fingerprints based on the Morgan algorithm, similar to the ECFP/FCFP fingerprints | C++ |
| | *JCIM* **50**:742\-54 (2010). | |
+----------------------+-----------------------------------------------------------------------------------------------------------+----------+
| 2D Pharmacophore | Uses topological distances between pharmacophoric points. | C++ |
+----------------------+-----------------------------------------------------------------------------------------------------------+----------+
| Pattern | a topological fingerprint optimized for substructure screening | C++ |
+----------------------+-----------------------------------------------------------------------------------------------------------+----------+
| Extended Reduced | Derived from the ErG fingerprint published by Stiefl et al. in | C++ |
| Graphs | *JCIM* **46**:208\–20 (2006). | |
| | NOTE: these functions return an array of floats, not the usual fingerprint types | |
+----------------------+-----------------------------------------------------------------------------------------------------------+----------+
Feature Definitions Used in the Morgan Fingerprints
***************************************************
These are adapted from the definitions in Gobbi, A. & Poppinger, D. “Genetic optimization of combinatorial libraries.” *Biotechnology and Bioengineering* **61**, 47-54 (1998).
+----------+------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
| Feature | SMARTS |
+----------+------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
| Donor | ``[$([N;!H0;v3,v4&+1]),$([O,S;H1;+0]),n&H1&+0]`` |
+----------+------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
| Acceptor | ``[$([O,S;H1;v2;!$(*-*=[O,N,P,S])]),$([O,S;H0;v2]),$([O,S;-]),$([N;v3;!$(N-*=[O,N,P,S])]),n&H0&+0,$([o,s;+0;!$([o,s]:n);!$([o,s]:c:n)])]`` |
+----------+------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
| Aromatic | ``[a]`` |
+----------+------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
| Halogen | ``[F,Cl,Br,I]`` |
+----------+------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
| Basic | ``[#7;+,$([N;H2&+0][$([C,a]);!$([C,a](=O))]),$([N;H1&+0]([$([C,a]);!$([C,a](=O))])[$([C,a]);!$([C,a](=O))]),$([N;H0&+0]([C;!$(C(=O))])([C;!$(C(=O))])[C;!$(C(=O))])]`` |
+----------+------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
| Acidic | ``[$([C,S](=[O,S,P])-[O;H1,-1])]`` |
+----------+------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
.. rubric:: Footnotes
.. [#blaney] Blaney, J. M.; Dixon, J. S. "Distance Geometry in Molecular Modeling". *Reviews in Computational Chemistry*; VCH: New York, 1994.
.. [#rappe] Rappé, A. K.; Casewit, C. J.; Colwell, K. S.; Goddard III, W. A.; Skiff, W. M. "UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations". *J. Am. Chem. Soc.* **114**:10024-35 (1992) .
.. [#carhart] Carhart, R.E.; Smith, D.H.; Venkataraghavan R. “Atom Pairs as Molecular Features in Structure-Activity Studies: Definition and Applications” *J. Chem. Inf. Comp. Sci.* **25**:64-73 (1985).
.. [#nilakantan] Nilakantan, R.; Bauman N.; Dixon J.S.; Venkataraghavan R. “Topological Torsion: A New Molecular Descriptor for SAR Applications. Comparison with Other Desciptors.” *J. Chem.Inf. Comp. Sci.* **27**:82-5 (1987).
.. [#rogers] Rogers, D.; Hahn, M. “Extended-Connectivity Fingerprints.” *J. Chem. Inf. and Model.* **50**:742-54 (2010).
.. [#ashton] Ashton, M. et al. “Identification of Diverse Database Subsets using Property-Based and Fragment-Based Molecular Descriptions.” *Quantitative Structure-Activity Relationships* **21**:598-604 (2002).
.. [#bemis1] Bemis, G. W.; Murcko, M. A. "The Properties of Known Drugs. 1. Molecular Frameworks." *J. Med. Chem.* **39**:2887-93 (1996).
.. [#lewell] Lewell, X.Q.; Judd, D.B.; Watson, S.P.; Hann, M.M. “RECAP-Retrosynthetic Combinatorial Analysis Procedure: A Powerful New Technique for Identifying Privileged Molecular Fragments with Useful Applications in Combinatorial Chemistry” *J. Chem. Inf. Comp. Sci.* **38**:511-22 (1998).
.. [#degen] Degen, J.; Wegscheid-Gerlach, C.; Zaliani, A; Rarey, M. "On the Art of Compiling and Using ‘Drug-Like’ Chemical Fragment Spaces." *ChemMedChem* **3**:1503–7 (2008).
.. [#gobbi] Gobbi, A. & Poppinger, D. "Genetic optimization of combinatorial libraries." *Biotechnology and Bioengineering* **61**:47-54 (1998).
.. [#rxnsmarts] A more detailed description of reaction smarts, as defined by the rdkit, is in the :doc:`RDKit_Book`.
.. [#mmff1] Halgren, T. A. "Merck molecular force field. I. Basis, form, scope, parameterization, and performance of MMFF94." *J. Comp. Chem.* **17**:490–19 (1996).
.. [#mmff2] Halgren, T. A. "Merck molecular force field. II. MMFF94 van der Waals and electrostatic parameters for intermolecular interactions." *J. Comp. Chem.* **17**:520–52 (1996).
.. [#mmff3] Halgren, T. A. "Merck molecular force field. III. Molecular geometries and vibrational frequencies for MMFF94." *J. Comp. Chem.* **17**:553–86 (1996).
.. [#mmff4] Halgren, T. A. & Nachbar, R. B. "Merck molecular force field. IV. conformational energies and geometries for MMFF94." *J. Comp. Chem.* **17**:587-615 (1996).
.. [#mmffs] Halgren, T. A. "MMFF VI. MMFF94s option for energy minimization studies." *J. Comp. Chem.* **20**:720–9 (1999).
.. [#riniker] Riniker, S.; Landrum, G. A. "Similarity Maps - A Visualization Strategy for Molecular Fingerprints and Machine-Learning Methods" *J. Cheminf.* **5**:43 (2013).
.. [#riniker2] Riniker, S.; Landrum, G. A. "Better Informed Distance Geometry: Using What We Know To Improve Conformation Generation" *J. Chem. Inf. Comp. Sci.* **55**:2562-74 (2015)
License
*******
.. image:: images/picture_5.png
This document is copyright (C) 2007-2016 by Greg Landrum
This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 License.
To view a copy of this license, visit http://creativecommons.org/licenses/by-sa/4.0/ or send a letter to Creative Commons, 543 Howard Street, 5th Floor, San Francisco, California, 94105, USA.
The intent of this license is similar to that of the RDKit itself.
In simple words: “Do whatever you want with it, but please give us some credit.”
.. |picture_0| image:: images/picture_0.png
:scale: 75 %
.. |picture_1| image:: images/picture_1.png
:scale: 75 %
.. |picture_3| image:: images/picture_3.png
:scale: 75 %
.. |picture_2| image:: images/picture_2.png
:scale: 50 %
.. |picture_4| image:: images/picture_4.png
:scale: 75 %
|