1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596
|
//
// Copyright (C) 2004-2018 Greg Landrum and Rational Discovery LLC
//
// @@ All Rights Reserved @@
// This file is part of the RDKit.
// The contents are covered by the terms of the BSD license
// which is included in the file license.txt, found at the root
// of the RDKit source tree.
//
#include <GraphMol/RDKitBase.h>
#include <RDGeneral/Ranking.h>
#include <GraphMol/new_canon.h>
#include <RDGeneral/types.h>
#include <sstream>
#include <set>
#include <algorithm>
#include <RDGeneral/utils.h>
#include <RDGeneral/Invariant.h>
#include <RDGeneral/RDLog.h>
#include <boost/dynamic_bitset.hpp>
#include <Geometry/point.h>
#include "Chirality.h"
// #define VERBOSE_CANON 1
namespace RDKit {
namespace {
bool shouldDetectDoubleBondStereo(const Bond *bond) {
const RingInfo *ri = bond->getOwningMol().getRingInfo();
return (!ri->numBondRings(bond->getIdx()) ||
ri->minBondRingSize(bond->getIdx()) > 7);
}
// ----------------------------------- -----------------------------------
// This algorithm is identical to that used in the CombiCode Mol file
// parser (also developed by RD).
//
//
// SUMMARY:
// Derive a chiral code for an atom that has a wedged (or dashed) bond
// drawn to it.
//
// RETURNS:
// The chiral type
//
// CAVEATS:
// This is careful to ensure that the central atom has 4 neighbors and
// only single bonds to it, but that's about it.
//
// NOTE: this isn't careful at all about checking to make sure that
// things actually *should* be chiral. e.g. if the file has a
// 3-coordinate N with a wedged bond, it will make some erroneous
// assumptions about the chirality.
//
// ----------------------------------- -----------------------------------
Atom::ChiralType atomChiralTypeFromBondDir(const ROMol &mol, const Bond *bond,
const Conformer *conf) {
PRECONDITION(bond, "no bond");
PRECONDITION(conf, "no conformer");
Bond::BondDir bondDir = bond->getBondDir();
PRECONDITION(bondDir == Bond::BEGINWEDGE || bondDir == Bond::BEGINDASH,
"bad bond direction");
// NOTE that according to the CT file spec, wedging assigns chirality
// to the atom at the point of the wedge, (atom 1 in the bond).
const Atom *atom = bond->getBeginAtom();
PRECONDITION(atom, "no atom");
// we can't do anything with atoms that have more than 4 neighbors:
if (atom->getDegree() > 4) {
return Atom::CHI_UNSPECIFIED;
}
const Atom *bondAtom = bond->getEndAtom();
Atom::ChiralType res = Atom::CHI_UNSPECIFIED;
INT_LIST neighborBondIndices;
RDGeom::Point3D centerLoc, tmpPt;
centerLoc = conf->getAtomPos(atom->getIdx());
tmpPt = conf->getAtomPos(bondAtom->getIdx());
centerLoc.z = 0.0;
tmpPt.z = 0.0;
RDGeom::Point3D refVect = centerLoc.directionVector(tmpPt);
//----------------------------------------------------------
//
// start by ensuring that all the bonds to neighboring atoms
// are single bonds and collecting a list of neighbor indices:
//
//----------------------------------------------------------
bool hSeen = false;
neighborBondIndices.push_back(bond->getIdx());
if (bondAtom->getAtomicNum() == 1 && bondAtom->getIsotope() == 0) {
hSeen = true;
}
bool allSingle = true;
ROMol::OEDGE_ITER beg, end;
boost::tie(beg, end) = mol.getAtomBonds(atom);
while (beg != end) {
const Bond *nbrBond = mol[*beg];
if (nbrBond->getBondType() != Bond::SINGLE) {
allSingle = false;
// break;
}
if (nbrBond != bond) {
if ((nbrBond->getOtherAtom(atom)->getAtomicNum() == 1 &&
nbrBond->getOtherAtom(atom)->getIsotope() == 0)) {
hSeen = true;
}
neighborBondIndices.push_back(nbrBond->getIdx());
}
++beg;
}
size_t nNbrs = neighborBondIndices.size();
//----------------------------------------------------------
//
// Return now if there aren't at least 3 non-H bonds to the atom.
// (we can implicitly add a single H to 3 coordinate atoms, but
// we're horked otherwise).
//
//----------------------------------------------------------
if (nNbrs < 3 || (hSeen && nNbrs < 4)) {
return Atom::CHI_UNSPECIFIED;
}
//----------------------------------------------------------
//
// Continue if there are all single bonds or if we're considering
// 4-coordinate P or S
//
//----------------------------------------------------------
if (allSingle || atom->getAtomicNum() == 15 || atom->getAtomicNum() == 16) {
//------------------------------------------------------------
//
// Here we need to figure out the rotation direction between
// the neighbor bonds and the wedged bond:
//
//------------------------------------------------------------
bool isCCW = true;
INT_LIST::const_iterator bondIter = neighborBondIndices.begin();
++bondIter;
auto bond1 = mol.getBondWithIdx(*bondIter);
int oaid = bond1->getOtherAtom(atom)->getIdx();
tmpPt = conf->getAtomPos(oaid);
tmpPt.z = 0;
auto atomVect0 = centerLoc.directionVector(tmpPt);
auto angle01 = refVect.signedAngleTo(atomVect0);
++bondIter;
auto bond2 = mol.getBondWithIdx(*bondIter);
oaid = bond2->getOtherAtom(atom)->getIdx();
tmpPt = conf->getAtomPos(oaid);
tmpPt.z = 0;
auto atomVect1 = centerLoc.directionVector(tmpPt);
auto angle02 = refVect.signedAngleTo(atomVect1);
// order everything so that looking from the top in a CCW direction we
// have 0, 1, 2
bool swappedIt = false;
if (angle01 > angle02) {
// std::cerr << " swap because " << angle01 << " " << angle02 << " "
// << bond1->getIdx() << "->" << bond2->getIdx() << std::endl;
std::swap(angle01, angle02);
std::swap(bond1, bond2);
std::swap(atomVect0, atomVect1);
swappedIt = true;
}
double firstAngle, secondAngle;
// We proceed differently for 3 and 4 coordinate atoms:
double angle12;
if (nNbrs == 4) {
bool flipIt = false;
// grab the angle to the last neighbor:
++bondIter;
auto bond3 = mol.getBondWithIdx(*bondIter);
oaid = bond3->getOtherAtom(atom)->getIdx();
tmpPt = conf->getAtomPos(oaid);
tmpPt.z = 0;
auto atomVect2 = centerLoc.directionVector(tmpPt);
angle12 = refVect.signedAngleTo(atomVect2);
// find the lowest and second-lowest angle and keep track of
// whether or not we have to do a non-cyclic permutation to
// get there:
if (angle01 < angle02) {
if (angle02 < angle12) {
// order is angle01 -> angle02 -> angle12
firstAngle = angle01;
secondAngle = angle02;
} else if (angle01 < angle12) {
// order is angle01 -> angle12 -> angle02
firstAngle = angle01;
secondAngle = angle12;
flipIt = true;
} else {
// order is angle12 -> angle01 -> angle02
firstAngle = angle12;
secondAngle = angle01;
}
} else if (angle01 < angle12) {
// order is angle02 -> angle01 -> angle12
firstAngle = angle02;
secondAngle = angle01;
flipIt = true;
} else {
if (angle02 < angle12) {
// order is angle02 -> angle12 -> angle01
firstAngle = angle02;
secondAngle = angle12;
} else {
// order is angle12 -> angle02 -> angle01
firstAngle = angle12;
secondAngle = angle02;
flipIt = true;
}
}
if (flipIt) {
isCCW = !isCCW;
}
} else {
// it's three coordinate. Things are a bit different here
// because we have to at least kind of figure out where the
// hydrogen might be.
// before getting started with that, use some of the inchi rules
// for contradictory stereochemistry
// (Table 10 in the InChi v1 technical manual)
angle12 = atomVect0.signedAngleTo(atomVect1);
double angle20 = atomVect1.signedAngleTo(refVect);
// to simplify the code below, pick out the directions of the bonds
// if and only if they start at our atom:
auto dir0 = bondDir;
auto dir1 = (bond1->getBeginAtomIdx() == bond->getBeginAtomIdx())
? bond1->getBondDir()
: Bond::NONE;
auto dir2 = (bond2->getBeginAtomIdx() == bond->getBeginAtomIdx())
? bond2->getBondDir()
: Bond::NONE;
// we know bond 0 has the direction set
// this one is never allowed with different directions:
// 0 2
// \ /
// C
// *
// 1
if (angle01 < (M_PI - 1e-3) && angle12 < (M_PI - 1e-3) &&
angle20 < (M_PI - 1e-3)) {
if ((dir1 != Bond::NONE && dir1 != dir0) ||
(dir2 != Bond::NONE && dir2 != dir0)) {
BOOST_LOG(rdWarningLog)
<< "Warning: conflicting stereochemistry at atom "
<< bond->getBeginAtomIdx() << " ignored."
<< " by rule 1a." << std::endl;
return Atom::CHI_UNSPECIFIED;
}
} else {
// otherwise they cannot all be the same
if (dir1 == dir0 && dir1 == dir2) {
BOOST_LOG(rdWarningLog)
<< "Warning: conflicting stereochemistry at atom "
<< bond->getBeginAtomIdx() << " ignored."
<< " by rule 1b." << std::endl;
return Atom::CHI_UNSPECIFIED;
}
// the remaining cases where stereo is allowed are:
// 0 1 0 2
// * \*/
// 1 - C - 2 C for these two bond1 and bond2 must match
// and
// 1 2 1 0
// * \*/
// 2 - C - 0 C for these two bond0 and bond2 must match
// and
// 2 0 2 1
// * \*/
// 0 - C - 1 C for these two bond0 and bond1 must match
//
if (dir1 != Bond::NONE && dir1 != dir0) {
if ((angle01 >= M_PI) || // last two examples
(angle02 > M_PI && dir2 != Bond::NONE &&
dir1 != dir2) || // top two examples
(angle02 <= M_PI && dir2 != Bond::NONE &&
dir0 != dir2)) { // middle two examples
BOOST_LOG(rdWarningLog)
<< "Warning: conflicting stereochemistry at atom "
<< bond->getBeginAtomIdx() << " ignored."
<< " by rule 2a." << std::endl;
return Atom::CHI_UNSPECIFIED;
}
} else if (dir0 == dir2) {
// all bonds are the same and we already removed the "all
// angles less than 180" case above
BOOST_LOG(rdWarningLog)
<< "Warning: conflicting stereochemistry at atom "
<< bond->getBeginAtomIdx() << " ignored."
<< " by rule 2b." << std::endl;
return Atom::CHI_UNSPECIFIED;
}
if (angle01 < angle02) {
firstAngle = angle01;
secondAngle = angle02;
isCCW = true;
} else {
firstAngle = angle02;
secondAngle = angle01;
isCCW = false;
}
if (secondAngle - firstAngle >= (M_PI - 1e-4)) {
// it's a situation like one of these:
//
// 0 1 0 2
// * \*/
// 1 - C - 2 C
//
// In each of these cases, the implicit H is between atoms 1
// and 2, so we need to flip the rotation direction (go
// around the back).
isCCW = !isCCW;
}
}
}
// reverse the rotation direction if the reference is wedged down:
if (bondDir == Bond::BEGINDASH) {
isCCW = !isCCW;
}
if (swappedIt) {
// we swapped the order of the bonds to simplify the analysis above:
isCCW = !isCCW;
}
// ----------------
//
// We now have the rotation direction using mol-file order.
// We need to convert that into the appropriate label for the
// central atom
//
// ----------------
int nSwaps = atom->getPerturbationOrder(neighborBondIndices);
if (nSwaps % 2) {
isCCW = !isCCW;
}
if (isCCW) {
res = Atom::CHI_TETRAHEDRAL_CCW;
} else {
res = Atom::CHI_TETRAHEDRAL_CW;
}
}
return res;
} // namespace RDKit
Bond::BondDir getOppositeBondDir(Bond::BondDir dir) {
PRECONDITION(dir == Bond::ENDDOWNRIGHT || dir == Bond::ENDUPRIGHT,
"bad bond direction");
switch (dir) {
case Bond::ENDDOWNRIGHT:
return Bond::ENDUPRIGHT;
case Bond::ENDUPRIGHT:
return Bond::ENDDOWNRIGHT;
default:
return Bond::NONE;
}
}
void setBondDirRelativeToAtom(Bond *bond, Atom *atom, Bond::BondDir dir,
bool reverse, boost::dynamic_bitset<> &needsDir) {
PRECONDITION(bond, "bad bond");
PRECONDITION(atom, "bad atom");
PRECONDITION(dir == Bond::ENDUPRIGHT || dir == Bond::ENDDOWNRIGHT, "bad dir");
PRECONDITION(atom == bond->getBeginAtom() || atom == bond->getEndAtom(),
"atom doesn't belong to bond");
RDUNUSED_PARAM(needsDir);
if (bond->getBeginAtom() != atom) {
reverse = !reverse;
}
if (reverse) {
dir = (dir == Bond::ENDUPRIGHT ? Bond::ENDDOWNRIGHT : Bond::ENDUPRIGHT);
}
// to ensure maximum compatibility, even when a bond has unknown stereo (set
// explicitly and recorded in _UnknownStereo property), I will still let a
// direction to be computed. You must check the _UnknownStereo property to
// make sure whether this bond is explicitly set to have no direction info.
// This makes sense because the direction info are all derived from
// coordinates, the _UnknownStereo property is like extra metadata to be
// used with the direction info.
bond->setBondDir(dir);
}
bool isLinearArrangement(const RDGeom::Point3D &v1, const RDGeom::Point3D &v2,
double tol = 0.035) { // tolerance of 2 degrees
return fabs(v2.angleTo(v1) - M_PI) < tol;
}
void updateDoubleBondNeighbors(ROMol &mol, Bond *dblBond, const Conformer *conf,
boost::dynamic_bitset<> &needsDir,
std::vector<unsigned int> &singleBondCounts,
const VECT_INT_VECT &singleBondNbrs) {
// we want to deal only with double bonds:
PRECONDITION(dblBond, "bad bond");
PRECONDITION(dblBond->getBondType() == Bond::DOUBLE, "not a double bond");
if (!needsDir[dblBond->getIdx()]) {
return;
}
needsDir.set(dblBond->getIdx(), 0);
#if 0
std::cerr << "**********************\n";
std::cerr << "**********************\n";
std::cerr << "**********************\n";
std::cerr << "UDBN: " << dblBond->getIdx() << " "
<< dblBond->getBeginAtomIdx() << "=" << dblBond->getEndAtomIdx()
<< "\n";
#endif
ROMol::OEDGE_ITER beg, end;
std::vector<Bond *> followupBonds;
Bond *bond1 = nullptr, *obond1 = nullptr;
bool squiggleBondSeen = false;
bool doubleBondSeen = false;
boost::tie(beg, end) = mol.getAtomBonds(dblBond->getBeginAtom());
while (beg != end) {
Bond *tBond = mol[*beg];
if (tBond == dblBond) {
++beg;
continue;
}
if (tBond->getBondType() == Bond::SINGLE ||
tBond->getBondType() == Bond::AROMATIC) {
// prefer bonds that already have their directionality set
// or that are adjacent to more double bonds:
if (!bond1) {
bond1 = tBond;
} else if (needsDir[tBond->getIdx()]) {
if (singleBondCounts[tBond->getIdx()] >
singleBondCounts[bond1->getIdx()]) {
obond1 = bond1;
bond1 = tBond;
} else {
obond1 = tBond;
}
} else {
obond1 = bond1;
bond1 = tBond;
}
} else if (tBond->getBondType() == Bond::DOUBLE) {
doubleBondSeen = true;
}
int explicit_unknown_stereo;
if ((tBond->getBondType() == Bond::SINGLE ||
tBond->getBondType() == Bond::AROMATIC) &&
(tBond->getBondDir() == Bond::UNKNOWN ||
((tBond->getPropIfPresent<int>(common_properties::_UnknownStereo,
explicit_unknown_stereo) &&
explicit_unknown_stereo)))) {
squiggleBondSeen = true;
break;
}
++beg;
}
// Don't do any direction setting if we've seen a squiggle bond, but do mark
// the double bond as a crossed bond and return
if (!bond1 || squiggleBondSeen || doubleBondSeen) {
if (!doubleBondSeen) {
// FIX: This is the fix for #2649, but it will need to be modified once we
// decide to properly handle allenese
dblBond->setBondDir(Bond::EITHERDOUBLE);
}
return;
}
Bond *bond2 = nullptr, *obond2 = nullptr;
boost::tie(beg, end) = mol.getAtomBonds(dblBond->getEndAtom());
while (beg != end) {
Bond *tBond = mol[*beg];
if (tBond == dblBond) {
++beg;
continue;
}
if (tBond->getBondType() == Bond::SINGLE ||
tBond->getBondType() == Bond::AROMATIC) {
if (!bond2) {
bond2 = tBond;
} else if (needsDir[tBond->getIdx()]) {
if (singleBondCounts[tBond->getIdx()] >
singleBondCounts[bond2->getIdx()]) {
obond2 = bond2;
bond2 = tBond;
} else {
obond2 = tBond;
}
} else {
// we already had a bond2 and we don't need to set the direction
// on the new one, so swap.
obond2 = bond2;
bond2 = tBond;
}
} else if (tBond->getBondType() == Bond::DOUBLE) {
doubleBondSeen = true;
}
int explicit_unknown_stereo;
if (tBond->getBondType() == Bond::SINGLE &&
(tBond->getBondDir() == Bond::UNKNOWN ||
((tBond->getPropIfPresent<int>(common_properties::_UnknownStereo,
explicit_unknown_stereo) &&
explicit_unknown_stereo)))) {
squiggleBondSeen = true;
break;
}
++beg;
}
// Don't do any direction setting if we've seen a squiggle bond, but do mark
// the double bond as a crossed bond and return
if (!bond2 || squiggleBondSeen || doubleBondSeen) {
if (!doubleBondSeen) {
// FIX: This is the fix for #2649, but it will need to be modified once we
// decide to properly handle allenese
dblBond->setBondDir(Bond::EITHERDOUBLE);
}
return;
}
CHECK_INVARIANT(bond1 && bond2, "no bonds found");
bool sameTorsionDir = false;
if (conf) {
RDGeom::Point3D beginP = conf->getAtomPos(dblBond->getBeginAtomIdx());
RDGeom::Point3D endP = conf->getAtomPos(dblBond->getEndAtomIdx());
RDGeom::Point3D bond1P =
conf->getAtomPos(bond1->getOtherAtomIdx(dblBond->getBeginAtomIdx()));
RDGeom::Point3D bond2P =
conf->getAtomPos(bond2->getOtherAtomIdx(dblBond->getEndAtomIdx()));
// check for a linear arrangement of atoms on either end:
bool linear = false;
RDGeom::Point3D p1;
RDGeom::Point3D p2;
p1 = bond1P - beginP;
p2 = endP - beginP;
if (isLinearArrangement(p1, p2)) {
if (!obond1) {
linear = true;
} else {
// one of the bonds was linear; what about the other one?
Bond *tBond = bond1;
bond1 = obond1;
obond1 = tBond;
bond1P = conf->getAtomPos(
bond1->getOtherAtomIdx(dblBond->getBeginAtomIdx()));
p1 = bond1P - beginP;
if (isLinearArrangement(p1, p2)) {
linear = true;
}
}
}
if (!linear) {
p1 = bond2P - endP;
p2 = beginP - endP;
if (isLinearArrangement(p1, p2)) {
if (!obond2) {
linear = true;
} else {
Bond *tBond = bond2;
bond2 = obond2;
obond2 = tBond;
bond2P = conf->getAtomPos(
bond2->getOtherAtomIdx(dblBond->getEndAtomIdx()));
p1 = bond2P - beginP;
if (isLinearArrangement(p1, p2)) {
linear = true;
}
}
}
}
if (linear) {
dblBond->setBondDir(Bond::EITHERDOUBLE);
return;
}
double ang = RDGeom::computeDihedralAngle(bond1P, beginP, endP, bond2P);
if (ang < M_PI / 2) {
sameTorsionDir = false;
} else {
sameTorsionDir = true;
}
// std::cerr << " angle: " << ang << " sameTorsionDir: " << sameTorsionDir
// << "\n";
} else {
if (dblBond->getStereo() == Bond::STEREOCIS ||
dblBond->getStereo() == Bond::STEREOZ) {
sameTorsionDir = false;
} else if (dblBond->getStereo() == Bond::STEREOTRANS ||
dblBond->getStereo() == Bond::STEREOE) {
sameTorsionDir = true;
} else {
return;
}
// if bond1 or bond2 are not to the stereo-controlling atoms, flip
// our expections of the torsion dir
int bond1AtomIdx = bond1->getOtherAtomIdx(dblBond->getBeginAtomIdx());
if (bond1AtomIdx != dblBond->getStereoAtoms()[0] &&
bond1AtomIdx != dblBond->getStereoAtoms()[1]) {
sameTorsionDir = !sameTorsionDir;
}
int bond2AtomIdx = bond2->getOtherAtomIdx(dblBond->getEndAtomIdx());
if (bond2AtomIdx != dblBond->getStereoAtoms()[0] &&
bond2AtomIdx != dblBond->getStereoAtoms()[1]) {
sameTorsionDir = !sameTorsionDir;
}
}
/*
Time for some clarificatory text, because this gets really
confusing really fast.
The dihedral angle analysis above is based on viewing things
with an atom order as follows:
1
\
2 = 3
\
4
so dihedrals > 90 correspond to sameDir=true
however, the stereochemistry representation is
based on something more like this:
2
\
1 = 3
\
4
(i.e. we consider the direction-setting single bonds to be
starting at the double-bonded atom)
*/
bool reverseBondDir = sameTorsionDir;
Atom *atom1 = dblBond->getBeginAtom(), *atom2 = dblBond->getEndAtom();
if (needsDir[bond1->getIdx()]) {
BOOST_FOREACH (int bidx, singleBondNbrs[bond1->getIdx()]) {
// std::cerr << " neighbor from: " << bond1->getIdx() << " " << bidx
// << ": " << needsDir[bidx] << std::endl;
if (needsDir[bidx]) {
followupBonds.push_back(mol.getBondWithIdx(bidx));
}
}
}
if (needsDir[bond2->getIdx()]) {
BOOST_FOREACH (int bidx, singleBondNbrs[bond2->getIdx()]) {
// std::cerr << " neighbor from: " << bond2->getIdx() << " " << bidx
// << ": " << needsDir[bidx] << std::endl;
if (needsDir[bidx]) {
followupBonds.push_back(mol.getBondWithIdx(bidx));
}
}
}
if (!needsDir[bond1->getIdx()]) {
if (!needsDir[bond2->getIdx()]) {
// check that we agree
} else {
if (bond1->getBeginAtom() != atom1) {
reverseBondDir = !reverseBondDir;
}
setBondDirRelativeToAtom(bond2, atom2, bond1->getBondDir(),
reverseBondDir, needsDir);
}
} else if (!needsDir[bond2->getIdx()]) {
if (bond2->getBeginAtom() != atom2) {
reverseBondDir = !reverseBondDir;
}
setBondDirRelativeToAtom(bond1, atom1, bond2->getBondDir(), reverseBondDir,
needsDir);
} else {
setBondDirRelativeToAtom(bond1, atom1, Bond::ENDDOWNRIGHT, false, needsDir);
setBondDirRelativeToAtom(bond2, atom2, Bond::ENDDOWNRIGHT, reverseBondDir,
needsDir);
}
needsDir[bond1->getIdx()] = 0;
needsDir[bond2->getIdx()] = 0;
if (obond1 && needsDir[obond1->getIdx()]) {
setBondDirRelativeToAtom(obond1, atom1, bond1->getBondDir(),
bond1->getBeginAtom() == atom1, needsDir);
needsDir[obond1->getIdx()] = 0;
}
if (obond2 && needsDir[obond2->getIdx()]) {
setBondDirRelativeToAtom(obond2, atom2, bond2->getBondDir(),
bond2->getBeginAtom() == atom2, needsDir);
needsDir[obond2->getIdx()] = 0;
}
#if 0
std::cerr << " 1:" << bond1->getIdx() << " ";
if (obond1)
std::cerr << obond1->getIdx() << std::endl;
else
std::cerr << "N/A" << std::endl;
std::cerr << " 2:" << bond2->getIdx() << " ";
if (obond2)
std::cerr << obond2->getIdx() << std::endl;
else
std::cerr << "N/A" << std::endl;
std::cerr << "**********************\n";
std::cerr << "**********************\n";
std::cerr << "**********************\n";
#endif
BOOST_FOREACH (Bond *oDblBond, followupBonds) {
// std::cerr << "FOLLOWUP: " << oDblBond->getIdx() << " "
// << needsDir[oDblBond->getIdx()] << std::endl;
updateDoubleBondNeighbors(mol, oDblBond, conf, needsDir, singleBondCounts,
singleBondNbrs);
}
}
bool isBondCandidateForStereo(const Bond *bond) {
PRECONDITION(bond, "no bond");
if (bond->getBondType() == Bond::DOUBLE &&
bond->getStereo() != Bond::STEREOANY &&
bond->getBondDir() != Bond::EITHERDOUBLE &&
bond->getBeginAtom()->getDegree() > 1 &&
bond->getEndAtom()->getDegree() > 1 &&
shouldDetectDoubleBondStereo(bond)) {
return true;
}
return false;
}
const Atom *findHighestCIPNeighbor(const Atom *atom, const Atom *skipAtom) {
PRECONDITION(atom, "bad atom");
unsigned bestCipRank = 0;
const Atom *bestCipRankedAtom = nullptr;
const auto &mol = atom->getOwningMol();
for (const auto &index :
boost::make_iterator_range(mol.getAtomNeighbors(atom))) {
const auto neighbor = mol[index];
if (neighbor == skipAtom) {
continue;
}
unsigned cip = 0;
if (!neighbor->getPropIfPresent(common_properties::_CIPRank, cip)) {
// If at least one of the atoms doesn't have a CIP rank, the highest rank
// does not make sense, so return a nullptr.
return nullptr;
} else if (cip > bestCipRank || bestCipRankedAtom == nullptr) {
bestCipRank = cip;
bestCipRankedAtom = neighbor;
} else if (cip == bestCipRank) {
// This also doesn't make sense if there is a tie (if that's possible).
// We still keep the best CIP rank in case something better comes around
// (also not sure if that's possible).
BOOST_LOG(rdWarningLog)
<< "Warning: duplicate CIP ranks found in findHighestCIPNeighbor()"
<< std::endl;
bestCipRankedAtom = nullptr;
}
}
return bestCipRankedAtom;
}
} // namespace
namespace Chirality {
typedef std::pair<int, int> INT_PAIR;
typedef std::vector<INT_PAIR> INT_PAIR_VECT;
typedef std::vector<INT_PAIR>::iterator INT_PAIR_VECT_I;
typedef std::vector<INT_PAIR>::const_iterator INT_PAIR_VECT_CI;
typedef INT_VECT CIP_ENTRY;
typedef std::vector<CIP_ENTRY> CIP_ENTRY_VECT;
template <typename T>
void debugVect(const std::vector<T> arg) {
typename std::vector<T>::const_iterator viIt;
std::stringstream outS;
for (viIt = arg.begin(); viIt != arg.end(); viIt++) {
outS << *viIt << " ";
}
BOOST_LOG(rdDebugLog) << outS.str() << std::endl;
}
// --------------------------------------------------
//
// Calculates chiral invariants for the atoms of a molecule
// These are based on Labute's proposal in:
// "An Efficient Algorithm for the Determination of Topological
// RS Chirality" Journal of the CCG (1996)
//
// --------------------------------------------------
void buildCIPInvariants(const ROMol &mol, DOUBLE_VECT &res) {
PRECONDITION(res.size() >= mol.getNumAtoms(), "res vect too small");
int atsSoFar = 0;
//
// NOTE:
// If you make modifications to this, keep in mind that it is
// essential that the initial comparison of ranks behave properly.
// So, though it seems like it would makes sense to include
// information about the number of Hs (or charge, etc) in the CIP
// invariants, this will result in bad rankings. For example, in
// this molecule: OC[C@H](C)O, including the number of Hs would
// cause the methyl group (atom 3) to be ranked higher than the CH2
// connected to O (atom 1). This is totally wrong.
//
// We also don't include any pre-existing stereochemistry information.
// Though R and S assignments do factor in to the priorities of atoms,
// we're starting here from scratch and we'll let the R and S stuff
// be taken into account during the iterations.
//
for (ROMol::ConstAtomIterator atIt = mol.beginAtoms(); atIt != mol.endAtoms();
++atIt) {
const unsigned short nMassBits = 10;
const unsigned short maxMass = 1 << nMassBits;
Atom const *atom = *atIt;
unsigned long invariant = 0;
int num = atom->getAtomicNum() % 128;
// get an int with the deviation in the mass from the default:
int mass = 0;
if (atom->getIsotope()) {
mass =
atom->getIsotope() -
PeriodicTable::getTable()->getMostCommonIsotope(atom->getAtomicNum());
if (mass >= 0) {
mass += 1;
}
}
mass += maxMass / 2;
if (mass < 0) {
mass = 0;
} else {
mass = mass % maxMass;
}
#if 0
// NOTE: the inclusion of hybridization in the invariant (as
// suggested in the original paper), leads to the situation
// that
// C[C@@](O)(C=C)C(C)CC
// and
// C[C@@](O)(C=C)C(C)CO
// are assigned S chirality even though the rest of the world
// seems to agree that they ought to be R (atom 3, sp2, is ranked
// higher than atom 5, sp3, no matter what their environments)
int hyb=0;
switch(atom->getHybridization()) {
case Atom::SP: hyb=6;break;
case Atom::SP2: hyb=5;break;
case Atom::SP3: hyb=1;break;
case Atom::SP3D: hyb=3;break;
case Atom::SP3D2: hyb=2;break;
default: break;
}
#endif
invariant = num; // 7 bits here
invariant = (invariant << nMassBits) | mass;
int mapnum = -1;
atom->getPropIfPresent(common_properties::molAtomMapNumber, mapnum);
mapnum = (mapnum + 1) % 1024; // increment to allow map numbers of zero
// (though that would be stupid)
invariant = (invariant << 10) | mapnum;
res[atsSoFar++] = invariant;
}
}
void iterateCIPRanks(const ROMol &mol, DOUBLE_VECT &invars, UINT_VECT &ranks,
bool seedWithInvars) {
PRECONDITION(invars.size() == mol.getNumAtoms(), "bad invars size");
PRECONDITION(ranks.size() >= mol.getNumAtoms(), "bad ranks size");
unsigned int numAtoms = mol.getNumAtoms();
CIP_ENTRY_VECT cipEntries(numAtoms);
INT_LIST allIndices;
for (unsigned int i = 0; i < numAtoms; ++i) {
allIndices.push_back(i);
}
#ifdef VERBOSE_CANON
BOOST_LOG(rdDebugLog) << "invariants:" << std::endl;
for (unsigned int i = 0; i < numAtoms; i++) {
BOOST_LOG(rdDebugLog) << i << ": " << invars[i] << std::endl;
}
#endif
// rank those:
Rankers::rankVect(invars, ranks);
#ifdef VERBOSE_CANON
BOOST_LOG(rdDebugLog) << "initial ranks:" << std::endl;
for (unsigned int i = 0; i < numAtoms; ++i) {
BOOST_LOG(rdDebugLog) << i << ": " << ranks[i] << std::endl;
}
#endif
// Start each atom's rank vector with its atomic number:
// Note: in general one should avoid the temptation to
// use invariants here, those lead to incorrect answers
for (unsigned int i = 0; i < numAtoms; i++) {
if (!seedWithInvars) {
cipEntries[i].push_back(mol[i]->getAtomicNum());
cipEntries[i].push_back(static_cast<int>(ranks[i]));
} else {
cipEntries[i].push_back(static_cast<int>(invars[i]));
}
}
// Loop until either:
// 1) all classes are uniquified
// 2) the number of ranks doesn't change from one iteration to
// the next
// 3) we've gone through maxIts times
// maxIts is calculated by dividing the number of atoms
// by 2. That's a pessimal version of the
// maximum number of steps required for two atoms to
// "feel" each other (each influences one additional
// neighbor shell per iteration).
unsigned int maxIts = numAtoms / 2 + 1;
unsigned int numIts = 0;
int lastNumRanks = -1;
unsigned int numRanks = *std::max_element(ranks.begin(), ranks.end()) + 1;
while (numRanks < numAtoms && numIts < maxIts &&
(lastNumRanks < 0 ||
static_cast<unsigned int>(lastNumRanks) < numRanks)) {
unsigned int longestEntry = 0;
// ----------------------------------------------------
//
// for each atom, get a sorted list of its neighbors' ranks:
//
for (int &index : allIndices) {
CIP_ENTRY localEntry;
localEntry.reserve(16);
// start by pushing on our neighbors' ranks:
ROMol::OEDGE_ITER beg, end;
boost::tie(beg, end) = mol.getAtomBonds(mol[index]);
while (beg != end) {
const Bond *bond = mol[*beg];
++beg;
unsigned int nbrIdx = bond->getOtherAtomIdx(index);
const Atom *nbr = mol[nbrIdx];
int rank = ranks[nbrIdx] + 1;
// put the neighbor in 2N times where N is the bond order as a double.
// this is to treat aromatic linkages on fair footing. i.e. at least in
// the
// first iteration --c(:c):c and --C(=C)-C should look the same.
// this was part of issue 3009911
unsigned int count;
if (bond->getBondType() == Bond::DOUBLE && nbr->getAtomicNum() == 15 &&
(nbr->getDegree() == 4 || nbr->getDegree() == 3)) {
// a special case for chiral phosphorous compounds
// (this was leading to incorrect assignment of
// R/S labels ):
count = 1;
// general justification of this is:
// Paragraph 2.2. in the 1966 article is "Valence-Bond Conventions:
// Multiple-Bond Unsaturation and Aromaticity". It contains several
// conventions of which convention (b) is the one applying here:
// "(b) Contributions by d orbitals to bonds of quadriligant atoms are
// neglected."
// FIX: this applies to more than just P
} else {
count = static_cast<unsigned int>(
floor(2. * bond->getBondTypeAsDouble() + .1));
}
auto ePos =
std::lower_bound(localEntry.begin(), localEntry.end(), rank);
localEntry.insert(ePos, count, rank);
++nbr;
}
// add a zero for each coordinated H:
// (as long as we're not a query atom)
if (!mol[index]->hasQuery()) {
localEntry.insert(localEntry.begin(), mol[index]->getTotalNumHs(), 0);
}
// we now have a sorted list of our neighbors' ranks,
// copy it on in reversed order:
cipEntries[index].insert(cipEntries[index].end(), localEntry.rbegin(),
localEntry.rend());
if (cipEntries[index].size() > longestEntry) {
longestEntry = rdcast<unsigned int>(cipEntries[index].size());
}
}
// ----------------------------------------------------
//
// pad the entries so that we compare rounds to themselves:
//
for (int &index : allIndices) {
auto sz = rdcast<unsigned int>(cipEntries[index].size());
if (sz < longestEntry) {
cipEntries[index].insert(cipEntries[index].end(), longestEntry - sz,
-1);
}
}
// ----------------------------------------------------
//
// sort the new ranks and update the list of active indices:
//
lastNumRanks = numRanks;
Rankers::rankVect(cipEntries, ranks);
numRanks = *std::max_element(ranks.begin(), ranks.end()) + 1;
// now truncate each vector and stick the rank at the end
for (unsigned int i = 0; i < numAtoms; ++i) {
cipEntries[i][numIts + 1] = ranks[i];
cipEntries[i].erase(cipEntries[i].begin() + numIts + 2,
cipEntries[i].end());
}
++numIts;
#ifdef VERBOSE_CANON
BOOST_LOG(rdDebugLog) << "strings and ranks:" << std::endl;
for (unsigned int i = 0; i < numAtoms; i++) {
BOOST_LOG(rdDebugLog) << i << ": " << ranks[i] << " > ";
debugVect(cipEntries[i]);
}
#endif
}
}
// Figure out the CIP ranks for the atoms of a molecule
void assignAtomCIPRanks(const ROMol &mol, UINT_VECT &ranks) {
PRECONDITION((!ranks.size() || ranks.size() >= mol.getNumAtoms()),
"bad ranks size");
if (!ranks.size()) {
ranks.resize(mol.getNumAtoms());
}
unsigned int numAtoms = mol.getNumAtoms();
#ifndef USE_NEW_STEREOCHEMISTRY
// get the initial invariants:
DOUBLE_VECT invars(numAtoms, 0);
buildCIPInvariants(mol, invars);
iterateCIPRanks(mol, invars, ranks, false);
#else
Canon::chiralRankMolAtoms(mol, ranks);
#endif
// copy the ranks onto the atoms:
for (unsigned int i = 0; i < numAtoms; ++i) {
mol[i]->setProp(common_properties::_CIPRank, ranks[i], 1);
}
}
// construct a vector with <atomIdx,direction> pairs for
// neighbors of a given atom. This list will only be
// non-empty if at least one of the bonds has its direction
// set.
void findAtomNeighborDirHelper(const ROMol &mol, const Atom *atom,
const Bond *refBond, UINT_VECT &ranks,
INT_PAIR_VECT &neighbors,
bool &hasExplicitUnknownStereo) {
PRECONDITION(atom, "bad atom");
PRECONDITION(refBond, "bad bond");
bool seenDir = false;
ROMol::OEDGE_ITER beg, end;
boost::tie(beg, end) = mol.getAtomBonds(atom);
while (beg != end) {
const Bond *bond = mol[*beg];
// check whether this bond is explicitly set to have unknown stereo
if (!hasExplicitUnknownStereo) {
int explicit_unknown_stereo;
if (bond->getBondDir() == Bond::UNKNOWN // there's a squiggle bond
|| (bond->getPropIfPresent<int>(common_properties::_UnknownStereo,
explicit_unknown_stereo) &&
explicit_unknown_stereo)) {
hasExplicitUnknownStereo = true;
}
}
Bond::BondDir dir = bond->getBondDir();
if (bond->getIdx() != refBond->getIdx()) {
if (dir == Bond::ENDDOWNRIGHT || dir == Bond::ENDUPRIGHT) {
seenDir = true;
// If we're considering the bond "backwards", (i.e. from end
// to beginning, reverse the effective direction:
if (atom != bond->getBeginAtom()) {
if (dir == Bond::ENDDOWNRIGHT) {
dir = Bond::ENDUPRIGHT;
} else {
dir = Bond::ENDDOWNRIGHT;
}
}
}
Atom *nbrAtom = bond->getOtherAtom(atom);
neighbors.push_back(std::make_pair(nbrAtom->getIdx(), dir));
}
++beg;
}
if (!seenDir) {
neighbors.clear();
} else {
if (neighbors.size() == 2 &&
ranks[neighbors[0].first] == ranks[neighbors[1].first]) {
// the two substituents are identical, no stereochemistry here:
neighbors.clear();
} else {
// it's possible that direction was set only one of the bonds, set the
// other
// bond's direction to be reversed:
if (neighbors[0].second != Bond::ENDDOWNRIGHT &&
neighbors[0].second != Bond::ENDUPRIGHT) {
CHECK_INVARIANT(neighbors.size() > 1, "too few neighbors");
neighbors[0].second = neighbors[1].second == Bond::ENDDOWNRIGHT
? Bond::ENDUPRIGHT
: Bond::ENDDOWNRIGHT;
} else if (neighbors.size() > 1 &&
neighbors[1].second != Bond::ENDDOWNRIGHT &&
neighbors[1].second != Bond::ENDUPRIGHT) {
neighbors[1].second = neighbors[0].second == Bond::ENDDOWNRIGHT
? Bond::ENDUPRIGHT
: Bond::ENDDOWNRIGHT;
}
}
}
}
// find the neighbors for an atoms that are not connected by single bond that is
// not refBond
// if checkDir is true only neighbor atoms with bonds marked with a direction
// will be returned
void findAtomNeighborsHelper(const ROMol &mol, const Atom *atom,
const Bond *refBond, UINT_VECT &neighbors,
bool checkDir = false,
bool includeAromatic = false) {
PRECONDITION(atom, "bad atom");
PRECONDITION(refBond, "bad bond");
neighbors.clear();
ROMol::OEDGE_ITER beg, end;
boost::tie(beg, end) = mol.getAtomBonds(atom);
while (beg != end) {
const Bond *bond = mol[*beg];
Bond::BondDir dir = bond->getBondDir();
if ((bond->getBondType() == Bond::SINGLE ||
(includeAromatic && bond->getBondType() == Bond::AROMATIC)) &&
bond->getIdx() != refBond->getIdx()) {
if (checkDir) {
if ((dir != Bond::ENDDOWNRIGHT) && (dir != Bond::ENDUPRIGHT)) {
++beg;
continue;
}
}
Atom *nbrAtom = bond->getOtherAtom(atom);
neighbors.push_back(nbrAtom->getIdx());
}
++beg;
}
}
// conditions for an atom to be a candidate for ring stereochem:
// 1) two non-ring neighbors that have different ranks
// 2) one non-ring neighbor and two ring neighbors (the ring neighbors will
// have the same rank)
// 3) four ring neighbors with three different ranks
// 4) three ring neighbors with two different ranks
// example for this last one: C[C@H]1CC2CCCC3CCCC(C1)[C@@H]23
// Note that N atoms are only candidates if they are in a 3-ring
bool atomIsCandidateForRingStereochem(const ROMol &mol, const Atom *atom) {
PRECONDITION(atom, "bad atom");
bool res = false;
std::set<unsigned int> nbrRanks;
if (!atom->getPropIfPresent(common_properties::_ringStereochemCand, res)) {
const RingInfo *ringInfo = mol.getRingInfo();
if (ringInfo->isInitialized() && ringInfo->numAtomRings(atom->getIdx())) {
if (atom->getAtomicNum() == 7 &&
!ringInfo->isAtomInRingOfSize(atom->getIdx(), 3)) {
return false;
}
ROMol::OEDGE_ITER beg, end;
boost::tie(beg, end) = mol.getAtomBonds(atom);
std::vector<const Atom *> nonRingNbrs;
std::vector<const Atom *> ringNbrs;
while (beg != end) {
const Bond *bond = mol[*beg];
if (!ringInfo->numBondRings(bond->getIdx())) {
nonRingNbrs.push_back(bond->getOtherAtom(atom));
} else {
const Atom *nbr = bond->getOtherAtom(atom);
ringNbrs.push_back(nbr);
unsigned int rnk = 0;
nbr->getPropIfPresent(common_properties::_CIPRank, rnk);
nbrRanks.insert(rnk);
}
++beg;
}
unsigned int rank1 = 0, rank2 = 0;
switch (nonRingNbrs.size()) {
case 2:
if (nonRingNbrs[0]->getPropIfPresent(common_properties::_CIPRank,
rank1) &&
nonRingNbrs[1]->getPropIfPresent(common_properties::_CIPRank,
rank2)) {
if (rank1 == rank2) {
res = false;
} else {
res = true;
}
}
break;
case 1:
if (ringNbrs.size() >= 2) {
res = true;
}
break;
case 0:
if (ringNbrs.size() == 4 && nbrRanks.size() == 3) {
res = true;
} else if (ringNbrs.size() == 3 && nbrRanks.size() == 2) {
res = true;
} else {
res = false;
}
break;
default:
res = false;
}
}
atom->setProp(common_properties::_ringStereochemCand, res, 1);
}
return res;
}
// finds all possible chiral special cases.
// at the moment this is just candidates for ring stereochemistry
void findChiralAtomSpecialCases(ROMol &mol,
boost::dynamic_bitset<> &possibleSpecialCases) {
PRECONDITION(possibleSpecialCases.size() >= mol.getNumAtoms(),
"bit vector too small");
possibleSpecialCases.reset();
if (!mol.getRingInfo()->isInitialized()) {
VECT_INT_VECT sssrs;
MolOps::symmetrizeSSSR(mol, sssrs);
}
boost::dynamic_bitset<> atomsSeen(mol.getNumAtoms());
boost::dynamic_bitset<> atomsUsed(mol.getNumAtoms());
boost::dynamic_bitset<> bondsSeen(mol.getNumBonds());
for (ROMol::AtomIterator ait = mol.beginAtoms(); ait != mol.endAtoms();
++ait) {
const Atom *atom = *ait;
if (atomsSeen[atom->getIdx()]) {
continue;
}
if (atom->getChiralTag() == Atom::CHI_UNSPECIFIED ||
atom->hasProp(common_properties::_CIPCode) ||
!mol.getRingInfo()->numAtomRings(atom->getIdx()) ||
!atomIsCandidateForRingStereochem(mol, atom)) {
continue;
}
// do a BFS from this ring atom along ring bonds and find other
// stereochemistry candidates.
std::list<const Atom *> nextAtoms;
// start with finding viable neighbors
ROMol::OEDGE_ITER beg, end;
boost::tie(beg, end) = mol.getAtomBonds(atom);
while (beg != end) {
unsigned int bidx = mol[*beg]->getIdx();
if (!bondsSeen[bidx]) {
bondsSeen.set(bidx);
if (mol.getRingInfo()->numBondRings(bidx)) {
const Atom *oatom = mol[*beg]->getOtherAtom(atom);
if (!atomsSeen[oatom->getIdx()]) {
nextAtoms.push_back(oatom);
atomsUsed.set(oatom->getIdx());
}
}
}
++beg;
}
INT_VECT ringStereoAtoms(0);
if (!nextAtoms.empty()) {
atom->getPropIfPresent(common_properties::_ringStereoAtoms,
ringStereoAtoms);
}
while (!nextAtoms.empty()) {
const Atom *ratom = nextAtoms.front();
nextAtoms.pop_front();
atomsSeen.set(ratom->getIdx());
if (ratom->getChiralTag() != Atom::CHI_UNSPECIFIED &&
!ratom->hasProp(common_properties::_CIPCode) &&
atomIsCandidateForRingStereochem(mol, ratom)) {
int same = (ratom->getChiralTag() == atom->getChiralTag()) ? 1 : -1;
ringStereoAtoms.push_back(same * (ratom->getIdx() + 1));
INT_VECT oringatoms(0);
ratom->getPropIfPresent(common_properties::_ringStereoAtoms,
oringatoms);
oringatoms.push_back(same * (atom->getIdx() + 1));
ratom->setProp(common_properties::_ringStereoAtoms, oringatoms, true);
possibleSpecialCases.set(ratom->getIdx());
possibleSpecialCases.set(atom->getIdx());
}
// now push this atom's neighbors
boost::tie(beg, end) = mol.getAtomBonds(ratom);
while (beg != end) {
unsigned int bidx = mol[*beg]->getIdx();
if (!bondsSeen[bidx]) {
bondsSeen.set(bidx);
if (mol.getRingInfo()->numBondRings(bidx)) {
const Atom *oatom = mol[*beg]->getOtherAtom(ratom);
if (!atomsSeen[oatom->getIdx()] && !atomsUsed[oatom->getIdx()]) {
nextAtoms.push_back(oatom);
atomsUsed.set(oatom->getIdx());
}
}
}
++beg;
}
} // end of BFS
if (ringStereoAtoms.size() != 0) {
atom->setProp(common_properties::_ringStereoAtoms, ringStereoAtoms, true);
// because we're only going to hit each ring atom once, the first atom we
// encounter in a ring is going to end up with all the other atoms set as
// stereoAtoms, but each of them will only have the first atom present. We
// need to fix that. because the traverse from the first atom only
// followed ring bonds, these things are all by definition in one ring
// system. (Q: is this true if there's a spiro center in there?)
INT_VECT same(mol.getNumAtoms(), 0);
BOOST_FOREACH (int ringAtomEntry, ringStereoAtoms) {
int ringAtomIdx =
ringAtomEntry < 0 ? -ringAtomEntry - 1 : ringAtomEntry - 1;
same[ringAtomIdx] = ringAtomEntry;
}
for (INT_VECT_CI rae = ringStereoAtoms.begin();
rae != ringStereoAtoms.end(); ++rae) {
int ringAtomEntry = *rae;
int ringAtomIdx =
ringAtomEntry < 0 ? -ringAtomEntry - 1 : ringAtomEntry - 1;
INT_VECT lringatoms(0);
mol.getAtomWithIdx(ringAtomIdx)
->getPropIfPresent(common_properties::_ringStereoAtoms, lringatoms);
CHECK_INVARIANT(lringatoms.size() > 0, "no other ring atoms found.");
for (auto orae = rae + 1; orae != ringStereoAtoms.end(); ++orae) {
int oringAtomEntry = *orae;
int oringAtomIdx =
oringAtomEntry < 0 ? -oringAtomEntry - 1 : oringAtomEntry - 1;
int theseDifferent = (ringAtomEntry < 0) ^ (oringAtomEntry < 0);
lringatoms.push_back(theseDifferent ? -(oringAtomIdx + 1)
: (oringAtomIdx + 1));
INT_VECT olringatoms(0);
mol.getAtomWithIdx(oringAtomIdx)
->getPropIfPresent(common_properties::_ringStereoAtoms,
olringatoms);
CHECK_INVARIANT(olringatoms.size() > 0, "no other ring atoms found.");
olringatoms.push_back(theseDifferent ? -(ringAtomIdx + 1)
: (ringAtomIdx + 1));
mol.getAtomWithIdx(oringAtomIdx)
->setProp(common_properties::_ringStereoAtoms, olringatoms);
}
mol.getAtomWithIdx(ringAtomIdx)
->setProp(common_properties::_ringStereoAtoms, lringatoms);
}
} else {
possibleSpecialCases.reset(atom->getIdx());
}
atomsSeen.set(atom->getIdx());
}
}
std::pair<bool, bool> isAtomPotentialChiralCenter(
const Atom *atom, const ROMol &mol, const UINT_VECT &ranks,
Chirality::INT_PAIR_VECT &nbrs) {
// loop over all neighbors and form a decorated list of their
// ranks:
bool legalCenter = true;
bool hasDupes = false;
if (atom->getTotalDegree() > 4) {
// we only know tetrahedral chirality
legalCenter = false;
} else {
// cases we can exclude immediately without having to look at neighbors
// ranks:
if (atom->getTotalDegree() < 3) {
legalCenter = false;
} else if (atom->getDegree() < 3 &&
(atom->getAtomicNum() != 15 && atom->getAtomicNum() != 33)) {
// less than three neighbors is never stereogenic
// unless it is a phosphine/arsine with implicit H (this is from InChI)
legalCenter = false;
} else if (atom->getDegree() == 3 && atom->getTotalNumHs() != 1) {
// assume something that's really three coordinate isn't potentially
// chiral, then look for exceptions
legalCenter = false;
if (atom->getAtomicNum() == 7) {
if (mol.getRingInfo()->isAtomInRingOfSize(atom->getIdx(), 3)) {
// three-coordinate N is only stereogenic if it's in a 3-ring (this is
// from InChI)
legalCenter = true;
}
} else if (atom->getAtomicNum() == 15 || atom->getAtomicNum() == 33) {
// three-coordinate phosphines and arsines
// are always treated as stereogenic even with H atom neighbors.
// (this is from InChI)
legalCenter = true;
} else if (atom->getAtomicNum() == 16 || atom->getAtomicNum() == 34) {
if (atom->getExplicitValence() == 4 ||
(atom->getExplicitValence() == 3 && atom->getFormalCharge() == 1)) {
// we also accept sulfur or selenium with either a positive charge
// or a double bond:
legalCenter = true;
}
}
}
if (legalCenter) {
boost::dynamic_bitset<> codesSeen(mol.getNumAtoms());
ROMol::OEDGE_ITER beg, end;
boost::tie(beg, end) = mol.getAtomBonds(atom);
while (beg != end) {
unsigned int otherIdx = mol[*beg]->getOtherAtom(atom)->getIdx();
CHECK_INVARIANT(ranks[otherIdx] < mol.getNumAtoms(),
"CIP rank higher than the number of atoms.");
// watch for neighbors with duplicate ranks, which would mean
// that we cannot be chiral:
if (codesSeen[ranks[otherIdx]]) {
// we've already seen this code, it's a dupe
hasDupes = true;
break;
}
codesSeen[ranks[otherIdx]] = 1;
nbrs.push_back(std::make_pair(ranks[otherIdx], mol[*beg]->getIdx()));
++beg;
}
}
}
return std::make_pair(legalCenter, hasDupes);
}
// returns a pair:
// 1) are there unassigned stereoatoms
// 2) did we assign any?
std::pair<bool, bool> assignAtomChiralCodes(ROMol &mol, UINT_VECT &ranks,
bool flagPossibleStereoCenters) {
PRECONDITION((!ranks.size() || ranks.size() == mol.getNumAtoms()),
"bad rank vector size");
bool atomChanged = false;
unsigned int unassignedAtoms = 0;
// ------------------
// now loop over each atom and, if it's marked as chiral,
// figure out the appropriate CIP label:
for (ROMol::AtomIterator atIt = mol.beginAtoms(); atIt != mol.endAtoms();
++atIt) {
Atom *atom = *atIt;
Atom::ChiralType tag = atom->getChiralTag();
// only worry about this atom if it has a marked chirality
// we understand:
if (flagPossibleStereoCenters ||
(tag != Atom::CHI_UNSPECIFIED && tag != Atom::CHI_OTHER)) {
if (atom->hasProp(common_properties::_CIPCode)) {
continue;
}
if (!ranks.size()) {
// if we need to, get the "CIP" ranking of each atom:
assignAtomCIPRanks(mol, ranks);
}
Chirality::INT_PAIR_VECT nbrs;
bool legalCenter, hasDupes;
// note that hasDupes is only evaluated if legalCenter==true
boost::tie(legalCenter, hasDupes) =
isAtomPotentialChiralCenter(atom, mol, ranks, nbrs);
if (legalCenter) {
++unassignedAtoms;
}
if (legalCenter && !hasDupes && flagPossibleStereoCenters) {
atom->setProp(common_properties::_ChiralityPossible, 1);
}
if (legalCenter && !hasDupes && tag != Atom::CHI_UNSPECIFIED &&
tag != Atom::CHI_OTHER) {
// stereochem is possible and we have no duplicate neighbors, assign
// a CIP code:
atomChanged = true;
--unassignedAtoms;
// sort the list of neighbors by their CIP ranks:
std::sort(nbrs.begin(), nbrs.end(), Rankers::pairLess<int, int>());
// collect the list of neighbor indices:
std::list<int> nbrIndices;
for (Chirality::INT_PAIR_VECT_CI nbrIt = nbrs.begin();
nbrIt != nbrs.end(); ++nbrIt) {
nbrIndices.push_back((*nbrIt).second);
}
// ask the atom how many swaps we have to make:
int nSwaps = atom->getPerturbationOrder(nbrIndices);
// if the atom has 3 neighbors and a hydrogen, add a swap:
if (nbrIndices.size() == 3 && atom->getTotalNumHs() == 1) {
++nSwaps;
}
// if that number is odd, we'll change our chirality:
if (nSwaps % 2) {
if (tag == Atom::CHI_TETRAHEDRAL_CCW) {
tag = Atom::CHI_TETRAHEDRAL_CW;
} else {
tag = Atom::CHI_TETRAHEDRAL_CCW;
}
}
// now assign the CIP code:
std::string cipCode;
if (tag == Atom::CHI_TETRAHEDRAL_CCW) {
cipCode = "S";
} else {
cipCode = "R";
}
atom->setProp(common_properties::_CIPCode, cipCode);
}
}
}
return std::make_pair((unassignedAtoms > 0), atomChanged);
}
// returns a pair:
// 1) are there unassigned stereo bonds?
// 2) did we assign any?
std::pair<bool, bool> assignBondStereoCodes(ROMol &mol, UINT_VECT &ranks) {
PRECONDITION((!ranks.size() || ranks.size() == mol.getNumAtoms()),
"bad rank vector size");
bool assignedABond = false;
unsigned int unassignedBonds = 0;
boost::dynamic_bitset<> bondsToClear(mol.getNumBonds());
// find the double bonds:
for (ROMol::BondIterator bondIt = mol.beginBonds(); bondIt != mol.endBonds();
++bondIt) {
if ((*bondIt)->getBondType() == Bond::DOUBLE) {
Bond *dblBond = *bondIt;
if (dblBond->getStereo() != Bond::STEREONONE) {
continue;
}
if (!ranks.size()) {
assignAtomCIPRanks(mol, ranks);
}
dblBond->getStereoAtoms().clear();
// at the moment we are ignoring stereochem on ring bonds with less than
// 8
// members.
if (shouldDetectDoubleBondStereo(dblBond)) {
const Atom *begAtom = dblBond->getBeginAtom();
const Atom *endAtom = dblBond->getEndAtom();
// we're only going to handle 2 or three coordinate atoms:
if ((begAtom->getDegree() == 2 || begAtom->getDegree() == 3) &&
(endAtom->getDegree() == 2 || endAtom->getDegree() == 3)) {
++unassignedBonds;
// look around each atom and see if it has at least one bond with
// direction marked:
// the pairs here are: atomrank,bonddir
Chirality::INT_PAIR_VECT begAtomNeighbors, endAtomNeighbors;
bool hasExplicitUnknownStereo = false;
int bgn_stereo = false, end_stereo = false;
if ((dblBond->getBeginAtom()->getPropIfPresent(
common_properties::_UnknownStereo, bgn_stereo) &&
bgn_stereo) ||
(dblBond->getEndAtom()->getPropIfPresent(
common_properties::_UnknownStereo, end_stereo) &&
end_stereo)) {
hasExplicitUnknownStereo = true;
}
Chirality::findAtomNeighborDirHelper(mol, begAtom, dblBond, ranks,
begAtomNeighbors,
hasExplicitUnknownStereo);
Chirality::findAtomNeighborDirHelper(mol, endAtom, dblBond, ranks,
endAtomNeighbors,
hasExplicitUnknownStereo);
if (begAtomNeighbors.size() && endAtomNeighbors.size()) {
// Each atom has at least one neighboring bond with marked
// directionality. Find the highest-ranked directionality
// on each side:
int begDir, endDir, endNbrAid, begNbrAid;
if (begAtomNeighbors.size() == 1 ||
ranks[begAtomNeighbors[0].first] >
ranks[begAtomNeighbors[1].first]) {
begDir = begAtomNeighbors[0].second;
begNbrAid = begAtomNeighbors[0].first;
} else {
begDir = begAtomNeighbors[1].second;
begNbrAid = begAtomNeighbors[1].first;
}
if (endAtomNeighbors.size() == 1 ||
ranks[endAtomNeighbors[0].first] >
ranks[endAtomNeighbors[1].first]) {
endDir = endAtomNeighbors[0].second;
endNbrAid = endAtomNeighbors[0].first;
} else {
endDir = endAtomNeighbors[1].second;
endNbrAid = endAtomNeighbors[1].first;
}
bool conflictingBegin =
(begAtomNeighbors.size() == 2 &&
begAtomNeighbors[0].second == begAtomNeighbors[1].second);
bool conflictingEnd =
(endAtomNeighbors.size() == 2 &&
endAtomNeighbors[0].second == endAtomNeighbors[1].second);
if (conflictingBegin || conflictingEnd) {
dblBond->setStereo(Bond::STEREONONE);
BOOST_LOG(rdWarningLog) << "Conflicting single bond directions "
"around double bond at index "
<< dblBond->getIdx() << "." << std::endl;
BOOST_LOG(rdWarningLog) << " BondStereo set to STEREONONE and "
"single bond directions set to NONE."
<< std::endl;
assignedABond = true;
if (conflictingBegin) {
bondsToClear[mol.getBondBetweenAtoms(begAtomNeighbors[0].first,
begAtom->getIdx())
->getIdx()] = 1;
bondsToClear[mol.getBondBetweenAtoms(begAtomNeighbors[1].first,
begAtom->getIdx())
->getIdx()] = 1;
}
if (conflictingEnd) {
bondsToClear[mol.getBondBetweenAtoms(endAtomNeighbors[0].first,
endAtom->getIdx())
->getIdx()] = 1;
bondsToClear[mol.getBondBetweenAtoms(endAtomNeighbors[1].first,
endAtom->getIdx())
->getIdx()] = 1;
}
} else {
dblBond->getStereoAtoms().push_back(begNbrAid);
dblBond->getStereoAtoms().push_back(endNbrAid);
if (hasExplicitUnknownStereo) {
dblBond->setStereo(Bond::STEREOANY);
assignedABond = true;
} else if (begDir == endDir) {
// In findAtomNeighborDirHelper, we've set up the
// bond directions here so that they correspond to
// having both single bonds START at the double bond.
// This means that if the single bonds point in the same
// direction, the bond is cis, "Z"
dblBond->setStereo(Bond::STEREOZ);
assignedABond = true;
} else {
dblBond->setStereo(Bond::STEREOE);
assignedABond = true;
}
}
--unassignedBonds;
}
}
}
}
}
for (unsigned int i = 0; i < mol.getNumBonds(); ++i) {
if (bondsToClear[i]) {
mol.getBondWithIdx(i)->setBondDir(Bond::NONE);
}
}
return std::make_pair(unassignedBonds > 0, assignedABond);
}
// reassign atom ranks by supplementing the current ranks
// with information about known chirality
void rerankAtoms(const ROMol &mol, UINT_VECT &ranks) {
PRECONDITION(ranks.size() == mol.getNumAtoms(), "bad rank vector size");
unsigned int factor = 100;
while (factor < mol.getNumAtoms()) {
factor *= 10;
}
#ifdef VERBOSE_CANON
BOOST_LOG(rdDebugLog) << "rerank PRE: " << std::endl;
for (int i = 0; i < mol.getNumAtoms(); i++) {
BOOST_LOG(rdDebugLog) << " " << i << ": " << ranks[i] << std::endl;
}
#endif
DOUBLE_VECT invars(mol.getNumAtoms());
// and now supplement them:
for (unsigned int i = 0; i < mol.getNumAtoms(); ++i) {
invars[i] = ranks[i] * factor;
const Atom *atom = mol.getAtomWithIdx(i);
// Priority order: R > S > nothing
std::string cipCode;
if (atom->getPropIfPresent(common_properties::_CIPCode, cipCode)) {
if (cipCode == "S") {
invars[i] += 10;
} else if (cipCode == "R") {
invars[i] += 20;
}
}
ROMol::OEDGE_ITER beg, end;
boost::tie(beg, end) = mol.getAtomBonds(atom);
while (beg != end) {
const Bond *oBond = mol[*beg];
if (oBond->getBondType() == Bond::DOUBLE) {
if (oBond->getStereo() == Bond::STEREOE) {
invars[i] += 1;
} else if (oBond->getStereo() == Bond::STEREOZ) {
invars[i] += 2;
}
}
++beg;
}
}
iterateCIPRanks(mol, invars, ranks, true);
// copy the ranks onto the atoms:
for (unsigned int i = 0; i < mol.getNumAtoms(); i++) {
mol.getAtomWithIdx(i)->setProp(common_properties::_CIPRank, ranks[i]);
}
#ifdef VERBOSE_CANON
BOOST_LOG(rdDebugLog) << " post: " << std::endl;
for (int i = 0; i < mol.getNumAtoms(); i++) {
BOOST_LOG(rdDebugLog) << " " << i << ": " << ranks[i] << std::endl;
}
#endif
}
bool hasStereoBondDir(const Bond *bond) {
PRECONDITION(bond, "no bond");
return bond->getBondDir() == Bond::BondDir::ENDDOWNRIGHT ||
bond->getBondDir() == Bond::BondDir::ENDUPRIGHT;
}
const Bond *getNeighboringDirectedBond(const ROMol &mol, const Atom *atom) {
PRECONDITION(atom, "no atom");
for (const auto &bondIdx :
boost::make_iterator_range(mol.getAtomBonds(atom))) {
const Bond *bond = mol[bondIdx];
if (bond->getBondType() != Bond::BondType::DOUBLE &&
hasStereoBondDir(bond)) {
return bond;
}
}
return nullptr;
}
Bond::BondStereo translateEZLabelToCisTrans(Bond::BondStereo label) {
switch (label) {
case Bond::STEREOE:
return Bond::STEREOTRANS;
case Bond::STEREOZ:
return Bond::STEREOCIS;
default:
return label;
}
}
INT_VECT findStereoAtoms(const Bond *bond) {
PRECONDITION(bond, "bad bond");
PRECONDITION(bond->hasOwningMol(), "no mol");
PRECONDITION(bond->getBondType() == Bond::DOUBLE, "not double bond");
PRECONDITION(bond->getStereo() > Bond::BondStereo::STEREOANY,
"no defined stereo");
if (!bond->getStereoAtoms().empty()) {
return bond->getStereoAtoms();
}
if (bond->getStereo() == Bond::BondStereo::STEREOE ||
bond->getStereo() == Bond::BondStereo::STEREOZ) {
const Atom *startStereoAtom =
findHighestCIPNeighbor(bond->getBeginAtom(), bond->getEndAtom());
const Atom *endStereoAtom =
findHighestCIPNeighbor(bond->getEndAtom(), bond->getBeginAtom());
if (startStereoAtom == nullptr || endStereoAtom == nullptr) {
return {};
}
int startStereoAtomIdx = static_cast<int>(startStereoAtom->getIdx());
int endStereoAtomIdx = static_cast<int>(endStereoAtom->getIdx());
return {startStereoAtomIdx, endStereoAtomIdx};
} else {
BOOST_LOG(rdWarningLog) << "Unable to assign stereo atoms for bond "
<< bond->getIdx() << std::endl;
return {};
}
}
} // namespace Chirality
namespace MolOps {
/*
We're going to do this iteratively:
1) assign atom stereochemistry
2) assign bond stereochemistry
3) if there are still unresolved atoms or bonds
repeat the above steps as necessary
*/
void assignStereochemistry(ROMol &mol, bool cleanIt, bool force,
bool flagPossibleStereoCenters) {
if (!force && mol.hasProp(common_properties::_StereochemDone)) {
return;
}
// later we're going to need ring information, get it now if we don't
// have it already:
if (!mol.getRingInfo()->isInitialized()) {
MolOps::fastFindRings(mol);
}
#if 0
std::cerr << ">>>>>>>>>>>>>\n";
std::cerr << "assign stereochem\n";
mol.debugMol(std::cerr);
#endif
// as part of the preparation, we'll loop over the atoms and
// bonds to see if anything has stereochemistry
// indicated. There's no point in doing the work here if there
// are neither stereocenters nor bonds that we need to consider.
// The exception to this is when flagPossibleStereoCenters is
// true; then we always need to do the work
bool hasStereoAtoms = flagPossibleStereoCenters;
for (ROMol::AtomIterator atIt = mol.beginAtoms(); atIt != mol.endAtoms();
++atIt) {
if (cleanIt) {
if ((*atIt)->hasProp(common_properties::_CIPCode)) {
(*atIt)->clearProp(common_properties::_CIPCode);
}
if ((*atIt)->hasProp(common_properties::_ChiralityPossible)) {
(*atIt)->clearProp(common_properties::_ChiralityPossible);
}
}
if (!hasStereoAtoms && (*atIt)->getChiralTag() != Atom::CHI_UNSPECIFIED &&
(*atIt)->getChiralTag() != Atom::CHI_OTHER) {
hasStereoAtoms = true;
}
}
bool hasStereoBonds = false;
for (ROMol::BondIterator bondIt = mol.beginBonds(); bondIt != mol.endBonds();
++bondIt) {
if (cleanIt) {
if ((*bondIt)->getBondType() == Bond::DOUBLE) {
if ((*bondIt)->getBondDir() == Bond::EITHERDOUBLE) {
(*bondIt)->setStereo(Bond::STEREOANY);
} else if ((*bondIt)->getStereo() != Bond::STEREOANY) {
(*bondIt)->setStereo(Bond::STEREONONE);
(*bondIt)->getStereoAtoms().clear();
}
}
}
if (!hasStereoBonds && (*bondIt)->getBondType() == Bond::DOUBLE) {
ROMol::OEDGE_ITER beg, end;
boost::tie(beg, end) = mol.getAtomBonds((*bondIt)->getBeginAtom());
while (!hasStereoBonds && beg != end) {
const Bond *nbond = mol[*beg];
++beg;
if (nbond->getBondDir() == Bond::ENDDOWNRIGHT ||
nbond->getBondDir() == Bond::ENDUPRIGHT) {
hasStereoBonds = true;
}
}
boost::tie(beg, end) = mol.getAtomBonds((*bondIt)->getEndAtom());
while (!hasStereoBonds && beg != end) {
const Bond *nbond = mol[*beg];
++beg;
if (nbond->getBondDir() == Bond::ENDDOWNRIGHT ||
nbond->getBondDir() == Bond::ENDUPRIGHT) {
hasStereoBonds = true;
}
}
}
if (!cleanIt && hasStereoBonds) {
break; // no reason to keep iterating if we've already
// determined there are stereo bonds to consider
}
}
UINT_VECT atomRanks;
bool keepGoing = hasStereoAtoms | hasStereoBonds;
bool changedStereoAtoms, changedStereoBonds;
while (keepGoing) {
if (hasStereoAtoms) {
boost::tie(hasStereoAtoms, changedStereoAtoms) =
Chirality::assignAtomChiralCodes(mol, atomRanks,
flagPossibleStereoCenters);
} else {
changedStereoAtoms = false;
}
if (hasStereoBonds) {
boost::tie(hasStereoBonds, changedStereoBonds) =
Chirality::assignBondStereoCodes(mol, atomRanks);
} else {
changedStereoBonds = false;
}
keepGoing = (hasStereoAtoms || hasStereoBonds) &&
(changedStereoAtoms || changedStereoBonds);
if (keepGoing) {
// update the atom ranks based on the new information we have:
Chirality::rerankAtoms(mol, atomRanks);
}
#if 0
std::cout << "*************** done iteration " << keepGoing
<< " ***********" << std::endl;
mol.debugMol(std::cout);
std::cout << "*************** done iteration " << keepGoing
<< " ***********" << std::endl;
#endif
}
if (cleanIt) {
// if the ranks are needed again, this will force them to be
// re-calculated based on the stereo calculated above.
// atomRanks.clear();
for (ROMol::AtomIterator atIt = mol.beginAtoms(); atIt != mol.endAtoms();
++atIt) {
if ((*atIt)->hasProp(common_properties::_ringStereochemCand)) {
(*atIt)->clearProp(common_properties::_ringStereochemCand);
}
if ((*atIt)->hasProp(common_properties::_ringStereoAtoms)) {
(*atIt)->clearProp(common_properties::_ringStereoAtoms);
}
}
boost::dynamic_bitset<> possibleSpecialCases(mol.getNumAtoms());
Chirality::findChiralAtomSpecialCases(mol, possibleSpecialCases);
for (auto atom : mol.atoms()) {
if (atom->getChiralTag() != Atom::CHI_UNSPECIFIED &&
!atom->hasProp(common_properties::_CIPCode) &&
(!possibleSpecialCases[atom->getIdx()] ||
!atom->hasProp(common_properties::_ringStereoAtoms))) {
atom->setChiralTag(Atom::CHI_UNSPECIFIED);
// If the atom has an explicit hydrogen and no charge, that H
// was probably put there solely because of the chirality.
// So we'll go ahead and remove it.
// This was Issue 194
if (atom->getNumExplicitHs() == 1 && atom->getFormalCharge() == 0 &&
!atom->getIsAromatic()) {
atom->setNumExplicitHs(0);
atom->setNoImplicit(false);
atom->calcExplicitValence(false);
atom->calcImplicitValence(false);
}
}
}
for (auto bond : mol.bonds()) {
// wedged bonds to atoms that have no stereochem
// should be removed. (github issue 87)
if ((bond->getBondDir() == Bond::BEGINWEDGE ||
bond->getBondDir() == Bond::BEGINDASH) &&
bond->getBeginAtom()->getChiralTag() == Atom::CHI_UNSPECIFIED &&
bond->getEndAtom()->getChiralTag() == Atom::CHI_UNSPECIFIED) {
bond->setBondDir(Bond::NONE);
}
// check for directionality on single bonds around
// double bonds without stereo. This was github #2422
if (bond->getBondType() == Bond::DOUBLE &&
(bond->getStereo() == Bond::STEREOANY ||
bond->getStereo() == Bond::STEREONONE)) {
std::vector<Atom *> batoms = {bond->getBeginAtom(), bond->getEndAtom()};
for (auto batom : batoms) {
for (const auto &nbri :
boost::make_iterator_range(mol.getAtomBonds(batom))) {
auto nbrBndI = mol[nbri];
if ((nbrBndI->getBondDir() == Bond::ENDDOWNRIGHT ||
nbrBndI->getBondDir() == Bond::ENDUPRIGHT) &&
(nbrBndI->getBondType() == Bond::SINGLE ||
nbrBndI->getBondType() == Bond::AROMATIC)) {
// direction is set, and we know it's not because of our
// bond. What about other neighbors?
bool okToClear = true;
for (const auto &nbrj : boost::make_iterator_range(
mol.getAtomBonds(nbrBndI->getOtherAtom(batom)))) {
auto nbrBndJ = mol[nbrj];
if (nbrBndJ->getBondType() == Bond::DOUBLE &&
nbrBndJ->getStereo() != Bond::STEREOANY &&
nbrBndJ->getStereo() != Bond::STEREONONE) {
okToClear = false;
break;
}
}
if (okToClear) {
nbrBndI->setBondDir(Bond::NONE);
}
}
}
}
}
#if 0
// make sure CIS/TRANS assignments are actually stereo bonds
if ((*bondIt)->getBondType() == Bond::DOUBLE) {
if ((*bondIt)->getStereo() == Bond::STEREOCIS ||
(*bondIt)->getStereo() == Bond::STEREOTRANS) {
if (!atomRanks.size()) {
Chirality::assignAtomCIPRanks(mol, atomRanks);
}
const Atom *begAtom = (*bondIt)->getBeginAtom(),
*endAtom = (*bondIt)->getEndAtom();
UINT_VECT begAtomNeighbors, endAtomNeighbors;
Chirality::findAtomNeighborsHelper(mol, begAtom, *bondIt,
begAtomNeighbors);
Chirality::findAtomNeighborsHelper(mol, endAtom, *bondIt,
endAtomNeighbors);
// Note, this relies on this being a hydrogen-suppressed
// graph as the 'Note' in the doc string of this function
// indicates is a pre-condition.
if ((begAtomNeighbors.size() == 2 &&
atomRanks[begAtomNeighbors[0]] ==
atomRanks[begAtomNeighbors[1]]) ||
(endAtomNeighbors.size() == 2 &&
atomRanks[endAtomNeighbors[0]] ==
atomRanks[endAtomNeighbors[1]])) {
(*bondIt)->setStereo(Bond::STEREONONE);
(*bondIt)->getStereoAtoms().clear();
}
}
}
#endif
}
}
mol.setProp(common_properties::_StereochemDone, 1, true);
#if 0
std::cerr << "---\n";
mol.debugMol(std::cerr);
std::cerr << "<<<<<<<<<<<<<<<<\n";
#endif
}
// Find bonds than can be cis/trans in a molecule and mark them as
// Bond::STEREOANY.
void findPotentialStereoBonds(ROMol &mol, bool cleanIt) {
// FIX: The earlier thought was to provide an optional argument to ignore or
// consider
// double bonds in a ring. But I am removing this optional argument and
// ignoring ring bonds
// completely for now. This is because finding a potential stereo bond in a
// ring involves
// more than just checking the CIPranks for the neighbors - SP 05/04/04
// make this function callable multiple times
if ((mol.hasProp(common_properties::_BondsPotentialStereo)) && (!cleanIt)) {
return;
} else {
UINT_VECT ranks;
ranks.resize(mol.getNumAtoms());
bool cipDone = false;
ROMol::BondIterator bondIt;
for (bondIt = mol.beginBonds(); bondIt != mol.endBonds(); ++bondIt) {
if ((*bondIt)->getBondType() == Bond::DOUBLE &&
!(mol.getRingInfo()->numBondRings((*bondIt)->getIdx()))) {
// we are ignoring ring bonds here - read the FIX above
Bond *dblBond = *bondIt;
// We ignore bonds flagged as EITHERDOUBLE or STEREOANY which have
// stereo atoms set.
if (dblBond->getBondDir() == Bond::EITHERDOUBLE ||
(dblBond->getStereo() == Bond::STEREOANY &&
dblBond->getStereoAtoms().size() == 2)) {
continue;
}
// proceed only if we either want to clean the stereocode on this bond,
// if none is set on it yet, or it is STEREOANY and we need to find
// stereoatoms
if (cleanIt || dblBond->getStereo() == Bond::STEREONONE ||
dblBond->getStereo() == Bond::STEREOANY) {
dblBond->setStereo(Bond::STEREONONE);
const Atom *begAtom = dblBond->getBeginAtom(),
*endAtom = dblBond->getEndAtom();
// we're only going to handle 2 or three coordinate atoms:
if ((begAtom->getDegree() == 2 || begAtom->getDegree() == 3) &&
(endAtom->getDegree() == 2 || endAtom->getDegree() == 3)) {
// ------------------
// get the CIP ranking of each atom if we need it:
if (!cipDone) {
if (!begAtom->hasProp(common_properties::_CIPRank)) {
Chirality::assignAtomCIPRanks(mol, ranks);
} else {
// no need to recompute if we don't need to recompute. :-)
for (unsigned int ai = 0; ai < mol.getNumAtoms(); ++ai) {
ranks[ai] = mol.getAtomWithIdx(ai)->getProp<unsigned int>(
common_properties::_CIPRank);
}
}
cipDone = true;
}
// find the neighbors for the begin atom and the endAtom
UINT_VECT begAtomNeighbors, endAtomNeighbors;
bool checkDir = false;
bool includeAromatic = true;
Chirality::findAtomNeighborsHelper(mol, begAtom, dblBond,
begAtomNeighbors, checkDir,
includeAromatic);
Chirality::findAtomNeighborsHelper(mol, endAtom, dblBond,
endAtomNeighbors, checkDir,
includeAromatic);
if (begAtomNeighbors.size() > 0 && endAtomNeighbors.size() > 0) {
if ((begAtomNeighbors.size() == 2) &&
(endAtomNeighbors.size() == 2)) {
// if both of the atoms have 2 neighbors (other than the one
// connected
// by the double bond) and ....
#if 0
std::cerr << "Bond: " << dblBond->getIdx() << " "
<< begAtom->getIdx() << "=" << endAtom->getIdx()
<< std::endl;
std::cerr << " " << begAtomNeighbors[0] << "="
<< ranks[begAtomNeighbors[0]] << ":";
std::cerr << " " << begAtomNeighbors[1] << "="
<< ranks[begAtomNeighbors[1]] << std::endl;
std::cerr << " " << endAtomNeighbors[0] << "="
<< ranks[endAtomNeighbors[0]] << ":";
std::cerr << " " << endAtomNeighbors[1] << "="
<< ranks[endAtomNeighbors[1]] << std::endl;
#endif
if ((ranks[begAtomNeighbors[0]] !=
ranks[begAtomNeighbors[1]]) &&
(ranks[endAtomNeighbors[0]] !=
ranks[endAtomNeighbors[1]])) {
// the neighbors ranks are different at both the ends,
// this bond can be part of a cis/trans system
if (ranks[begAtomNeighbors[0]] > ranks[begAtomNeighbors[1]]) {
dblBond->getStereoAtoms().push_back(begAtomNeighbors[0]);
} else {
dblBond->getStereoAtoms().push_back(begAtomNeighbors[1]);
}
if (ranks[endAtomNeighbors[0]] > ranks[endAtomNeighbors[1]]) {
dblBond->getStereoAtoms().push_back(endAtomNeighbors[0]);
} else {
dblBond->getStereoAtoms().push_back(endAtomNeighbors[1]);
}
}
} else if (begAtomNeighbors.size() == 2) {
// if the begAtom has two neighbors and ....
if (ranks[begAtomNeighbors[0]] != ranks[begAtomNeighbors[1]]) {
// their ranks are different
if (ranks[begAtomNeighbors[0]] > ranks[begAtomNeighbors[1]]) {
dblBond->getStereoAtoms().push_back(begAtomNeighbors[0]);
} else {
dblBond->getStereoAtoms().push_back(begAtomNeighbors[1]);
}
dblBond->getStereoAtoms().push_back(endAtomNeighbors[0]);
}
} else if (endAtomNeighbors.size() == 2) {
// if the endAtom has two neighbors and ...
if (ranks[endAtomNeighbors[0]] != ranks[endAtomNeighbors[1]]) {
// their ranks are different
dblBond->getStereoAtoms().push_back(begAtomNeighbors[0]);
if (ranks[endAtomNeighbors[0]] > ranks[endAtomNeighbors[1]]) {
dblBond->getStereoAtoms().push_back(endAtomNeighbors[0]);
} else {
dblBond->getStereoAtoms().push_back(endAtomNeighbors[1]);
}
}
} else {
// end and beg atoms has only one neighbor each, it doesn't
// matter what the ranks are:
dblBond->getStereoAtoms().push_back(begAtomNeighbors[0]);
dblBond->getStereoAtoms().push_back(endAtomNeighbors[0]);
} // end of different number of neighbors on beg and end atoms
// mark this double bond as a potential stereo bond
if (!dblBond->getStereoAtoms().empty()) {
dblBond->setStereo(Bond::STEREOANY);
}
} // end of check that beg and end atoms have at least 1
// neighbor:
} // end of 2 and 3 coordinated atoms only
} // end of we want it or CIP code is not set
} // end of double bond
} // end of for loop over all bonds
mol.setProp(common_properties::_BondsPotentialStereo, 1, true);
}
}
// removes chirality markers from sp and sp2 hybridized centers:
void cleanupChirality(RWMol &mol) {
for (ROMol::AtomIterator atomIt = mol.beginAtoms(); atomIt != mol.endAtoms();
++atomIt) {
if ((*atomIt)->getChiralTag() != Atom::CHI_UNSPECIFIED &&
(*atomIt)->getHybridization() < Atom::SP3) {
(*atomIt)->setChiralTag(Atom::CHI_UNSPECIFIED);
}
}
}
void assignChiralTypesFrom3D(ROMol &mol, int confId, bool replaceExistingTags) {
const double ZERO_VOLUME_TOL = 0.1;
if (!mol.getNumConformers()) {
return;
}
const Conformer &conf = mol.getConformer(confId);
if (!conf.is3D()) {
return;
}
// if the molecule already has stereochemistry
// perceived, remove the flags that indicate
// this... what we're about to do will require
// that we go again.
if (mol.hasProp(common_properties::_StereochemDone)) {
mol.clearProp(common_properties::_StereochemDone);
}
for (ROMol::AtomIterator atomIt = mol.beginAtoms(); atomIt != mol.endAtoms();
++atomIt) {
Atom *atom = *atomIt;
// if we aren't replacing existing tags and the atom is already tagged,
// punt:
if (!replaceExistingTags && atom->getChiralTag() != Atom::CHI_UNSPECIFIED) {
continue;
}
atom->setChiralTag(Atom::CHI_UNSPECIFIED);
// additional reasons to skip the atom:
if (atom->getDegree() < 3 || atom->getTotalDegree() > 4) {
// not enough explicit neighbors or too many total neighbors
continue;
} else {
int anum = atom->getAtomicNum();
if (anum != 16 && anum != 34 && // S or Se are special
// (just using the InChI list for now)
(atom->getTotalDegree() != 4 || // not enough total neighbors
atom->getTotalNumHs(true) > 1)) {
continue;
}
}
const RDGeom::Point3D &p0 = conf.getAtomPos(atom->getIdx());
ROMol::ADJ_ITER nbrIdx, endNbrs;
boost::tie(nbrIdx, endNbrs) = mol.getAtomNeighbors(atom);
const RDGeom::Point3D &p1 = conf.getAtomPos(*nbrIdx);
++nbrIdx;
const RDGeom::Point3D &p2 = conf.getAtomPos(*nbrIdx);
++nbrIdx;
const RDGeom::Point3D &p3 = conf.getAtomPos(*nbrIdx);
RDGeom::Point3D v1 = p1 - p0;
RDGeom::Point3D v2 = p2 - p0;
RDGeom::Point3D v3 = p3 - p0;
double chiralVol = v1.dotProduct(v2.crossProduct(v3));
if (chiralVol < -ZERO_VOLUME_TOL) {
atom->setChiralTag(Atom::CHI_TETRAHEDRAL_CW);
} else if (chiralVol > ZERO_VOLUME_TOL) {
atom->setChiralTag(Atom::CHI_TETRAHEDRAL_CCW);
} else {
atom->setChiralTag(Atom::CHI_UNSPECIFIED);
}
}
}
void assignChiralTypesFromMolParity(ROMol &mol, bool replaceExistingTags) {
static const std::vector<Atom::ChiralType> chiralTypeVect{
Atom::CHI_TETRAHEDRAL_CW, Atom::CHI_TETRAHEDRAL_CCW};
// if the molecule already has stereochemistry
// perceived, remove the flags that indicate
// this... what we're about to do will require
// that we go again.
if (mol.hasProp(common_properties::_StereochemDone)) {
mol.clearProp(common_properties::_StereochemDone);
}
// Atom-based parity
// Number the atoms surrounding the stereo center with 1, 2, 3, and 4
// in order of increasing atom number (position in the atom block)
// (an implicit hydrogen should be considered the highest numbered atom).
// View the center from a position such that the bond connecting the
// highest-numbered atom (4) projects behind the plane formed by
// atoms 1, 2, and 3.
//
// Parity 1 (CW) Parity 2 (CCW)
// 3 1 3 2
// \ / \ /
// | |
// 2 1
//
for (auto atom : mol.atoms()) {
// if we aren't replacing existing tags and the atom is already tagged,
// punt:
if (!replaceExistingTags && atom->getChiralTag() != Atom::CHI_UNSPECIFIED) {
continue;
}
int parity = 0;
atom->getPropIfPresent(common_properties::molParity, parity);
if (parity <= 0 || parity > 2 || atom->getDegree() < 3) {
atom->setChiralTag(Atom::CHI_UNSPECIFIED);
continue;
}
// if we are here, parity was 1 (CW) or 2 (CCW)
// now we set parity 0 to be CW and 1 to be CCW
--parity;
RDKit::ROMol::OBOND_ITER_PAIR nbrBonds = mol.getAtomBonds(atom);
INT_LIST nbrBondIdxList;
std::transform(
nbrBonds.first, nbrBonds.second, std::back_inserter(nbrBondIdxList),
[mol](const ROMol::edge_descriptor &e) { return mol[e]->getIdx(); });
unsigned int atomIdx = atom->getIdx();
nbrBondIdxList.sort([mol, atomIdx](const int ai, const int bi) {
return (mol.getBondWithIdx(ai)->getOtherAtomIdx(atomIdx) <
mol.getBondWithIdx(bi)->getOtherAtomIdx(atomIdx));
});
int nSwaps = atom->getPerturbationOrder(nbrBondIdxList);
if (nSwaps % 2) {
parity = 1 - parity;
}
atom->setChiralTag(chiralTypeVect[parity]);
if (atom->getImplicitValence() == -1) {
atom->calcExplicitValence(false);
atom->calcImplicitValence(false);
}
// within the RD representation, if a three-coordinate atom
// is chiral and has an implicit H, that H needs to be made explicit:
if (atom->getDegree() == 3 && !atom->getNumExplicitHs() &&
atom->getNumImplicitHs() == 1) {
atom->setNumExplicitHs(1);
// recalculated number of implicit Hs:
atom->updatePropertyCache();
}
}
}
void setDoubleBondNeighborDirections(ROMol &mol, const Conformer *conf) {
// used to store the number of single bonds a given
// single bond is adjacent to
std::vector<unsigned int> singleBondCounts(mol.getNumBonds(), 0);
std::vector<Bond *> bondsInPlay;
// keeps track of which single bonds are adjacent to each double bond:
VECT_INT_VECT dblBondNbrs(mol.getNumBonds());
// keeps track of which double bonds are adjacent to each single bond:
VECT_INT_VECT singleBondNbrs(mol.getNumBonds());
// keeps track of which single bonds need a dir set and which double bonds
// need to have their neighbors' dirs set
boost::dynamic_bitset<> needsDir(mol.getNumBonds());
// find double bonds that should be considered for
// stereochemistry
// NOTE that we are explicitly excluding double bonds in rings
// with this test.
bool resetRings = false;
if (!mol.getRingInfo()->isInitialized()) {
resetRings = true;
MolOps::fastFindRings(mol);
}
for (RWMol::BondIterator bondIt = mol.beginBonds(); bondIt != mol.endBonds();
++bondIt) {
if (isBondCandidateForStereo(*bondIt)) {
const Atom *a1 = (*bondIt)->getBeginAtom();
const Atom *a2 = (*bondIt)->getEndAtom();
ROMol::OEDGE_ITER beg, end;
boost::tie(beg, end) = mol.getAtomBonds(a1);
while (beg != end) {
const Bond *nbrBond = mol[*beg];
if (nbrBond->getBondType() == Bond::SINGLE ||
nbrBond->getBondType() == Bond::AROMATIC) {
singleBondCounts[nbrBond->getIdx()] += 1;
auto nbrDir = nbrBond->getBondDir();
if (nbrDir == Bond::BondDir::NONE ||
nbrDir == Bond::BondDir::ENDDOWNRIGHT ||
nbrDir == Bond::BondDir::ENDUPRIGHT) {
needsDir[nbrBond->getIdx()] = 1;
}
needsDir[(*bondIt)->getIdx()] = 1;
dblBondNbrs[(*bondIt)->getIdx()].push_back(nbrBond->getIdx());
// the search may seem inefficient, but these vectors are going to
// be at most 2 long (with very few exceptions). It's just not worth
// using a different data structure
if (std::find(singleBondNbrs[nbrBond->getIdx()].begin(),
singleBondNbrs[nbrBond->getIdx()].end(),
(*bondIt)->getIdx()) ==
singleBondNbrs[nbrBond->getIdx()].end()) {
singleBondNbrs[nbrBond->getIdx()].push_back((*bondIt)->getIdx());
}
}
++beg;
}
boost::tie(beg, end) = mol.getAtomBonds(a2);
while (beg != end) {
const Bond *nbrBond = mol[*beg];
if (nbrBond->getBondType() == Bond::SINGLE ||
nbrBond->getBondType() == Bond::AROMATIC) {
singleBondCounts[nbrBond->getIdx()] += 1;
auto nbrDir = nbrBond->getBondDir();
if (nbrDir == Bond::BondDir::NONE ||
nbrDir == Bond::BondDir::ENDDOWNRIGHT ||
nbrDir == Bond::BondDir::ENDUPRIGHT) {
needsDir[nbrBond->getIdx()] = 1;
}
needsDir[(*bondIt)->getIdx()] = 1;
dblBondNbrs[(*bondIt)->getIdx()].push_back(nbrBond->getIdx());
// the search may seem inefficient, but these vectors are going to
// be at most 2 long (with very few exceptions). It's just not worth
// using a different data structure
if (std::find(singleBondNbrs[nbrBond->getIdx()].begin(),
singleBondNbrs[nbrBond->getIdx()].end(),
(*bondIt)->getIdx()) ==
singleBondNbrs[nbrBond->getIdx()].end()) {
singleBondNbrs[nbrBond->getIdx()].push_back((*bondIt)->getIdx());
}
}
++beg;
}
bondsInPlay.push_back(*bondIt);
}
}
if (!bondsInPlay.size()) {
if (resetRings) {
mol.getRingInfo()->reset();
}
return;
}
// order the double bonds based on the singleBondCounts of their neighbors:
std::vector<std::pair<unsigned int, Bond *>> orderedBondsInPlay;
for (auto dblBond : bondsInPlay) {
unsigned int countHere =
std::accumulate(dblBondNbrs[dblBond->getIdx()].begin(),
dblBondNbrs[dblBond->getIdx()].end(), 0);
// and favor double bonds that are *not* in rings. The combination of
// using the sum above (instead of the max) and this ring-membershipt test
// seem to fix sf.net issue 3009836
if (!(mol.getRingInfo()->numBondRings(dblBond->getIdx()))) {
countHere *= 10;
}
orderedBondsInPlay.push_back(std::make_pair(countHere, dblBond));
}
std::sort(orderedBondsInPlay.begin(), orderedBondsInPlay.end());
// oof, now loop over the double bonds in that order and
// update their neighbor directionalities:
std::vector<std::pair<unsigned int, Bond *>>::reverse_iterator pairIter;
for (pairIter = orderedBondsInPlay.rbegin();
pairIter != orderedBondsInPlay.rend(); ++pairIter) {
// std::cerr << "RESET?: " << pairIter->second->getIdx() << " "
// << pairIter->second->getStereo() << std::endl;
updateDoubleBondNeighbors(mol, pairIter->second, conf, needsDir,
singleBondCounts, singleBondNbrs);
}
if (resetRings) {
mol.getRingInfo()->reset();
}
}
void detectBondStereochemistry(ROMol &mol, int confId) {
if (!mol.getNumConformers()) {
return;
}
const Conformer &conf = mol.getConformer(confId);
setDoubleBondNeighborDirections(mol, &conf);
}
void setBondStereoFromDirections(ROMol &mol) {
for (Bond *bond : mol.bonds()) {
if (bond->getBondType() == Bond::DOUBLE) {
const Atom *stereoBondBeginAtom = bond->getBeginAtom();
const Atom *stereoBondEndAtom = bond->getEndAtom();
const Bond *directedBondAtBegin =
Chirality::getNeighboringDirectedBond(mol, stereoBondBeginAtom);
const Bond *directedBondAtEnd =
Chirality::getNeighboringDirectedBond(mol, stereoBondEndAtom);
if (directedBondAtBegin != nullptr && directedBondAtEnd != nullptr) {
unsigned beginSideStereoAtom =
directedBondAtBegin->getOtherAtomIdx(stereoBondBeginAtom->getIdx());
unsigned endSideStereoAtom =
directedBondAtEnd->getOtherAtomIdx(stereoBondEndAtom->getIdx());
bond->setStereoAtoms(beginSideStereoAtom, endSideStereoAtom);
auto beginSideBondDirection = directedBondAtBegin->getBondDir();
if (directedBondAtBegin->getBeginAtom() == stereoBondBeginAtom) {
beginSideBondDirection = getOppositeBondDir(beginSideBondDirection);
}
auto endSideBondDirection = directedBondAtEnd->getBondDir();
if (directedBondAtEnd->getEndAtom() == stereoBondEndAtom) {
endSideBondDirection = getOppositeBondDir(endSideBondDirection);
}
if (beginSideBondDirection == endSideBondDirection) {
bond->setStereo(Bond::STEREOTRANS);
} else {
bond->setStereo(Bond::STEREOCIS);
}
}
}
}
}
void assignStereochemistryFrom3D(ROMol &mol, int confId,
bool replaceExistingTags) {
if (!mol.getNumConformers() || !mol.getConformer(confId).is3D()) {
return;
}
detectBondStereochemistry(mol, confId);
assignChiralTypesFrom3D(mol, confId, replaceExistingTags);
bool force = true;
bool flagPossibleStereoCenters = true;
assignStereochemistry(mol, replaceExistingTags, force,
flagPossibleStereoCenters);
}
void assignChiralTypesFromBondDirs(ROMol &mol, const int confId,
const bool replaceExistingTags) {
if (!mol.getNumConformers()) {
return;
}
auto conf = mol.getConformer(confId);
boost::dynamic_bitset<> atomsSet(mol.getNumAtoms(), 0);
for (auto &bond : mol.bonds()) {
const Bond::BondDir dir = bond->getBondDir();
if (dir != Bond::UNKNOWN) {
// the bond is marked as chiral:
if (dir == Bond::BEGINWEDGE || dir == Bond::BEGINDASH) {
Atom *atom = bond->getBeginAtom();
if (atomsSet[atom->getIdx()] ||
(!replaceExistingTags &&
atom->getChiralTag() != Atom::CHI_UNSPECIFIED)) {
continue;
}
if (atom->getImplicitValence() == -1) {
atom->calcExplicitValence(false);
atom->calcImplicitValence(false);
}
Atom::ChiralType code = atomChiralTypeFromBondDir(mol, bond, &conf);
if (code != Atom::ChiralType::CHI_UNSPECIFIED) {
atomsSet.set(atom->getIdx());
// std::cerr << "atom " << atom->getIdx() << " code " << code
// << " from bond " << bond->getIdx() << std::endl;
}
atom->setChiralTag(code);
// within the RD representation, if a three-coordinate atom
// is chiral and has an implicit H, that H needs to be made explicit:
if (atom->getDegree() == 3 && !atom->getNumExplicitHs() &&
atom->getNumImplicitHs() == 1) {
atom->setNumExplicitHs(1);
// recalculated number of implicit Hs:
atom->updatePropertyCache();
}
}
}
}
}
void removeStereochemistry(ROMol &mol) {
if (mol.hasProp(common_properties::_StereochemDone)) {
mol.clearProp(common_properties::_StereochemDone);
}
for (ROMol::AtomIterator atIt = mol.beginAtoms(); atIt != mol.endAtoms();
++atIt) {
(*atIt)->setChiralTag(Atom::CHI_UNSPECIFIED);
if ((*atIt)->hasProp(common_properties::_CIPCode)) {
(*atIt)->clearProp(common_properties::_CIPCode);
}
if ((*atIt)->hasProp(common_properties::_CIPRank)) {
(*atIt)->clearProp(common_properties::_CIPRank);
}
}
for (ROMol::BondIterator bondIt = mol.beginBonds(); bondIt != mol.endBonds();
++bondIt) {
if ((*bondIt)->getBondType() == Bond::DOUBLE) {
(*bondIt)->setStereo(Bond::STEREONONE);
(*bondIt)->getStereoAtoms().clear();
} else if ((*bondIt)->getBondType() == Bond::SINGLE) {
(*bondIt)->setBondDir(Bond::NONE);
}
}
}
} // end of namespace MolOps
} // end of namespace RDKit
|