1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389
|
//
// Copyright (C) 2004-2017 Greg Landrum and Rational Discovery LLC
//
// @@ All Rights Reserved @@
// This file is part of the RDKit.
// The contents are covered by the terms of the BSD license
// which is included in the file license.txt, found at the root
// of the RDKit source tree.
//
//
#include <list>
#include <RDGeneral/RDLog.h>
#include "MolFileStereochem.h"
#include <Geometry/point.h>
#include <boost/dynamic_bitset.hpp>
#include <algorithm>
#include "MolFileStereochem.h"
#include <RDGeneral/Ranking.h>
namespace RDKit {
typedef std::list<double> DOUBLE_LIST;
void WedgeBond(Bond *bond, unsigned int fromAtomIdx, const Conformer *conf) {
PRECONDITION(bond, "no bond");
PRECONDITION(conf, "no conformer");
PRECONDITION(&conf->getOwningMol() == &bond->getOwningMol(),
"bond and conformer do not belong to same molecule");
if (bond->getBondType() != Bond::SINGLE) {
return;
}
Bond::BondDir dir = DetermineBondWedgeState(bond, fromAtomIdx, conf);
if (dir == Bond::BEGINWEDGE || dir == Bond::BEGINDASH) {
bond->setBondDir(dir);
}
}
void WedgeMolBonds(ROMol &mol, const Conformer *conf) {
PRECONDITION(conf, "no conformer");
INT_MAP_INT wedgeBonds = pickBondsToWedge(mol);
for (ROMol::BondIterator bondIt = mol.beginBonds(); bondIt != mol.endBonds();
++bondIt) {
Bond *bond = *bondIt;
if (bond->getBondType() == Bond::SINGLE) {
Bond::BondDir dir = DetermineBondWedgeState(bond, wedgeBonds, conf);
if (dir == Bond::BEGINWEDGE || dir == Bond::BEGINDASH) {
bond->setBondDir(dir);
// it is possible that this
// wedging was determined by a chiral atom at the end of the
// bond (instead of at the beginning). In this case we need to
// reverse the begin and end atoms for the bond
auto wbi = wedgeBonds.find(bond->getIdx());
if (wbi != wedgeBonds.end() &&
static_cast<unsigned int>(wbi->second) != bond->getBeginAtomIdx()) {
auto tmp = bond->getBeginAtomIdx();
bond->setBeginAtomIdx(bond->getEndAtomIdx());
bond->setEndAtomIdx(tmp);
}
}
}
}
}
INT_MAP_INT pickBondsToWedge(const ROMol &mol) {
// we need ring information; make sure findSSSR has been called before
// if not call now
if (!mol.getRingInfo()->isInitialized()) {
MolOps::findSSSR(mol);
}
static int noNbrs = 100;
INT_VECT nChiralNbrs(mol.getNumAtoms(), noNbrs);
// start by looking for bonds that are already wedged
for (ROMol::ConstBondIterator cbi = mol.beginBonds(); cbi != mol.endBonds();
++cbi) {
const Bond *bond = *cbi;
if (bond->getBondDir() == Bond::BEGINWEDGE ||
bond->getBondDir() == Bond::BEGINDASH ||
bond->getBondDir() == Bond::UNKNOWN) {
if (bond->getBeginAtom()->getChiralTag() == Atom::CHI_TETRAHEDRAL_CW ||
bond->getBeginAtom()->getChiralTag() == Atom::CHI_TETRAHEDRAL_CCW) {
nChiralNbrs[bond->getBeginAtomIdx()] = noNbrs + 1;
} else if (bond->getEndAtom()->getChiralTag() ==
Atom::CHI_TETRAHEDRAL_CW ||
bond->getEndAtom()->getChiralTag() ==
Atom::CHI_TETRAHEDRAL_CCW) {
nChiralNbrs[bond->getEndAtomIdx()] = noNbrs + 1;
}
}
}
// now rank atoms by the number of chiral neighbors or Hs they have:
bool chiNbrs = false;
for (ROMol::ConstAtomIterator cai = mol.beginAtoms(); cai != mol.endAtoms();
++cai) {
const Atom *at = *cai;
if (nChiralNbrs[at->getIdx()] > noNbrs) {
// std::cerr << " SKIPPING1: " << at->getIdx() << std::endl;
continue;
}
Atom::ChiralType type = at->getChiralTag();
if (type != Atom::CHI_TETRAHEDRAL_CW && type != Atom::CHI_TETRAHEDRAL_CCW) {
continue;
}
nChiralNbrs[at->getIdx()] = 0;
chiNbrs = true;
ROMol::ADJ_ITER nbrIdx, endNbrs;
boost::tie(nbrIdx, endNbrs) = mol.getAtomNeighbors(at);
while (nbrIdx != endNbrs) {
const Atom *nat = mol[*nbrIdx];
++nbrIdx;
if (nat->getAtomicNum() == 1) {
// special case: it's an H... we weight these especially high:
nChiralNbrs[at->getIdx()] -= 10;
continue;
}
type = nat->getChiralTag();
if (type != Atom::CHI_TETRAHEDRAL_CW &&
type != Atom::CHI_TETRAHEDRAL_CCW) {
continue;
}
nChiralNbrs[at->getIdx()] -= 1;
}
}
std::vector<unsigned int> indices(mol.getNumAtoms());
for (unsigned int i = 0; i < mol.getNumAtoms(); ++i) {
indices[i] = i;
}
if (chiNbrs) {
std::sort(indices.begin(), indices.end(),
Rankers::argless<INT_VECT>(nChiralNbrs));
}
#if 0
std::cerr << " nbrs: ";
std::copy(nChiralNbrs.begin(), nChiralNbrs.end(),
std::ostream_iterator<int>(std::cerr, " "));
std::cerr << std::endl;
std::cerr << " order: ";
std::copy(indices.begin(), indices.end(),
std::ostream_iterator<int>(std::cerr, " "));
std::cerr << std::endl;
#endif
// picks a bond for each atom that we will wedge when we write the mol file
// here is what we are going to do
// - at each chiral center look for a bond that is begins at the atom and
// is not yet picked to be wedged for a different chiral center, preferring
// bonds to Hs
// - if we do not find a bond that begins at the chiral center - we will take
// the first bond that is not yet picked by any other chiral centers
// we use the orders calculated above to determine which order to do the
// wedging
INT_MAP_INT res;
BOOST_FOREACH (unsigned int idx, indices) {
if (nChiralNbrs[idx] > noNbrs) {
// std::cerr << " SKIPPING2: " << idx << std::endl;
continue; // already have a wedged bond here
}
const Atom *atom = mol.getAtomWithIdx(idx);
Atom::ChiralType type = atom->getChiralTag();
// the indices are ordered such that all chiral atoms come first. If
// this has no chiral flag, we can stop the whole loop:
if (type != Atom::CHI_TETRAHEDRAL_CW && type != Atom::CHI_TETRAHEDRAL_CCW) {
break;
}
RDKit::ROMol::OBOND_ITER_PAIR atomBonds = mol.getAtomBonds(atom);
std::vector<std::pair<int, int>> nbrScores;
while (atomBonds.first != atomBonds.second) {
const Bond *bond = mol[*atomBonds.first];
++atomBonds.first;
// can only wedge single bonds:
if (bond->getBondType() != Bond::SINGLE) {
continue;
}
int bid = bond->getIdx();
if (res.find(bid) == res.end()) {
// very strong preference for Hs:
if (bond->getOtherAtom(atom)->getAtomicNum() == 1) {
nbrScores.emplace_back(
-1000000, bid); // lower than anything else can be
continue;
}
// prefer lower atomic numbers with lower degrees and no specified
// chirality:
const Atom *oatom = bond->getOtherAtom(atom);
int nbrScore = oatom->getAtomicNum() + 10 * oatom->getDegree() +
100 * ((oatom->getChiralTag() != Atom::CHI_UNSPECIFIED));
// prefer neighbors that are nonchiral or have as few chiral neighbors
// as possible:
int oIdx = oatom->getIdx();
if (nChiralNbrs[oIdx] < noNbrs) {
// the counts are negative, so we have to subtract them off
nbrScore -= 10000 * nChiralNbrs[oIdx];
}
// prefer bonds to non-ring atoms:
nbrScore += 1000 * mol.getRingInfo()->numAtomRings(oIdx);
// prefer non-ring bonds;
nbrScore += 1000 * mol.getRingInfo()->numBondRings(bid);
// std::cerr << " nrbScore: " << idx << " - " << oIdx << " : "
// << nbrScore << " nChiralNbrs: " << nChiralNbrs[oIdx]
// << std::endl;
nbrScores.emplace_back(nbrScore, bid);
}
}
// There's still one situation where this whole thing can fail: an unlucky
// situation where all neighbors of all neighbors of an atom are chiral and
// that atom ends up being the last one picked for stereochem assignment.
//
// We'll catch that as an error here and hope that it's as unlikely to occur
// as it seems like it is. (I'm going into this knowing that it's bound to
// happen; I'll kick myself and do the hard solution at that point.)
CHECK_INVARIANT(nbrScores.size(),
"no eligible neighbors for chiral center");
std::sort(nbrScores.begin(), nbrScores.end(),
Rankers::pairLess<int, int>());
res[nbrScores[0].second] = idx;
}
return res;
}
//
// Determine bond wedge state
///
Bond::BondDir DetermineBondWedgeState(const Bond *bond,
unsigned int fromAtomIdx,
const Conformer *conf) {
PRECONDITION(bond, "no bond");
PRECONDITION(bond->getBondType() == Bond::SINGLE,
"bad bond order for wedging");
const ROMol *mol = &(bond->getOwningMol());
PRECONDITION(mol, "no mol");
Bond::BondDir res = bond->getBondDir();
if (!conf) {
return res;
}
Atom *atom, *bondAtom; // = bond->getBeginAtom();
if (bond->getBeginAtom()->getIdx() == fromAtomIdx) {
atom = bond->getBeginAtom();
bondAtom = bond->getEndAtom();
} else {
atom = bond->getEndAtom();
bondAtom = bond->getBeginAtom();
}
Atom::ChiralType chiralType = atom->getChiralTag();
CHECK_INVARIANT(chiralType == Atom::CHI_TETRAHEDRAL_CW ||
chiralType == Atom::CHI_TETRAHEDRAL_CCW,
"");
// if we got this far, we really need to think about it:
INT_LIST neighborBondIndices;
DOUBLE_LIST neighborBondAngles;
RDGeom::Point3D centerLoc, tmpPt;
centerLoc = conf->getAtomPos(atom->getIdx());
tmpPt = conf->getAtomPos(bondAtom->getIdx());
centerLoc.z = 0.0;
tmpPt.z = 0.0;
RDGeom::Point3D refVect = centerLoc.directionVector(tmpPt);
neighborBondIndices.push_back(bond->getIdx());
neighborBondAngles.push_back(0.0);
ROMol::OEDGE_ITER beg, end;
boost::tie(beg, end) = mol->getAtomBonds(atom);
while (beg != end) {
const Bond *nbrBond = (*mol)[*beg];
Atom *otherAtom = nbrBond->getOtherAtom(atom);
if (nbrBond != bond) {
tmpPt = conf->getAtomPos(otherAtom->getIdx());
tmpPt.z = 0.0;
RDGeom::Point3D tmpVect = centerLoc.directionVector(tmpPt);
double angle = refVect.signedAngleTo(tmpVect);
if (angle < 0.0) {
angle += 2. * M_PI;
}
auto nbrIt = neighborBondIndices.begin();
auto angleIt = neighborBondAngles.begin();
// find the location of this neighbor in our angle-sorted list
// of neighbors:
while (angleIt != neighborBondAngles.end() && angle > (*angleIt)) {
++angleIt;
++nbrIt;
}
neighborBondAngles.insert(angleIt, angle);
neighborBondIndices.insert(nbrIt, nbrBond->getIdx());
}
++beg;
}
// at this point, neighborBondIndices contains a list of bond
// indices from the central atom. They are arranged starting
// at the reference bond in CCW order (based on the current
// depiction).
int nSwaps = atom->getPerturbationOrder(neighborBondIndices);
// in the case of three-coordinated atoms we may have to worry about
// the location of the implicit hydrogen - Issue 209
// Check if we have one of these situation
//
// 0 1 0 2
// * \*/
// 1 - C - 2 C
//
// here the hydrogen will be between 1 and 2 and we need to add an additional
// swap
if (neighborBondAngles.size() == 3) {
// three coordinated
auto angleIt = neighborBondAngles.begin();
++angleIt; // the first is the 0 (or reference bond - we will ignoire that
double angle1 = (*angleIt);
++angleIt;
double angle2 = (*angleIt);
if (angle2 - angle1 >= (M_PI - 1e-4)) {
// we have the above situation
nSwaps++;
}
}
#ifdef VERBOSE_STEREOCHEM
BOOST_LOG(rdDebugLog) << "--------- " << nSwaps << std::endl;
std::copy(neighborBondIndices.begin(), neighborBondIndices.end(),
std::ostream_iterator<int>(BOOST_LOG(rdDebugLog), " "));
BOOST_LOG(rdDebugLog) << std::endl;
std::copy(neighborBondAngles.begin(), neighborBondAngles.end(),
std::ostream_iterator<double>(BOOST_LOG(rdDebugLog), " "));
BOOST_LOG(rdDebugLog) << std::endl;
#endif
if (chiralType == Atom::CHI_TETRAHEDRAL_CCW) {
if (nSwaps % 2 == 1) { // ^ reverse) {
res = Bond::BEGINDASH;
} else {
res = Bond::BEGINWEDGE;
}
} else {
if (nSwaps % 2 == 1) { // ^ reverse) {
res = Bond::BEGINWEDGE;
} else {
res = Bond::BEGINDASH;
}
}
return res;
}
Bond::BondDir DetermineBondWedgeState(const Bond *bond,
const INT_MAP_INT &wedgeBonds,
const Conformer *conf) {
PRECONDITION(bond, "no bond");
int bid = bond->getIdx();
auto wbi = wedgeBonds.find(bid);
if (wbi == wedgeBonds.end()) {
return bond->getBondDir();
}
unsigned int waid = wbi->second;
return DetermineBondWedgeState(bond, waid, conf);
}
// handles stereochem markers set by the Mol file parser and
// converts them to the RD standard:
void DetectAtomStereoChemistry(RWMol &mol, const Conformer *conf) {
PRECONDITION(conf, "no conformer");
PRECONDITION(&(conf->getOwningMol()) == &mol,
"conformer does not belong to molecule");
MolOps::assignChiralTypesFromBondDirs(mol, conf->getId(), true);
}
void ClearSingleBondDirFlags(ROMol &mol) {
for (RWMol::BondIterator bondIt = mol.beginBonds(); bondIt != mol.endBonds();
++bondIt) {
if ((*bondIt)->getBondType() == Bond::SINGLE) {
if ((*bondIt)->getBondDir() == Bond::UNKNOWN) {
(*bondIt)->setProp(common_properties::_UnknownStereo, 1);
}
(*bondIt)->setBondDir(Bond::NONE);
}
}
}
void DetectBondStereoChemistry(ROMol &mol, const Conformer *conf) {
PRECONDITION(conf, "no conformer");
PRECONDITION(&(conf->getOwningMol()) == &mol,
"conformer does not belong to molecule");
MolOps::detectBondStereochemistry(mol, conf->getId());
}
} // namespace RDKit
|