File: FindStereo.cpp

package info (click to toggle)
rdkit 202009.4-1
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 129,624 kB
  • sloc: cpp: 288,030; python: 75,571; java: 6,999; ansic: 5,481; sql: 1,968; yacc: 1,842; lex: 1,254; makefile: 572; javascript: 461; xml: 229; fortran: 183; sh: 134; cs: 93
file content (587 lines) | stat: -rw-r--r-- 21,574 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
//
//  Copyright (C) 2020 Greg Landrum and T5 Informatics GmbH
//
//   @@ All Rights Reserved @@
//  This file is part of the RDKit.
//  The contents are covered by the terms of the BSD license
//  which is included in the file license.txt, found at the root
//  of the RDKit source tree.
//
#include <GraphMol/RDKitBase.h>
#include <RDGeneral/Ranking.h>
#include <GraphMol/new_canon.h>
#include <RDGeneral/types.h>
#include <algorithm>
#include <RDGeneral/utils.h>
#include <RDGeneral/Invariant.h>
#include <RDGeneral/RDLog.h>

#include <boost/dynamic_bitset.hpp>
#include <boost/format.hpp>
#include "Chirality.h"

namespace RDKit {
namespace Chirality {
#ifndef _MSC_VER
const unsigned StereoInfo::NOATOM = std::numeric_limits<unsigned>::max();
#endif
namespace detail {

StereoInfo getStereoInfo(const Bond *bond) {
  PRECONDITION(bond, "bond is null");
  StereoInfo sinfo;
  const auto beginAtom = bond->getBeginAtom();
  const auto endAtom = bond->getEndAtom();
  if (bond->getBondType() == Bond::BondType::DOUBLE) {
    if (beginAtom->getDegree() < 2 || endAtom->getDegree() < 2 ||
        beginAtom->getDegree() > 3 || endAtom->getDegree() > 3) {
      throw ValueErrorException("invalid atom degree in getStereoInfo(bond)");
    }

    sinfo.type = StereoType::Bond_Double;
    sinfo.centeredOn = bond->getIdx();
    sinfo.controllingAtoms.reserve(4);

    bool seenSquiggleBond = false;
    const auto &mol = bond->getOwningMol();
    for (const auto &nbri :
         boost::make_iterator_range(mol.getAtomBonds(beginAtom))) {
      const auto &nbr = mol[nbri];
      if (nbr->getIdx() != bond->getIdx()) {
        if (nbr->getBondDir() == Bond::BondDir::UNKNOWN) {
          seenSquiggleBond = true;
        }
        sinfo.controllingAtoms.push_back(
            nbr->getOtherAtomIdx(beginAtom->getIdx()));
      }
    }
    if (beginAtom->getDegree() == 2) {
      sinfo.controllingAtoms.push_back(StereoInfo::NOATOM);
    }
    for (const auto &nbri :
         boost::make_iterator_range(mol.getAtomBonds(endAtom))) {
      const auto &nbr = mol[nbri];
      if (nbr->getIdx() != bond->getIdx()) {
        if (nbr->getBondDir() == Bond::BondDir::UNKNOWN) {
          seenSquiggleBond = true;
        }
        sinfo.controllingAtoms.push_back(
            nbr->getOtherAtomIdx(endAtom->getIdx()));
      }
    }
    if (endAtom->getDegree() == 2) {
      sinfo.controllingAtoms.push_back(StereoInfo::NOATOM);
    }
    Bond::BondStereo stereo = bond->getStereo();
    if (stereo == Bond::BondStereo::STEREOANY ||
        bond->getBondDir() == Bond::BondDir::EITHERDOUBLE || seenSquiggleBond) {
      sinfo.specified = Chirality::StereoSpecified::Unknown;
    } else if (stereo != Bond::BondStereo::STEREONONE) {
      if (stereo == Bond::BondStereo::STEREOE ||
          stereo == Bond::BondStereo::STEREOZ) {
        stereo = Chirality::translateEZLabelToCisTrans(stereo);
      }
      sinfo.specified = Chirality::StereoSpecified::Specified;
      const auto satoms = bond->getStereoAtoms();
      if (satoms.size() != 2) {
        throw ValueErrorException("only can support 2 stereo neighbors");
      }
      bool firstAtBegin;
      if (satoms[0] == static_cast<int>(sinfo.controllingAtoms[0])) {
        firstAtBegin = true;
      } else if (satoms[0] == static_cast<int>(sinfo.controllingAtoms[1])) {
        firstAtBegin = false;
      } else {
        throw ValueErrorException("controlling atom mismatch at begin");
      }
      bool firstAtEnd;
      if (satoms[1] == static_cast<int>(sinfo.controllingAtoms[2])) {
        firstAtEnd = true;
      } else if (satoms[1] == static_cast<int>(sinfo.controllingAtoms[3])) {
        firstAtEnd = false;
      } else {
        throw ValueErrorException("controlling atom mismatch at end");
      }
      auto mismatch = firstAtBegin ^ firstAtEnd;
      if (mismatch) {
        stereo = (stereo == Bond::BondStereo::STEREOCIS
                      ? Bond::BondStereo::STEREOTRANS
                      : Bond::BondStereo::STEREOCIS);
      }
      switch (stereo) {
        case Bond::BondStereo::STEREOCIS:
          sinfo.descriptor = Chirality::StereoDescriptor::Bond_Cis;
          break;
        case Bond::BondStereo::STEREOTRANS:
          sinfo.descriptor = Chirality::StereoDescriptor::Bond_Trans;
          break;
        default:
          UNDER_CONSTRUCTION("unrecognized bond stereo type");
      }
    }
  } else {
    UNDER_CONSTRUCTION("unsupported bond type in getStereoInfo()");
  }

  return sinfo;
}

StereoInfo getStereoInfo(const Atom *atom) {
  PRECONDITION(atom, "atom is null");
  StereoInfo sinfo;

  sinfo.type = StereoType::Atom_Tetrahedral;
  sinfo.centeredOn = atom->getIdx();
  sinfo.controllingAtoms.reserve(atom->getDegree());

  const auto &mol = atom->getOwningMol();
  int explicitUnknownStereo = 0;
  for (const auto &nbri : boost::make_iterator_range(mol.getAtomBonds(atom))) {
    const auto &bnd = mol[nbri];
    if (bnd->getBondDir() == Bond::UNKNOWN) {
      explicitUnknownStereo = 1;
    } else if (!explicitUnknownStereo) {
      bnd->getPropIfPresent<int>(common_properties::_UnknownStereo,
                                 explicitUnknownStereo);
    }
    sinfo.controllingAtoms.push_back(bnd->getOtherAtomIdx(atom->getIdx()));
  }
  std::vector<unsigned> origNbrOrder = sinfo.controllingAtoms;
  std::sort(sinfo.controllingAtoms.begin(), sinfo.controllingAtoms.end());

  if (explicitUnknownStereo) {
    sinfo.specified = StereoSpecified::Unknown;
  } else {
    Atom::ChiralType stereo = atom->getChiralTag();
    if (stereo == Atom::ChiralType::CHI_TETRAHEDRAL_CCW ||
        stereo == Atom::ChiralType::CHI_TETRAHEDRAL_CW) {
      sinfo.specified = StereoSpecified::Specified;
      unsigned nSwaps =
          countSwapsToInterconvert(origNbrOrder, sinfo.controllingAtoms);
      if (nSwaps % 2) {
        stereo = (stereo == Atom::ChiralType::CHI_TETRAHEDRAL_CCW
                      ? Atom::ChiralType::CHI_TETRAHEDRAL_CW
                      : Atom::ChiralType::CHI_TETRAHEDRAL_CCW);
      }
      switch (stereo) {
        case Atom::ChiralType::CHI_TETRAHEDRAL_CCW:
          sinfo.descriptor = StereoDescriptor::Tet_CCW;
          break;
        case Atom::ChiralType::CHI_TETRAHEDRAL_CW:
          sinfo.descriptor = StereoDescriptor::Tet_CW;
          break;
        default:
          UNDER_CONSTRUCTION("unrecognized chiral flag");
      }
    }
  }

  return sinfo;
}

bool isBondPotentialStereoBond(const Bond *bond) {
  PRECONDITION(bond, "bond is null");
  if (bond->getBondType() != Bond::BondType::DOUBLE) {
    return false;
  }

  // at the moment the condition for being a potential stereo bond is that
  // each of the beginning and end neighbors must have at least 2 heavy atom
  // neighbors i.e. C/C=N/[H] is not a possible stereo bond but no more than 3
  // total neighbors.
  // if it's a ring bond, the smallest ring it's in must have at least 8 members
  //  (this is common with InChI)
  const auto beginAtom = bond->getBeginAtom();
  auto begHeavyDegree =
      beginAtom->getTotalDegree() - beginAtom->getTotalNumHs(true);
  const auto endAtom = bond->getEndAtom();
  auto endHeavyDegree =
      endAtom->getTotalDegree() - endAtom->getTotalNumHs(true);
  if (begHeavyDegree > 1 && beginAtom->getDegree() < 4 && endHeavyDegree > 1 &&
      endAtom->getDegree() < 4) {
    // check rings
    const auto ri = bond->getOwningMol().getRingInfo();
    for (const auto &bring : ri->bondRings()) {
      if (bring.size() < 8 && std::find(bring.begin(), bring.end(),
                                        bond->getIdx()) != bring.end()) {
        return false;
      }
    }
    return true;
  } else {
    return false;
  }
}

bool isAtomPotentialTetrahedralCenter(const Atom *atom) {
  PRECONDITION(atom, "atom is null");

  if (atom->getTotalDegree() > 4) {
    return false;
  } else {
    const auto &mol = atom->getOwningMol();
    auto degree = mol.getAtomDegree(atom);
    if (degree == 4) {
      // chirality is always possible with 4 nbrs
      return true;
    } else if (degree == 1) {
      // chirality is never possible with 1 nbr
      return false;
    } else if (degree < 3 &&
               (atom->getAtomicNum() != 15 && atom->getAtomicNum() != 33)) {
      // less than three neighbors is never stereogenic
      // unless it is a phosphine/arsine with implicit H
      return false;
    } else if (atom->getAtomicNum() == 15 || atom->getAtomicNum() == 33) {
      // from logical flow: degree is 2 or 3 (implicit H)
      // Since InChI Software v. 1.02-standard (2009), phosphines and arsines
      // are always treated as stereogenic even with H atom neighbors.
      // Accept automatically.
      return true;
    } else if (degree == 3) {
      // three-coordinate with a single H we'll accept automatically:
      if (atom->getTotalNumHs() == 1) {
        return true;
      } else {
        // otherwise we default to not being a legal center
        bool legalCenter = false;
        // but there are a few special cases we'll accept
        // sulfur or selenium with either a positive charge or a double
        // bond:
        if ((atom->getAtomicNum() == 16 || atom->getAtomicNum() == 34) &&
            (atom->getExplicitValence() == 4 ||
             (atom->getExplicitValence() == 3 &&
              atom->getFormalCharge() == 1))) {
          legalCenter = true;
        } else if (atom->getAtomicNum() == 7 &&
                   mol.getRingInfo()->isAtomInRingOfSize(atom->getIdx(), 3)) {
          // N in a three-membered ring is another one of the InChI special
          // cases
          legalCenter = true;
        }
        return legalCenter;
      }
    } else {
      return false;
    }
  }
}
bool isAtomPotentialStereoAtom(const Atom *atom) {
  return isAtomPotentialTetrahedralCenter(atom);
}
}  // namespace detail

std::string getBondSymbol(const Bond *bond) {
  // FIX: this is not complete
  PRECONDITION(bond, "bad bond");
  std::string res;
  if (bond->getIsAromatic()) {
    res = ":";
  } else {
    switch (bond->getBondType()) {
      case Bond::BondType::SINGLE:
        res = "-";
        break;
      case Bond::BondType::DOUBLE:
        res = "=";
        break;
      case Bond::BondType::TRIPLE:
        res = "#";
        break;
      case Bond::BondType::AROMATIC:
        res = ":";
        break;
      default:
        res = "?";
        break;
    }
  }
  return res;
}

namespace {
std::string getAtomCompareSymbol(const Atom &atom) {
  auto fmt = boost::format("%d%s") % atom.getIsotope() % atom.getSymbol();
  return fmt.str();
}
}  // namespace

std::vector<StereoInfo> findPotentialStereo(ROMol &mol, bool cleanIt,
                                            bool flagPossible) {
  std::map<int, Atom::ChiralType> ochiralTypes;

  if (!mol.getRingInfo()->isInitialized()) {
    MolOps::symmetrizeSSSR(mol);
  }

  boost::dynamic_bitset<> knownAtoms(mol.getNumAtoms());
  boost::dynamic_bitset<> possibleAtoms(mol.getNumAtoms());
  std::vector<std::string> atomSymbols(mol.getNumAtoms());
  for (const auto atom : mol.atoms()) {
    auto aidx = atom->getIdx();
    if (detail::isAtomPotentialStereoAtom(atom)) {
      auto sinfo = detail::getStereoInfo(atom);
      switch (sinfo.specified) {
        case Chirality::StereoSpecified::Unknown:
        case Chirality::StereoSpecified::Specified:
          knownAtoms.set(aidx);
          break;
        case Chirality::StereoSpecified::Unspecified:
          break;
        default:
          throw ValueErrorException("bad StereoInfo.specified type");
      }
      if (flagPossible ||
          sinfo.specified != Chirality::StereoSpecified::Unspecified) {
        possibleAtoms.set(aidx);
        // set "fake stereo"
        ochiralTypes[aidx] = atom->getChiralTag();
        atom->setChiralTag(Atom::CHI_TETRAHEDRAL_CW);
        atomSymbols[aidx] = (boost::format("%d%s_%d") % atom->getIsotope() %
                             atom->getSymbol() % aidx)
                                .str();
      } else {
        atomSymbols[aidx] = getAtomCompareSymbol(*atom);
      }
    } else {
      atomSymbols[aidx] = getAtomCompareSymbol(*atom);
    }
  }

  // flag possible ring stereo cases. The relevant cases here are:
  //    1) even-sized rings with possible (or specified) atoms opposite each
  //       other, like CC1CC(C)C1 or CC1CCC(C)CC1
  //    2) atoms sharing a bond which fuses two or more rings, like the central
  //       bond in C1CCC2CCCCC2C1

  // tracks the number of rings with possible ring stereo that the atom is in
  //  (only set for potential stereoatoms)
  std::vector<unsigned int> possibleRingStereoAtoms(mol.getNumAtoms());
  // tracks the number of rings with possible ring stereo that the bond is in
  //  (set for all bonds)
  std::vector<unsigned int> possibleRingStereoBonds(mol.getNumBonds());
  if (flagPossible) {
    boost::dynamic_bitset<> possibleAtomsInRing(mol.getNumAtoms());
    for (unsigned int ridx = 0; ridx < mol.getRingInfo()->atomRings().size();
         ++ridx) {
      const auto &aring = mol.getRingInfo()->atomRings()[ridx];
      unsigned int nHere = 0;
      auto sz = aring.size();
      possibleAtomsInRing.reset();
      for (unsigned int ai = 0; ai < aring.size(); ++ai) {
        auto aidx = aring[ai];
        if (!(aring.size() % 2)) {
          // find the index of the atom on the opposite side of the even-sized
          // ring
          auto oppositeidx = aring[(ai + sz / 2) % sz];
          if ((possibleAtoms[aidx] || knownAtoms[aidx]) &&
              (possibleAtoms[oppositeidx] || knownAtoms[oppositeidx])) {
            ++nHere;
            possibleAtomsInRing.set(aidx);
            continue;
          }
        }
        // if the atom is in more than one bond, see if there's
        // a possible neighbor on a fusion bond
        if (mol.getRingInfo()->numAtomRings(aidx) > 1) {
          auto otheridx = aring[(ai + 1) % aring.size()];
          if (possibleAtoms[otheridx] || knownAtoms[otheridx]) {
            auto bnd = mol.getBondBetweenAtoms(aidx, otheridx);
            CHECK_INVARIANT(bnd, "expected ring bond not found");
            if (mol.getRingInfo()->numBondRings(bnd->getIdx()) > 1) {
              nHere += 2;
              possibleAtomsInRing.set(aidx);
              possibleAtomsInRing.set(otheridx);
            }
          }
        }
      }
      // if the ring contains at least two atoms with possible stereo,
      // then each of those possibleAtoms should be included for ring stereo
      if (nHere > 1) {
        for (auto aidx : aring) {
          if (possibleAtomsInRing[aidx]) {
            ++possibleRingStereoAtoms[aidx];
          }
        }
        for (auto bidx : mol.getRingInfo()->bondRings()[ridx]) {
          ++possibleRingStereoBonds[bidx];
        }
      }
    }
  }

  std::vector<std::string> bondSymbols(mol.getNumBonds());
  boost::dynamic_bitset<> knownBonds(mol.getNumBonds());
  boost::dynamic_bitset<> possibleBonds(mol.getNumBonds());
  for (const auto bond : mol.bonds()) {
    auto bidx = bond->getIdx();
    if (detail::isBondPotentialStereoBond(bond)) {
      auto sinfo = detail::getStereoInfo(bond);
      switch (sinfo.specified) {
        case Chirality::StereoSpecified::Unknown:
        case Chirality::StereoSpecified::Specified:
          knownBonds.set(bidx);
          break;
        case Chirality::StereoSpecified::Unspecified:
          break;
        default:
          throw ValueErrorException("bad StereoInfo.specified type");
      }
      if (flagPossible ||
          sinfo.specified != Chirality::StereoSpecified::Unspecified) {
        possibleBonds.set(bidx);
        bondSymbols[bidx] =
            (boost::format("%s-%d") % getBondSymbol(bond) % bond->getIdx())
                .str();
      } else {
        bondSymbols[bidx] = getBondSymbol(bond);
      }
    } else {
      bondSymbols[bidx] = getBondSymbol(bond);
    }
  }
  std::vector<StereoInfo> res;
  while (possibleAtoms.count() || possibleBonds.count()) {
    res.clear();
    bool removedStereo = false;

    // we will use the canonicalization code, pretending that each potential
    // stereo atom and bond is specified and different from all others. After
    // we've done that we can re-examine the potential stereo atoms and bonds
    // and remove any where two controlling atoms have the same rank
    boost::dynamic_bitset<> atomsInPlay(mol.getNumAtoms());
    atomsInPlay.set();
    boost::dynamic_bitset<> bondsInPlay(mol.getNumBonds());
    bondsInPlay.set();
    std::vector<unsigned int> aranks;
    const bool breakTies = false;
    const bool includeChirality = false;
    const bool includeIsotopes = false;
    Canon::rankFragmentAtoms(mol, aranks, atomsInPlay, bondsInPlay,
                             &atomSymbols, &bondSymbols, breakTies,
                             includeChirality, includeIsotopes);

    for (const auto atom : mol.atoms()) {
      auto aidx = atom->getIdx();
      if (ochiralTypes.find(aidx) != ochiralTypes.end()) {
        atom->setChiralTag(ochiralTypes[aidx]);
      }
      if (possibleAtoms[aidx]) {
        auto sinfo = detail::getStereoInfo(atom);
        std::vector<unsigned int> nbrs;
        nbrs.reserve(sinfo.controllingAtoms.size());
        bool haveADupe = false;
        for (auto nbrIdx : sinfo.controllingAtoms) {
          auto rnk = aranks[nbrIdx];
          if (std::find(nbrs.begin(), nbrs.end(), rnk) != nbrs.end()) {
            // ok, we just hit a duplicate rank. If the atom we're concerned
            // about is a candidate for ring stereo and the bond to the atom
            // with the duplicate rank is a ring bond that's not fused between
            // rings, we can ignore the duplicate
            if (possibleRingStereoAtoms[aidx]) {
              auto bnd = mol.getBondBetweenAtoms(aidx, nbrIdx);
              if (!bnd || !possibleRingStereoBonds[bnd->getIdx()] ||
                  possibleRingStereoBonds[bnd->getIdx()] > 1) {
                haveADupe = true;
                break;
              }
            } else {
              haveADupe = true;
              break;
            }
          } else {
            nbrs.push_back(rnk);
          }
        }
        if (!haveADupe) {
          res.push_back(std::move(sinfo));
        } else {
          removedStereo = true;
          atomSymbols[aidx] = getAtomCompareSymbol(*atom);
          possibleAtoms[aidx] = 0;
          if (cleanIt &&
              sinfo.specified != Chirality::StereoSpecified::Unspecified) {
            atom->setChiralTag(Atom::ChiralType::CHI_UNSPECIFIED);
          }
          // if this was creating possible ring stereo, update that info now
          if (possibleRingStereoAtoms[aidx]) {
            --possibleRingStereoAtoms[aidx];
            if (!possibleRingStereoAtoms[aidx]) {
              // we're no longer in any ring with possible ring stereo. Go
              // update all the other atoms/bonds in rings that we're in:
              for (unsigned int ridx = 0;
                   ridx < mol.getRingInfo()->atomRings().size(); ++ridx) {
                const auto &aring = mol.getRingInfo()->atomRings()[ridx];
                unsigned int nHere = 0;
                for (auto raidx : aring) {
                  if (possibleRingStereoAtoms[raidx]) {
                    --possibleRingStereoAtoms[raidx];
                    if (possibleRingStereoAtoms[raidx]) {
                      ++nHere;
                    }
                  }
                }
                if (nHere <= 1) {
                  // update the bondstereo counts too
                  for (auto rbidx : mol.getRingInfo()->bondRings()[ridx]) {
                    if (possibleRingStereoBonds[rbidx]) {
                      --possibleRingStereoBonds[rbidx];
                    }
                  }
                }
              }
            }
          }
        }
      }
    }

    for (const auto bond : mol.bonds()) {
      auto bidx = bond->getIdx();
      if (possibleBonds[bidx]) {
        auto sinfo = detail::getStereoInfo(bond);
        ASSERT_INVARIANT(sinfo.controllingAtoms.size() == 4,
                         "bad controlling atoms size");
        bool haveADupe = false;
        if (sinfo.controllingAtoms[0] != Chirality::StereoInfo::NOATOM &&
            sinfo.controllingAtoms[1] != Chirality::StereoInfo::NOATOM &&
            aranks[sinfo.controllingAtoms[0]] ==
                aranks[sinfo.controllingAtoms[1]]) {
          haveADupe = true;
        }
        if (sinfo.controllingAtoms[2] != Chirality::StereoInfo::NOATOM &&
            sinfo.controllingAtoms[3] != Chirality::StereoInfo::NOATOM &&
            aranks[sinfo.controllingAtoms[2]] ==
                aranks[sinfo.controllingAtoms[3]]) {
          haveADupe = true;
        }
        if (!haveADupe) {
          res.push_back(std::move(sinfo));
        } else {
          removedStereo = true;
          bondSymbols[bidx] = getBondSymbol(bond);
          possibleBonds[bidx] = 0;
          if (cleanIt &&
              sinfo.specified != Chirality::StereoSpecified::Unspecified) {
            bond->setStereo(Bond::BondStereo::STEREONONE);
          }
        }
      }
    }
    if (!removedStereo) {
      break;
    }
  }
  return res;
}  // namespace Chirality

// const_casts are always ugly, but we know that findPotentialStereo() doesn't
// modify the molecule if cleanIt is false:
std::vector<StereoInfo> findPotentialStereo(const ROMol &mol) {
  bool cleanIt = false;
  return findPotentialStereo(const_cast<ROMol &>(mol), cleanIt);
}

}  // namespace Chirality
}  // namespace RDKit