File: RGroupDecompData.h

package info (click to toggle)
rdkit 202009.4-1
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 129,624 kB
  • sloc: cpp: 288,030; python: 75,571; java: 6,999; ansic: 5,481; sql: 1,968; yacc: 1,842; lex: 1,254; makefile: 572; javascript: 461; xml: 229; fortran: 183; sh: 134; cs: 93
file content (500 lines) | stat: -rw-r--r-- 16,091 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
//
//  Copyright (C) 2017 Novartis Institutes for BioMedical Research
//
//   @@ All Rights Reserved @@
//  This file is part of the RDKit.
//  The contents are covered by the terms of the BSD license
//  which is included in the file license.txt, found at the root
//  of the RDKit source tree.
//
#ifndef RGROUP_DECOMP_DATA
#define RGROUP_DECOMP_DATA

#include "RGroupCore.h"
#include "RGroupDecomp.h"
#include "RGroupMatch.h"
#include "RGroupScore.h"
#include <vector>
#include <map>

namespace RDKit
{
struct RGroupDecompData {
  // matches[mol_idx] == vector of potential matches
  std::map<int, RCore> cores;
  std::map<std::string, int> newCores;  // new "cores" found along the way
  int newCoreLabel = EMPTY_CORE_LABEL;
  RGroupDecompositionParameters params;

  std::vector<std::vector<RGroupMatch>> matches;
  std::set<int> labels;
  std::vector<size_t> permutation;
  std::map<int, std::vector<int>> userLabels;

  std::vector<int> processedRlabels;

  std::map<int, int> finalRlabelMapping;

  RGroupDecompData(const RWMol &inputCore,
                   RGroupDecompositionParameters inputParams)
      : params(std::move(inputParams)) {
    cores[0] = RCore(inputCore);
    prepareCores();
  }

  RGroupDecompData(const std::vector<ROMOL_SPTR> &inputCores,
                   RGroupDecompositionParameters inputParams)
      : params(std::move(inputParams)) {
    for (size_t i = 0; i < inputCores.size(); ++i) {
      cores[i] = RCore(*inputCores[i]);
    }

    prepareCores();
  }

  void prepareCores() {
    for (auto &core : cores) {
      RWMol *alignCore = core.first ? cores[0].core.get() : nullptr;
      CHECK_INVARIANT(params.prepareCore(*core.second.core, alignCore),
                      "Could not prepare at least one core");
      if (params.onlyMatchAtRGroups) {
        core.second.findIndicesWithRLabel();
      }
      core.second.labelledCore.reset(new RWMol(*core.second.core));
    }
  }

  void setRlabel(Atom *atom, int rlabel) {
    PRECONDITION(rlabel != 0, "RLabels must be >0");
    if (params.rgroupLabelling & AtomMap) {
      atom->setAtomMapNum(rlabel);
    }

    if (params.rgroupLabelling & MDLRGroup) {
      std::string dLabel = "R" + std::to_string(rlabel);
      atom->setProp(common_properties::dummyLabel, dLabel);
      setAtomRLabel(atom, rlabel);
    }

    if (params.rgroupLabelling & Isotope) {
      atom->setIsotope(rlabel + 1);
    }
  }

  void prune() {  // prune all but the current "best" permutation of matches
    for (size_t mol_idx = 0; mol_idx < permutation.size(); ++mol_idx) {
      std::vector<RGroupMatch> keepVector;
      keepVector.push_back(matches[mol_idx][permutation[mol_idx]]);
      matches[mol_idx] = keepVector;
    }
    permutation = std::vector<size_t>(matches.size(), 0);
  }

  // Return the RGroups with the current "best" permutation
  //  of matches.
  std::vector<RGroupMatch> GetCurrentBestPermutation() const {
    const bool removeAllHydrogenRGroups = params.removeAllHydrogenRGroups;

    std::vector<RGroupMatch> results;  // std::map<int, RGroup> > result;
    for (size_t i = 0; i < permutation.size(); ++i) {
      CHECK_INVARIANT(i < matches.size(),
                      "Best Permutation mol idx out of range");
      CHECK_INVARIANT(permutation[i] < matches[i].size(),
                      "Selected match at permutation out of range");
      results.push_back(matches[i][permutation[i]]);
    }

    if (removeAllHydrogenRGroups) {
      // if a label is all hydrogens, remove it

      // This logic is a bit tricky, find all labels that have common cores
      //  and analyze those sets independently.
      //  i.e. if core 1 doesn't have R1 then don't analyze it in when looking
      //  at label 1
      std::map<int, std::set<int>> labelCores;  // map from label->cores
      for (auto &position : results) {
        int core_idx = position.core_idx;
        if (labelCores.find(core_idx) == labelCores.end()) {
          auto core = cores.find(core_idx);
          if (core != cores.end()) {
            for (auto rlabels : getRlabels(*core->second.core)) {
              int rlabel = rlabels.first;
              labelCores[rlabel].insert(core_idx);
            }
          }
        }
      }

      for (int label : labels) {
        bool allH = true;
        for (auto &position : results) {
          R_DECOMP::const_iterator rgroup = position.rgroups.find(label);
          bool labelHasCore = labelCores[label].find(position.core_idx) !=
                              labelCores[label].end();
          if (labelHasCore && (rgroup == position.rgroups.end() ||
                               !rgroup->second->is_hydrogen)) {
            allH = false;
            break;
          }
        }

        if (allH) {
          for (auto &position : results) {
            position.rgroups.erase(label);
          }
        }
      }
    }
    return results;
  }

  class UsedLabels {
   public:
    std::set<int> labels_used;
    bool add(int rlabel) {
      if (labels_used.find(rlabel) != labels_used.end()) {
        return false;
      }
      labels_used.insert(rlabel);
      return true;
    }

    int next() {
      int i = 1;
      while (labels_used.find(i) != labels_used.end()) {
        ++i;
      }
      labels_used.insert(i);
      return i;
    }
  };

  void relabelCore(RWMol &core, std::map<int, int> &mappings,
                   UsedLabels &used_labels, const std::set<int> &indexLabels,
                   std::map<int, std::vector<int>> extraAtomRLabels) {
    // Now remap to proper rlabel ids
    //  if labels are positive, they come from User labels
    //  if they are negative, they come from indices and should be
    //  numbered *after* the user labels.
    //
    //  Some indices are attached to multiple bonds,
    //   these rlabels should be incrementally added last
    std::map<int, Atom *> atoms = getRlabels(core);
    // a core only has one labelled index
    //  a secondary structure extraAtomRLabels contains the number
    //  of bonds between this atom and the side chain

    // a sidechain atom has a vector of the attachments back to the
    //  core that takes the place of numBondsToRlabel

    std::map<int, std::vector<int>> bondsToCore;
    std::vector<std::pair<Atom *, Atom *>> atomsToAdd;  // adds -R if necessary

    // Deal with user supplied labels
    for (auto rlabels : atoms) {
      int userLabel = rlabels.first;
      if (userLabel < 0) {
        continue;  // not a user specified label
      }
      Atom *atom = rlabels.second;
      mappings[userLabel] = userLabel;
      used_labels.add(userLabel);

      if (atom->getAtomicNum() == 0) {  // add to existing dummy/rlabel
        setRlabel(atom, userLabel);
      } else {  // adds new rlabel
        auto *newAt = new Atom(0);
        setRlabel(newAt, userLabel);
        atomsToAdd.emplace_back(atom, newAt);
      }
    }

    // Deal with non-user supplied labels
    for (auto newLabel : indexLabels) {
      auto atm = atoms.find(newLabel);
      if (atm == atoms.end()) {
        continue;
      }

      Atom *atom = atm->second;

      int rlabel;
      auto mapping = mappings.find(newLabel);
      if (mapping == mappings.end()) {
        rlabel = used_labels.next();
        mappings[newLabel] = rlabel;
      } else {
        rlabel = mapping->second;
      }

      if (atom->getAtomicNum() == 0) {  // add to dummy
        setRlabel(atom, rlabel);
      } else {
        auto *newAt = new Atom(0);
        setRlabel(newAt, rlabel);
        atomsToAdd.emplace_back(atom, newAt);
      }
    }

    // Deal with multiple bonds to the same label
    for (auto &extraAtomRLabel : extraAtomRLabels) {
      auto atm = atoms.find(extraAtomRLabel.first);
      if (atm == atoms.end()) {
        continue;  // label not used in the rgroup
      }
      Atom *atom = atm->second;

      for (int &i : extraAtomRLabel.second) {
        int rlabel = used_labels.next();
        i = rlabel;
        // Is this necessary?
        CHECK_INVARIANT(
            atom->getAtomicNum() > 1,
            "Multiple attachments to a dummy (or hydrogen) is weird.");
        auto *newAt = new Atom(0);
        setRlabel(newAt, rlabel);
        atomsToAdd.emplace_back(atom, newAt);
      }
    }

    for (auto &i : atomsToAdd) {
      core.addAtom(i.second, false, true);
      core.addBond(i.first, i.second, Bond::SINGLE);
    }
    core.updatePropertyCache(false);  // this was github #1550
  }

  void relabelRGroup(RGroupData &rgroup, const std::map<int, int> &mappings) {
    PRECONDITION(rgroup.combinedMol.get(), "Unprocessed rgroup");

    RWMol &mol = *rgroup.combinedMol.get();
    if (rgroup.combinedMol->hasProp(done)) {
      rgroup.labelled = true;
      return;
    }

    mol.setProp(done, true);
    std::vector<std::pair<Atom *, Atom *>> atomsToAdd;  // adds -R if necessary

    for (RWMol::AtomIterator atIt = mol.beginAtoms(); atIt != mol.endAtoms();
         ++atIt) {
      Atom *atom = *atIt;
      if (atom->hasProp(SIDECHAIN_RLABELS)) {
        atom->setIsotope(0);
        const std::vector<int> &rlabels =
            atom->getProp<std::vector<int>>(SIDECHAIN_RLABELS);
        // switch on atom mappings or rlabels....

        for (int rlabel : rlabels) {
          auto label = mappings.find(rlabel);
          CHECK_INVARIANT(label != mappings.end(), "Unprocessed mapping");

          if (atom->getAtomicNum() == 0) {
            setRlabel(atom, label->second);
          } else {
            auto *newAt = new Atom(0);
            setRlabel(newAt, label->second);
            atomsToAdd.emplace_back(atom, newAt);
          }
        }
      }
    }

    for (auto &i : atomsToAdd) {
      mol.addAtom(i.second, false, true);
      mol.addBond(i.first, i.second, Bond::SINGLE);
    }

    if (params.removeHydrogensPostMatch) {
      RDLog::BlockLogs blocker;
      bool implicitOnly = false;
      bool updateExplicitCount = false;
      bool sanitize = false;
      MolOps::removeHs(mol, implicitOnly, updateExplicitCount, sanitize);
    }

    mol.updatePropertyCache(false);  // this was github #1550
    rgroup.labelled = true;
  }

  // relabel the core and sidechains using the specified user labels
  //  if matches exist for non labelled atoms, these are added as well
  void relabel() {
    std::vector<RGroupMatch> best = GetCurrentBestPermutation();

    // get the labels used
    std::set<int> userLabels;
    std::set<int> indexLabels;

    // Go through all the RGroups and find out which labels were
    //  actually used.

    // some atoms will have multiple attachment points, i.e. cycles
    //  split these up into new rlabels if necessary
    //  These are detected at match time
    //  This vector will hold the extra (new) labels required
    std::map<int, std::vector<int>> extraAtomRLabels;

    for (auto &it : best) {
      for (auto &rgroup : it.rgroups) {
        if (rgroup.first >= 0) {
          userLabels.insert(rgroup.first);
        }
        if (rgroup.first < 0) {
          indexLabels.insert(rgroup.first);
        }

        std::map<int, int> rlabelsUsedInRGroup =
            rgroup.second->getNumBondsToRlabels();
        for (auto &numBondsUsed : rlabelsUsedInRGroup) {
          // Make space for the extra labels
          if (numBondsUsed.second > 1) {  // multiple rgroup bonds to same atom
            extraAtomRLabels[numBondsUsed.first].resize(numBondsUsed.second -
                                                        1);
          }
        }
      }
    }

    // Assign final RGroup labels to the cores and propagate these to
    //  the scaffold
    finalRlabelMapping.clear();

    UsedLabels used_labels;
    for (auto &core : cores) {
      core.second.labelledCore.reset(new RWMol(*core.second.core));
      relabelCore(*core.second.labelledCore, finalRlabelMapping, used_labels,
                  indexLabels, extraAtomRLabels);
    }

    for (auto &it : best) {
      for (auto &rgroup : it.rgroups) {
        relabelRGroup(*rgroup.second, finalRlabelMapping);
      }
    }
  }

  // compute the number of rgroups that would be added if we
  //  accepted this permutation
  size_t compute_num_added_rgroups(
      const std::vector<size_t> &tied_permutation,
      std::vector<int> &heavy_counts) {
    size_t i = 0;
    size_t num_added_rgroups = 0;
    heavy_counts.resize(labels.size(), 0);
    for (int label : labels) {
      int incr = (label > 0) ? -1 : 1;
      bool incremented = false;
      for (size_t m = 0; m < tied_permutation.size();
           ++m) {  // for each molecule
        auto rg = matches[m][tied_permutation[m]].rgroups.find(label);
        if (rg != matches[m][tied_permutation[m]].rgroups.end() &&
            !rg->second->is_hydrogen) {
          if (label <= 0 && !incremented) {
            incremented = true;
            ++num_added_rgroups;
          }
          heavy_counts[i] += incr;
        }
      }
      ++i;
    }
    return num_added_rgroups;
  }

  bool process(bool pruneMatches, bool finalize = false) {
    if (matches.size() == 0) {
      return false;
    }
    auto t0 = std::chrono::steady_clock::now();
    // Exhaustive search, get the MxN matrix
    // (M = matches.size(): number of molecules
    //  N = iterator.maxPermutations)
    std::vector<size_t> permutations;

    std::transform(matches.begin(), matches.end(),
                   std::back_inserter(permutations),
                   [](const std::vector<RGroupMatch> &m) { return m.size(); });
    permutation = std::vector<size_t>(permutations.size(), 0);

    // run through all possible matches and score each
    //  set
    double best_score = 0;
    std::vector<size_t> best_permutation = permutation;
    std::vector<std::vector<size_t>> ties;

    size_t count = 0;
#ifdef DEBUG
    std::cerr << "Processing" << std::endl;
#endif
    CartesianProduct iterator(permutations);
    // Iterates through the permutation idx, i.e.
    //  [m1_permutation_idx,  m2_permutation_idx, m3_permutation_idx]

    while (iterator.next()) {
      if (count > iterator.maxPermutations) {
        throw ValueErrorException("next() did not finish");
      }
#ifdef DEBUG
      std::cerr << "**************************************************"
                << std::endl;
#endif
      double newscore = score(iterator.permutation, matches, labels);

      if (fabs(newscore - best_score) <
          1e-6) {  // heuristic to overcome floating point comparison issues
        ties.push_back(iterator.permutation);
      } else if (newscore > best_score) {
#ifdef DEBUG
        std::cerr << " ===> current best:" << newscore << ">" << best_score
                  << std::endl;
#endif
        ties.clear();
        ties.push_back(iterator.permutation);
        best_score = newscore;
        best_permutation = iterator.permutation;
      }
      ++count;
    }

    if (ties.size() > 1) {
      size_t min_perm_value = 0;
      size_t smallest_added_rgroups = labels.size();
      for (const auto &tied_permutation : ties) {
        std::vector<int> heavy_counts;
        std::vector<int> largest_heavy_counts(labels.size(), 0);
        size_t num_added_rgroups =
            compute_num_added_rgroups(tied_permutation, heavy_counts);
        if (num_added_rgroups < smallest_added_rgroups) {
          smallest_added_rgroups = num_added_rgroups;
          best_permutation = tied_permutation;
        } else if (num_added_rgroups == smallest_added_rgroups) {
          if (heavy_counts < largest_heavy_counts) {
            largest_heavy_counts = heavy_counts;
            best_permutation = tied_permutation;
          } else if (heavy_counts == largest_heavy_counts) {
            size_t perm_value = iterator.value();
            if (perm_value < min_perm_value) {
              min_perm_value = perm_value;
              best_permutation = tied_permutation;
            }
          }
        }
        checkForTimeout(t0, params.timeout);
      }
    }
    permutation = best_permutation;
    if (pruneMatches || finalize) {
      prune();
    }

    if (finalize) {
      relabel();
    }

    return true;
  }
};
}  

#endif