1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151
|
// $Id$
//
// Copyright (C) 2013 Paolo Tosco
//
// Copyright (C) 2004-2006 Rational Discovery LLC
//
// @@ All Rights Reserved @@
// This file is part of the RDKit.
// The contents are covered by the terms of the BSD license
// which is included in the file license.txt, found at the root
// of the RDKit source tree.
//
#include "AngleConstraint.h"
#include "Params.h"
#include <cmath>
#include <ForceField/ForceField.h>
#include <RDGeneral/Invariant.h>
namespace ForceFields {
namespace MMFF {
AngleConstraintContrib::AngleConstraintContrib(
ForceField *owner, unsigned int idx1, unsigned int idx2, unsigned int idx3,
double minAngleDeg, double maxAngleDeg, double forceConst) {
PRECONDITION(owner, "bad owner");
URANGE_CHECK(idx1, owner->positions().size());
URANGE_CHECK(idx2, owner->positions().size());
URANGE_CHECK(idx3, owner->positions().size());
PRECONDITION(!(minAngleDeg > maxAngleDeg),
"minAngleDeg must be <= maxAngleDeg");
RDKit::ForceFieldsHelper::normalizeAngleDeg(minAngleDeg);
RDKit::ForceFieldsHelper::normalizeAngleDeg(maxAngleDeg);
dp_forceField = owner;
d_at1Idx = idx1;
d_at2Idx = idx2;
d_at3Idx = idx3;
d_minAngleDeg = minAngleDeg;
d_maxAngleDeg = maxAngleDeg;
d_forceConstant = forceConst;
}
AngleConstraintContrib::AngleConstraintContrib(
ForceField *owner, unsigned int idx1, unsigned int idx2, unsigned int idx3,
bool relative, double minAngleDeg, double maxAngleDeg, double forceConst) {
PRECONDITION(owner, "bad owner");
const RDGeom::PointPtrVect &pos = owner->positions();
URANGE_CHECK(idx1, pos.size());
URANGE_CHECK(idx2, pos.size());
URANGE_CHECK(idx3, pos.size());
PRECONDITION(!(minAngleDeg > maxAngleDeg),
"minAngleDeg must be <= maxAngleDeg");
double angle = 0.0;
if (relative) {
RDGeom::Point3D p1 = *((RDGeom::Point3D *)pos[idx1]);
RDGeom::Point3D p2 = *((RDGeom::Point3D *)pos[idx2]);
RDGeom::Point3D p3 = *((RDGeom::Point3D *)pos[idx3]);
double dist1 = (p1 - p2).length();
double dist2 = (p3 - p2).length();
RDGeom::Point3D p12 = (p1 - p2) / dist1;
RDGeom::Point3D p32 = (p3 - p2) / dist2;
double cosTheta = p12.dotProduct(p32);
clipToOne(cosTheta);
angle = RAD2DEG * acos(cosTheta);
}
dp_forceField = owner;
d_at1Idx = idx1;
d_at2Idx = idx2;
d_at3Idx = idx3;
minAngleDeg += angle;
maxAngleDeg += angle;
RDKit::ForceFieldsHelper::normalizeAngleDeg(minAngleDeg);
RDKit::ForceFieldsHelper::normalizeAngleDeg(maxAngleDeg);
d_minAngleDeg = minAngleDeg;
d_maxAngleDeg = maxAngleDeg;
d_forceConstant = forceConst;
}
double AngleConstraintContrib::computeAngleTerm(double angle) const {
double angleTerm = 0.0;
if (angle < d_minAngleDeg) {
angleTerm = angle - d_minAngleDeg;
} else if (angle > d_maxAngleDeg) {
angleTerm = angle - d_maxAngleDeg;
}
return angleTerm;
}
double AngleConstraintContrib::getEnergy(double *pos) const {
PRECONDITION(dp_forceField, "no owner");
PRECONDITION(pos, "bad vector");
RDGeom::Point3D p1(pos[3 * d_at1Idx], pos[3 * d_at1Idx + 1],
pos[3 * d_at1Idx + 2]);
RDGeom::Point3D p2(pos[3 * d_at2Idx], pos[3 * d_at2Idx + 1],
pos[3 * d_at2Idx + 2]);
RDGeom::Point3D p3(pos[3 * d_at3Idx], pos[3 * d_at3Idx + 1],
pos[3 * d_at3Idx + 2]);
RDGeom::Point3D r[2] = {p1 - p2, p3 - p2};
double rLengthSq[2] = {(std::max)(1.0e-5, r[0].lengthSq()),
(std::max)(1.0e-5, r[1].lengthSq())};
double cosTheta = r[0].dotProduct(r[1]) / sqrt(rLengthSq[0] * rLengthSq[1]);
clipToOne(cosTheta);
double angle = RAD2DEG * acos(cosTheta);
double angleTerm = computeAngleTerm(angle);
double res = d_forceConstant * angleTerm * angleTerm;
return res;
}
void AngleConstraintContrib::getGrad(double *pos, double *grad) const {
PRECONDITION(dp_forceField, "no owner");
PRECONDITION(pos, "bad vector");
PRECONDITION(grad, "bad vector");
RDGeom::Point3D p1(pos[3 * d_at1Idx], pos[3 * d_at1Idx + 1],
pos[3 * d_at1Idx + 2]);
RDGeom::Point3D p2(pos[3 * d_at2Idx], pos[3 * d_at2Idx + 1],
pos[3 * d_at2Idx + 2]);
RDGeom::Point3D p3(pos[3 * d_at3Idx], pos[3 * d_at3Idx + 1],
pos[3 * d_at3Idx + 2]);
double *g[3] = {&(grad[3 * d_at1Idx]), &(grad[3 * d_at2Idx]),
&(grad[3 * d_at3Idx])};
RDGeom::Point3D r[2] = {p1 - p2, p3 - p2};
double rLengthSq[2] = {(std::max)(1.0e-5, r[0].lengthSq()),
(std::max)(1.0e-5, r[1].lengthSq())};
double cosTheta = r[0].dotProduct(r[1]) / sqrt(rLengthSq[0] * rLengthSq[1]);
clipToOne(cosTheta);
double angle = RAD2DEG * acos(cosTheta);
double angleTerm = computeAngleTerm(angle);
double dE_dTheta = 2.0 * RAD2DEG * d_forceConstant * angleTerm;
RDGeom::Point3D rp = r[1].crossProduct(r[0]);
double prefactor = dE_dTheta / (std::max)(1.0e-5, rp.length());
double t[2] = {-prefactor / rLengthSq[0], prefactor / rLengthSq[1]};
RDGeom::Point3D dedp[3];
dedp[0] = r[0].crossProduct(rp) * t[0];
dedp[2] = r[1].crossProduct(rp) * t[1];
dedp[1] = -dedp[0] - dedp[2];
for (unsigned int i = 0; i < 3; ++i) {
g[i][0] += dedp[i].x;
g[i][1] += dedp[i].y;
g[i][2] += dedp[i].z;
}
}
} // namespace MMFF
} // namespace ForceFields
|