1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987
|
//
// Copyright (C) 2003-2022 Greg Landrum and other RDKit contributors
//
// @@ All Rights Reserved @@
// This file is part of the RDKit.
// The contents are covered by the terms of the BSD license
// which is included in the file license.txt, found at the root
// of the RDKit source tree.
//
#include "RDDepictor.h"
#include "EmbeddedFrag.h"
#ifdef RDK_BUILD_COORDGEN_SUPPORT
#include <CoordGen/CoordGen.h>
#endif
#include <RDGeneral/types.h>
#include <GraphMol/ROMol.h>
#include <GraphMol/Conformer.h>
#include <GraphMol/Chirality.h>
#include <cmath>
#include <GraphMol/MolOps.h>
#include <GraphMol/Rings.h>
#include <Geometry/point.h>
#include <Geometry/Transform2D.h>
#include <Geometry/Transform3D.h>
#include <GraphMol/MolTransforms/MolTransforms.h>
#include <GraphMol/Substruct/SubstructUtils.h>
#include "EmbeddedFrag.h"
#include "DepictUtils.h"
#include <iostream>
#include <boost/dynamic_bitset.hpp>
#include <algorithm>
namespace RDDepict {
bool preferCoordGen = false;
namespace DepictorLocal {
constexpr auto ISQRT2 = 0.707107;
constexpr auto SQRT3_2 = 0.866025;
std::vector<const RDKit::Atom *> getRankedAtomNeighbors(
const RDKit::ROMol &mol, const RDKit::Atom *atom,
const std::vector<int> &atomRanks) {
std::vector<const RDKit::Atom *> nbrs;
for (auto nbr : mol.atomNeighbors(atom)) {
nbrs.push_back(nbr);
}
std::sort(nbrs.begin(), nbrs.end(),
[&atomRanks](const auto e1, const auto e2) {
return atomRanks[e1->getIdx()] < atomRanks[e2->getIdx()];
});
return nbrs;
}
void embedSquarePlanar(const RDKit::ROMol &mol, const RDKit::Atom *atom,
std::list<EmbeddedFrag> &efrags,
const std::vector<int> &atomRanks) {
static const RDGeom::Point2D idealPoints[] = {
RDGeom::Point2D(ISQRT2 * BOND_LEN, ISQRT2 * BOND_LEN),
RDGeom::Point2D(ISQRT2 * BOND_LEN, -ISQRT2 * BOND_LEN),
RDGeom::Point2D(-ISQRT2 * BOND_LEN, -ISQRT2 * BOND_LEN),
RDGeom::Point2D(-ISQRT2 * BOND_LEN, ISQRT2 * BOND_LEN),
};
PRECONDITION(atom, "bad atom");
if (atom->getChiralTag() != RDKit::Atom::ChiralType::CHI_SQUAREPLANAR) {
return;
}
auto nbrs = getRankedAtomNeighbors(mol, atom, atomRanks);
RDGeom::INT_POINT2D_MAP coordMap;
coordMap[atom->getIdx()] = RDGeom::Point2D(0., 0.);
coordMap[nbrs[0]->getIdx()] = idealPoints[0];
bool q2Full = false;
for (const auto nbr : nbrs) {
if (nbr == nbrs.front()) {
continue;
}
auto angle =
RDKit::Chirality::getIdealAngleBetweenLigands(atom, nbrs.front(), nbr);
if (fabs(angle - 180) < 0.1) {
coordMap[nbr->getIdx()] = idealPoints[2];
} else {
if (!q2Full) {
coordMap[nbr->getIdx()] = idealPoints[1];
q2Full = true;
} else {
coordMap[nbr->getIdx()] = idealPoints[3];
}
}
}
efrags.emplace_back(&mol, coordMap);
}
void embedTBP(const RDKit::ROMol &mol, const RDKit::Atom *atom,
std::list<EmbeddedFrag> &efrags,
const std::vector<int> &atomRanks) {
static const RDGeom::Point2D idealPoints[] = {
RDGeom::Point2D(0, BOND_LEN), // axial
RDGeom::Point2D(0, -BOND_LEN), // axial
RDGeom::Point2D(-SQRT3_2 * BOND_LEN, BOND_LEN / 2), // equatorial
RDGeom::Point2D(-SQRT3_2 * BOND_LEN,
-BOND_LEN / 2), // equatorial
RDGeom::Point2D(BOND_LEN, 0), // equatorial
};
PRECONDITION(atom, "bad atom");
if (atom->getChiralTag() !=
RDKit::Atom::ChiralType::CHI_TRIGONALBIPYRAMIDAL) {
return;
}
auto nbrs = getRankedAtomNeighbors(mol, atom, atomRanks);
RDGeom::INT_POINT2D_MAP coordMap;
coordMap[atom->getIdx()] = RDGeom::Point2D(0., 0.);
const RDKit::Atom *axial1 =
RDKit::Chirality::getTrigonalBipyramidalAxialAtom(atom);
const RDKit::Atom *axial2 =
RDKit::Chirality::getTrigonalBipyramidalAxialAtom(atom, -1);
if (axial1) {
coordMap[axial1->getIdx()] = idealPoints[0];
}
if (axial2) {
coordMap[axial2->getIdx()] = idealPoints[1];
}
unsigned whichEq = 2;
for (const auto nbr : nbrs) {
if (nbr != axial1 && nbr != axial2) {
coordMap[nbr->getIdx()] = idealPoints[whichEq++];
}
}
efrags.emplace_back(&mol, coordMap);
}
void embedOctahedral(const RDKit::ROMol &mol, const RDKit::Atom *atom,
std::list<EmbeddedFrag> &efrags,
const std::vector<int> &atomRanks) {
static const RDGeom::Point2D idealPoints[] = {
RDGeom::Point2D(0, BOND_LEN), // axial
RDGeom::Point2D(0, -BOND_LEN), // axial
RDGeom::Point2D(SQRT3_2 * BOND_LEN, BOND_LEN / 2), // equatorial
RDGeom::Point2D(SQRT3_2 * BOND_LEN, -BOND_LEN / 2), // equatorial
RDGeom::Point2D(-SQRT3_2 * BOND_LEN, -BOND_LEN / 2), // equatorial
RDGeom::Point2D(-SQRT3_2 * BOND_LEN, BOND_LEN / 2), // equatorial
};
PRECONDITION(atom, "bad atom");
if (atom->getChiralTag() != RDKit::Atom::ChiralType::CHI_OCTAHEDRAL) {
return;
}
auto nbrs = getRankedAtomNeighbors(mol, atom, atomRanks);
RDGeom::INT_POINT2D_MAP coordMap;
coordMap[atom->getIdx()] = RDGeom::Point2D(0., 0.);
const RDKit::Atom *axial1 = nullptr;
const RDKit::Atom *axial2 = nullptr;
for (auto i = 0u; i < nbrs.size(); ++i) {
bool all90 = true;
for (auto j = i + 1; j < nbrs.size(); ++j) {
if (fabs(RDKit::Chirality::getIdealAngleBetweenLigands(atom, nbrs[i],
nbrs[j]) -
180) < 0.1) {
axial1 = nbrs[i];
axial2 = nbrs[j];
all90 = false;
break;
} else if (fabs(RDKit::Chirality::getIdealAngleBetweenLigands(
atom, nbrs[i], nbrs[j]) -
90) > 0.1) {
all90 = false;
}
}
if (all90) {
axial1 = nbrs[i];
}
if (axial1) {
break;
}
}
if (axial1) {
coordMap[axial1->getIdx()] = idealPoints[0];
}
if (axial2) {
coordMap[axial2->getIdx()] = idealPoints[1];
}
const RDKit::Atom *refEqAtom1 = nullptr;
const RDKit::Atom *refEqAtom2 = nullptr;
for (const auto nbr : nbrs) {
if (nbr != axial1 && nbr != axial2) {
if (!refEqAtom1) {
refEqAtom1 = nbr;
coordMap[nbr->getIdx()] = idealPoints[2];
refEqAtom2 = RDKit::Chirality::getChiralAcrossAtom(atom, nbr);
if (refEqAtom2) {
coordMap[refEqAtom2->getIdx()] = idealPoints[4];
}
} else {
if (nbr == refEqAtom2 || nbr == refEqAtom1) {
continue;
}
coordMap[nbr->getIdx()] = idealPoints[3];
const auto acrossAtom2 =
RDKit::Chirality::getChiralAcrossAtom(atom, nbr);
if (acrossAtom2) {
coordMap[acrossAtom2->getIdx()] = idealPoints[5];
}
break;
}
}
}
efrags.emplace_back(&mol, coordMap);
}
void embedNontetrahedralStereo(const RDKit::ROMol &mol,
std::list<EmbeddedFrag> &efrags,
const std::vector<int> &atomRanks) {
boost::dynamic_bitset<> consider(mol.getNumAtoms());
for (const auto atm : mol.atoms()) {
if (RDKit::Chirality::hasNonTetrahedralStereo(atm)) {
consider[atm->getIdx()] = 1;
}
}
if (consider.empty()) {
return;
}
for (const auto atm : mol.atoms()) {
if (!consider[atm->getIdx()]) {
continue;
}
switch (atm->getChiralTag()) {
case RDKit::Atom::ChiralType::CHI_SQUAREPLANAR:
embedSquarePlanar(mol, atm, efrags, atomRanks);
break;
case RDKit::Atom::ChiralType::CHI_TRIGONALBIPYRAMIDAL:
embedTBP(mol, atm, efrags, atomRanks);
break;
case RDKit::Atom::ChiralType::CHI_OCTAHEDRAL:
embedOctahedral(mol, atm, efrags, atomRanks);
break;
default:
break;
}
}
}
// arings: indices of atoms in rings
void embedFusedSystems(const RDKit::ROMol &mol,
const RDKit::VECT_INT_VECT ås,
std::list<EmbeddedFrag> &efrags) {
RDKit::INT_INT_VECT_MAP neighMap;
RingUtils::makeRingNeighborMap(arings, neighMap);
auto cnrs = arings.size();
boost::dynamic_bitset<> fusDone(cnrs);
auto curr = 0u;
while (curr < cnrs) {
// embed all ring and fused ring systems
RDKit::INT_VECT fused;
RingUtils::pickFusedRings(curr, neighMap, fused, fusDone);
RDKit::VECT_INT_VECT frings;
frings.reserve(fused.size());
for (auto rid : fused) {
frings.push_back(arings.at(rid));
}
EmbeddedFrag efrag(&mol, frings);
efrag.setupNewNeighs();
efrags.push_back(efrag);
size_t rix;
for (rix = 0; rix < cnrs; ++rix) {
if (!fusDone[rix]) {
curr = rix;
break;
}
}
if (rix == cnrs) {
break;
}
}
}
void embedCisTransSystems(const RDKit::ROMol &mol,
std::list<EmbeddedFrag> &efrags) {
for (auto bond : mol.bonds()) {
// check if this bond is in a cis/trans double bond
// and it is not a ring bond
if ((bond->getBondType() == RDKit::Bond::DOUBLE) // this is a double bond
&& (bond->getStereo() >
RDKit::Bond::STEREOANY) // and has stereo chemistry specified
&& (!bond->getOwningMol().getRingInfo()->numBondRings(
bond->getIdx()))) { // not in a ring
if (bond->getStereoAtoms().size() != 2) {
BOOST_LOG(rdWarningLog)
<< "WARNING: bond found with stereo spec but no stereo atoms"
<< std::endl;
continue;
}
EmbeddedFrag efrag(bond);
efrag.setupNewNeighs();
efrags.push_back(efrag);
}
}
}
RDKit::INT_LIST getNonEmbeddedAtoms(const RDKit::ROMol &mol,
const std::list<EmbeddedFrag> &efrags) {
RDKit::INT_LIST res;
boost::dynamic_bitset<> done(mol.getNumAtoms());
for (const auto &efrag : efrags) {
const auto &oatoms = efrag.GetEmbeddedAtoms();
for (const auto &oatom : oatoms) {
done[oatom.first] = 1;
}
}
for (auto aid = 0u; aid < mol.getNumAtoms(); ++aid) {
if (!done[aid]) {
res.push_back(aid);
}
}
return res;
}
// find the largest fragments that is not done yet (
// i.e. merged with the master fragments)
// if do not find anything we return efrags.end()
std::list<EmbeddedFrag>::iterator _findLargestFrag(
std::list<EmbeddedFrag> &efrags) {
std::list<EmbeddedFrag>::iterator mfri;
int msiz = 0;
for (auto efri = efrags.begin(); efri != efrags.end(); ++efri) {
if ((!efri->isDone()) && (efri->Size() > msiz)) {
msiz = efri->Size();
mfri = efri;
}
}
if (msiz == 0) {
mfri = efrags.end();
}
return mfri;
}
void _shiftCoords(std::list<EmbeddedFrag> &efrags) {
// shift the coordinates if there are multiple fragments
// so that the fragments do not overlap each other
if (efrags.empty()) {
return;
}
for (auto &efrag : efrags) {
efrag.computeBox();
}
auto eri = efrags.begin();
auto xmax = eri->getBoxPx();
auto xmin = eri->getBoxNx();
auto ymax = eri->getBoxPy();
auto ymin = eri->getBoxNy();
++eri;
while (eri != efrags.end()) {
bool xshift = true;
if (xmax + xmin > ymax + ymin) {
xshift = false;
}
auto xn = eri->getBoxNx();
auto xp = eri->getBoxPx();
auto yn = eri->getBoxNy();
auto yp = eri->getBoxPy();
RDGeom::Point2D shift(0.0, 0.0);
if (xshift) {
shift.x = xmax + xn + 1.0;
shift.y = 0.0;
xmax += xp + xn + 1.0;
} else {
shift.x = 0.0;
shift.y = ymax + yn + 1.0;
ymax += yp + yn + 1.0;
}
eri->Translate(shift);
++eri;
}
}
// we do not use std::copysign as we need a tolerance
double copySign(double to, double from, double tol) {
return (from < -tol ? -fabs(to) : fabs(to));
}
struct ThetaBin {
double d_thetaAvg = 0.0;
std::vector<double> thetaValues;
};
} // namespace DepictorLocal
void computeInitialCoords(RDKit::ROMol &mol,
const RDGeom::INT_POINT2D_MAP *coordMap,
std::list<EmbeddedFrag> &efrags) {
std::vector<int> atomRanks;
atomRanks.resize(mol.getNumAtoms());
for (auto i = 0u; i < mol.getNumAtoms(); ++i) {
atomRanks[i] = getAtomDepictRank(mol.getAtomWithIdx(i));
}
RDKit::VECT_INT_VECT arings;
// first find all the rings
RDKit::MolOps::symmetrizeSSSR(mol, arings);
// do stereochemistry
RDKit::MolOps::assignStereochemistry(mol, false);
efrags.clear();
// user-specified coordinates exist
bool preSpec = false;
// first embed any atoms for which the coordinates have been specified.
if ((coordMap) && (coordMap->size() > 1)) {
EmbeddedFrag efrag(&mol, *coordMap);
// add this to the list of embedded fragments
efrags.push_back(efrag);
preSpec = true;
}
if (arings.size() > 0) {
// first deal with the fused rings
DepictorLocal::embedFusedSystems(mol, arings, efrags);
}
// do non-tetrahedral stereo
DepictorLocal::embedNontetrahedralStereo(mol, efrags, atomRanks);
// deal with any cis/trans systems
DepictorLocal::embedCisTransSystems(mol, efrags);
// now get the atoms that are not yet embedded in either a cis/trans system
// or a ring system (or simply the first atom)
auto nratms = DepictorLocal::getNonEmbeddedAtoms(mol, efrags);
std::list<EmbeddedFrag>::iterator mri;
if (preSpec) {
// if the user specified coordinates on some of the atoms use that as
// as the starting fragment and it should be at the beginning of the vector
mri = efrags.begin();
} else {
// otherwise - find the largest fragment that was embedded
mri = DepictorLocal::_findLargestFrag(efrags);
}
while ((mri != efrags.end()) || (nratms.size() > 0)) {
if (mri == efrags.end()) {
// we are out of embedded fragments, if there are any
// non embedded atoms use them to start a fragment
auto mrank = static_cast<int>(RDKit::MAX_INT);
RDKit::INT_LIST_I mnri;
for (auto nri = nratms.begin(); nri != nratms.end(); ++nri) {
auto rank = atomRanks.at(*nri);
rank *= mol.getNumAtoms();
// use the atom index as well so that we at least
// get reproducible depictions in cases where things
// have identical ranks.
rank += *nri;
if (rank < mrank) {
mrank = rank;
mnri = nri;
}
}
EmbeddedFrag efrag((*mnri), &mol);
nratms.erase(mnri);
efrags.push_back(efrag);
mri = efrags.end();
--mri;
}
mri->markDone();
mri->expandEfrag(nratms, efrags);
mri = DepictorLocal::_findLargestFrag(efrags);
}
// at this point any remaining efrags should belong individual fragments in
// the molecule
}
unsigned int copyCoordinate(RDKit::ROMol &mol, std::list<EmbeddedFrag> &efrags,
bool clearConfs) {
// create a conformation to store the coordinates and add it to the molecule
auto *conf = new RDKit::Conformer(mol.getNumAtoms());
conf->set3D(false);
std::list<EmbeddedFrag>::iterator eri;
for (const auto &efrag : efrags) {
for (const auto &eai : efrag.GetEmbeddedAtoms()) {
const auto &cr = eai.second.loc;
RDGeom::Point3D fcr(cr.x, cr.y, 0.0);
conf->setAtomPos(eai.first, fcr);
}
}
unsigned int confId = 0;
if (clearConfs) {
// clear all the conformation on the molecules and assign conf ID 0 to this
// conformation
mol.clearConformers();
conf->setId(confId);
// conf ID has already been set in this case to 0 - not other
// confs on the molecule at this point
mol.addConformer(conf);
} else {
// let add conf assign a conformation ID for the conformation
confId = mol.addConformer(conf, true);
}
return confId;
}
//
//
// 50,000 foot algorithm:
// 1) Find rings
// 2) Find fused systems
// 3) embed largest fused system
// 4) for each unfinished atom:
// 1) find neighbors
// 2) if neighbor is non-ring atom, embed it; otherwise merge the
// ring system
// 3) add all atoms just merged/embedded to unfinished atom list
//
//
unsigned int compute2DCoords(RDKit::ROMol &mol,
const RDGeom::INT_POINT2D_MAP *coordMap,
bool canonOrient, bool clearConfs,
unsigned int nFlipsPerSample,
unsigned int nSamples, int sampleSeed,
bool permuteDeg4Nodes, bool forceRDKit) {
if (mol.needsUpdatePropertyCache()) {
mol.updatePropertyCache(false);
}
#ifdef RDK_BUILD_COORDGEN_SUPPORT
// default to use CoordGen if we have it installed
if (!forceRDKit && preferCoordGen) {
RDKit::CoordGen::CoordGenParams params;
if (coordMap) {
params.coordMap = *coordMap;
}
auto cid = RDKit::CoordGen::addCoords(mol, ¶ms);
return cid;
};
#endif
// storage for pieces of a molecule/s that are embedded in 2D
std::list<EmbeddedFrag> efrags;
computeInitialCoords(mol, coordMap, efrags);
#if 1
// perform random sampling here to improve the density
for (auto &eri : efrags) {
// either sample the 2D space by randomly flipping rotatable
// bonds in the structure or flip only bonds along the shortest
// path between colliding atoms - don't do both
if ((nSamples > 0) && (nFlipsPerSample > 0)) {
eri.randomSampleFlipsAndPermutations(nFlipsPerSample, nSamples,
sampleSeed, nullptr, 0.0,
permuteDeg4Nodes);
} else {
eri.removeCollisionsBondFlip();
}
}
for (auto &eri : efrags) {
// if there are any remaining collisions
eri.removeCollisionsOpenAngles();
eri.removeCollisionsShortenBonds();
}
if (!coordMap || !coordMap->size()) {
if (canonOrient && efrags.size()) {
// if we do not have any prespecified coordinates - canonicalize
// the orientation of the fragment so that the longest axes fall
// along the x-axis etc.
for (auto &eri : efrags) {
eri.canonicalizeOrientation();
}
}
}
DepictorLocal::_shiftCoords(efrags);
#endif
// create a conformation on the molecule and copy the coordinates
auto cid = copyCoordinate(mol, efrags, clearConfs);
// special case for a single-atom coordMap template
if ((coordMap) && (coordMap->size() == 1)) {
auto &conf = mol.getConformer(cid);
auto cRef = coordMap->begin();
const auto &confPos = conf.getAtomPos(cRef->first);
auto refPos = cRef->second;
refPos.x -= confPos.x;
refPos.y -= confPos.y;
for (auto i = 0u; i < conf.getNumAtoms(); ++i) {
auto confPos = conf.getAtomPos(i);
confPos.x += refPos.x;
confPos.y += refPos.y;
conf.setAtomPos(i, confPos);
}
}
return cid;
}
//! \brief Compute the 2D coordinates such that the interatom distances
//! mimic those in a distance matrix
/*!
This function generates 2D coordinates such that the inter atom
distance mimic those specified via dmat. This is done by randomly
sampling(flipping) the rotatable bonds in the molecule and
evaluating a cost function which contains two components. The
first component is the sum of inverse of the squared inter-atom
distances, this helps in spreading the atoms far from each
other. The second component is the sum of squares of the
difference in distance between those in dmat and the generated
structure. The user can adjust the relative importance of the two
components via an adjustable parameter (see below)
ARGUMENTS:
\param mol - molecule involved in the fragment
\param dmat - the distance matrix we want to mimic, this is
symmetric N by N matrix when N is the number of
atoms in mol. All negative entries in dmat are
ignored.
\param canonOrient - canonicalize the orientation after the 2D
embedding is done
\param clearConfs - clear any previously existing conformations on
mol before adding a conformation
\param weightDistMat - A value between 0.0 and 1.0, this
determines the importance of mimicking the
inter atoms distances in dmat. (1.0 -
weightDistMat) is the weight associated to
spreading out the structure (density) in
the cost function
\param nFlipsPerSample - the number of rotatable bonds that are
randomly flipped for each sample
\param nSample - the number of samples
\param sampleSeed - seed for the random sampling process
*/
unsigned int compute2DCoordsMimicDistMat(
RDKit::ROMol &mol, const DOUBLE_SMART_PTR *dmat, bool canonOrient,
bool clearConfs, double weightDistMat, unsigned int nFlipsPerSample,
unsigned int nSamples, int sampleSeed, bool permuteDeg4Nodes, bool) {
// storage for pieces of a molecule/s that are embedded in 2D
std::list<EmbeddedFrag> efrags;
computeInitialCoords(mol, nullptr, efrags);
// now perform random flips of rotatable bonds so that we can sample the space
// and try to mimic the distances in dmat
std::list<EmbeddedFrag>::iterator eri;
for (auto &eri : efrags) {
eri.randomSampleFlipsAndPermutations(nFlipsPerSample, nSamples, sampleSeed,
dmat, weightDistMat, permuteDeg4Nodes);
}
if (canonOrient && efrags.size()) {
// canonicalize the orientation of the fragment so that the
// longest axes fall along the x-axis etc.
for (auto &eri : efrags) {
eri.canonicalizeOrientation();
}
}
DepictorLocal::_shiftCoords(efrags);
// create a conformation on the molecule and copy the coordinates
return copyCoordinate(mol, efrags, clearConfs);
}
//! \brief Compute 2D coordinates where a piece of the molecule is
// constrained to have the same coordinates as a reference;
// correspondences between reference and molecule atom indices
// are determined by refMatchVect
void generateDepictionMatching2DStructure(
RDKit::ROMol &mol, const RDKit::ROMol &reference,
const RDKit::MatchVectType &refMatchVect, int confId, bool forceRDKit) {
if (refMatchVect.size() > reference.getNumAtoms()) {
throw RDDepict::DepictException(
"When a refMatchVect is provided, it must have size "
"<= number of atoms in the reference");
}
RDGeom::INT_POINT2D_MAP coordMap;
const RDKit::Conformer &conf = reference.getConformer(confId);
for (const auto &mv : refMatchVect) {
if (mv.first > static_cast<int>(reference.getNumAtoms())) {
throw RDDepict::DepictException(
"Reference atom index in refMatchVect out of range");
}
if (mv.second > static_cast<int>(mol.getNumAtoms())) {
throw RDDepict::DepictException(
"Molecule atom index in refMatchVect out of range");
}
const auto &pt3 = conf.getAtomPos(mv.first);
RDGeom::Point2D pt2(pt3.x, pt3.y);
coordMap[mv.second] = pt2;
}
RDDepict::compute2DCoords(mol, &coordMap, false /* canonOrient */,
true /* clearConfs */, 0, 0, 0, false, forceRDKit);
}
//! \brief Compute 2D coordinates where a piece of the molecule is
// constrained to have the same coordinates as a reference.
RDKit::MatchVectType generateDepictionMatching2DStructure(
RDKit::ROMol &mol, const RDKit::ROMol &reference, int confId,
const RDKit::ROMol *referencePattern, bool acceptFailure, bool forceRDKit,
bool allowOptionalAttachments) {
std::unique_ptr<RDKit::ROMol> referenceHs;
std::vector<int> refMatch;
RDKit::MatchVectType matchVect;
std::vector<RDKit::MatchVectType> multiRefMatchVect;
RDKit::MatchVectType singleRefMatchVect;
auto &refMatchVectRef = singleRefMatchVect;
const RDKit::ROMol &query =
(referencePattern ? *referencePattern : reference);
if (allowOptionalAttachments) {
// we do not need the allowOptionalAttachments logic if there are no
// terminal dummy atoms
allowOptionalAttachments = false;
for (const auto queryAtom : query.atoms()) {
if (queryAtom->getAtomicNum() == 0 && queryAtom->getDegree() == 1) {
allowOptionalAttachments = true;
break;
}
}
}
if (referencePattern) {
if (allowOptionalAttachments &&
referencePattern->getNumAtoms() > reference.getNumAtoms()) {
referenceHs.reset(RDKit::MolOps::addHs(reference));
CHECK_INVARIANT(referenceHs, "addHs returned a nullptr");
multiRefMatchVect =
RDKit::SubstructMatch(*referenceHs, *referencePattern);
if (!multiRefMatchVect.empty()) {
refMatchVectRef = RDKit::getMostSubstitutedCoreMatch(
*referenceHs, *referencePattern, multiRefMatchVect);
}
} else if (referencePattern->getNumAtoms() <= reference.getNumAtoms()) {
RDKit::SubstructMatch(reference, *referencePattern, singleRefMatchVect);
}
if (refMatchVectRef.empty()) {
throw RDDepict::DepictException(
"Reference pattern does not map to reference.");
}
refMatch.resize(query.getNumAtoms(), -1);
for (auto &i : refMatchVectRef) {
// skip indices corresponding to added Hs
if (allowOptionalAttachments &&
referenceHs->getAtomWithIdx(i.second)->getAtomicNum() == 1) {
continue;
}
refMatch[i.first] = i.second;
}
} else {
refMatch.resize(reference.getNumAtoms());
std::iota(refMatch.begin(), refMatch.end(), 0);
}
if (allowOptionalAttachments) {
std::unique_ptr<RDKit::ROMol> molHs(RDKit::MolOps::addHs(mol));
CHECK_INVARIANT(molHs, "addHs returned a nullptr");
auto matches = SubstructMatch(*molHs, query);
if (matches.empty()) {
allowOptionalAttachments = false;
} else {
for (const auto &pair :
getMostSubstitutedCoreMatch(*molHs, query, matches)) {
if (molHs->getAtomWithIdx(pair.second)->getAtomicNum() != 1 &&
refMatch.at(pair.first) >= 0) {
matchVect.push_back(pair);
}
}
}
}
if (!allowOptionalAttachments) {
RDKit::SubstructMatch(mol, query, matchVect);
}
if (matchVect.empty() && !acceptFailure) {
throw RDDepict::DepictException(
"Substructure match with reference not found.");
}
for (auto &pair : matchVect) {
pair.first = refMatch.at(pair.first);
}
generateDepictionMatching2DStructure(mol, reference, matchVect, confId,
forceRDKit);
return matchVect;
}
//! \brief Generate a 2D depiction for a molecule where all or part of
// it mimics the coordinates of a 3D reference structure.
void generateDepictionMatching3DStructure(RDKit::ROMol &mol,
const RDKit::ROMol &reference,
int confId,
RDKit::ROMol *referencePattern,
bool acceptFailure, bool forceRDKit) {
auto num_ats = mol.getNumAtoms();
if (!referencePattern && reference.getNumAtoms() < num_ats) {
if (acceptFailure) {
RDDepict::compute2DCoords(mol);
return;
} else {
throw RDDepict::DepictException(
"Reference molecule not compatible with target molecule.");
}
}
std::vector<int> mol_to_ref(num_ats, -1);
if (referencePattern && referencePattern->getNumAtoms()) {
RDKit::MatchVectType molMatchVect, refMatchVect;
RDKit::SubstructMatch(mol, *referencePattern, molMatchVect);
RDKit::SubstructMatch(reference, *referencePattern, refMatchVect);
if (molMatchVect.empty() || refMatchVect.empty()) {
if (acceptFailure) {
RDDepict::compute2DCoords(mol);
return;
} else {
throw RDDepict::DepictException(
"Reference pattern didn't match molecule or reference.");
}
}
for (size_t i = 0; i < molMatchVect.size(); ++i) {
mol_to_ref[molMatchVect[i].second] = refMatchVect[i].second;
}
} else {
for (unsigned int i = 0; i < num_ats; ++i) {
mol_to_ref[i] = i;
}
}
const RDKit::Conformer &conf = reference.getConformer(confId);
// the distance matrix is a triangular representation
RDDepict::DOUBLE_SMART_PTR dmat(new double[num_ats * (num_ats - 1) / 2]);
// negative distances are ignored, so initialise to -1.0 so subset by
// referencePattern works.
std::fill(dmat.get(), dmat.get() + num_ats * (num_ats - 1) / 2, -1.0);
for (unsigned int i = 0; i < num_ats; ++i) {
if (-1 == mol_to_ref[i]) {
continue;
}
RDGeom::Point3D cds_i = conf.getAtomPos(i);
for (unsigned int j = i + 1; j < num_ats; ++j) {
if (-1 == mol_to_ref[j]) {
continue;
}
RDGeom::Point3D cds_j = conf.getAtomPos(mol_to_ref[j]);
dmat[(j * (j - 1) / 2) + i] = (cds_i - cds_j).length();
}
}
RDDepict::compute2DCoordsMimicDistMat(mol, &dmat, false, true, 0.5, 3, 100,
25, true, forceRDKit);
}
void straightenDepiction(RDKit::ROMol &mol, int confId, bool minimizeRotation) {
if (!mol.getNumBonds()) {
return;
}
constexpr double RAD2DEG = 180. / M_PI;
constexpr double DEG2RAD = M_PI / 180.;
constexpr double ALMOST_ZERO = 1.e-5;
constexpr double INCR_DEG = 30.;
constexpr double HALF_INCR_DEG = 0.5 * INCR_DEG;
constexpr double QUARTER_INCR_DEG = 0.25 * INCR_DEG;
auto &conf = mol.getConformer(confId);
auto &pos = conf.getPositions();
std::unordered_map<int, DepictorLocal::ThetaBin> thetaBins;
for (const auto b : mol.bonds()) {
auto bi = b->getBeginAtomIdx();
auto ei = b->getEndAtomIdx();
auto bv = pos.at(bi) - pos.at(ei);
bv.x = (bv.x < 0.) ? std::min(-ALMOST_ZERO, bv.x)
: std::max(ALMOST_ZERO, bv.x);
auto theta = RAD2DEG * atan(bv.y / bv.x);
auto d_theta = fmod(-theta, INCR_DEG);
if (fabs(d_theta) > HALF_INCR_DEG) {
d_theta -= DepictorLocal::copySign(INCR_DEG, d_theta, ALMOST_ZERO);
}
int thetaKey = static_cast<int>(
d_theta + DepictorLocal::copySign(0.5, d_theta, ALMOST_ZERO));
auto &thetaBin = thetaBins[thetaKey];
thetaBin.d_thetaAvg += d_theta;
thetaBin.thetaValues.push_back(theta);
}
CHECK_INVARIANT(!thetaBins.empty(), "");
double d_thetaSmallest = std::numeric_limits<double>::max();
for (auto &it : thetaBins) {
auto &thetaBin = it.second;
thetaBin.d_thetaAvg /= static_cast<double>(thetaBin.thetaValues.size());
if (fabs(thetaBin.d_thetaAvg) < fabs(d_thetaSmallest)) {
d_thetaSmallest = thetaBin.d_thetaAvg;
}
}
const auto &minRotationBin =
std::max_element(
thetaBins.begin(), thetaBins.end(),
[](const auto &a, const auto &b) {
const auto &aBin = a.second;
const auto &bBin = b.second;
return (aBin.thetaValues.size() < bBin.thetaValues.size() ||
(aBin.thetaValues.size() == bBin.thetaValues.size() &&
fabs(aBin.d_thetaAvg) > fabs(bBin.d_thetaAvg)));
})
->second;
double d_thetaMin = minRotationBin.d_thetaAvg;
// unless we want to preserve as much as possible the initial orientation,
// we try to orient the molecule such that the majority of bonds have
// an angle of 30 or 90 degrees with the X axis
if (!minimizeRotation) {
unsigned int count60vs30[2] = {0, 0};
for (auto theta : minRotationBin.thetaValues) {
theta += d_thetaMin;
auto idx = static_cast<unsigned int>((fabs(theta) + 0.5) / INCR_DEG) % 2;
CHECK_INVARIANT(idx < 2, "");
++count60vs30[idx];
}
if (count60vs30[0] > count60vs30[1]) {
d_thetaMin -= DepictorLocal::copySign(INCR_DEG, d_thetaMin, ALMOST_ZERO);
}
} else if (fabs(d_thetaSmallest) < ALMOST_ZERO ||
(fabs(d_thetaSmallest) < fabs(d_thetaMin) &&
fabs(d_thetaMin) > QUARTER_INCR_DEG)) {
d_thetaMin = d_thetaSmallest;
}
if (fabs(d_thetaMin) > ALMOST_ZERO) {
d_thetaMin *= DEG2RAD;
RDGeom::Transform3D trans;
trans.SetRotation(d_thetaMin, RDGeom::Z_Axis);
MolTransforms::transformConformer(conf, trans);
}
}
double normalizeDepiction(RDKit::ROMol &mol, int confId, int canonicalize,
double scaleFactor) {
constexpr double SCALE_FACTOR_THRESHOLD = 1.e-5;
if (!mol.getNumBonds()) {
return -1.;
}
auto &conf = mol.getConformer(confId);
if (scaleFactor < 0.0) {
constexpr double RDKIT_BOND_LEN = 1.5;
int mostCommonBondLengthInt = -1;
unsigned int maxCount = 0;
std::unordered_map<int, unsigned int> binnedBondLengths;
for (const auto b : mol.bonds()) {
int bondLength =
static_cast<int>(MolTransforms::getBondLength(
conf, b->getBeginAtomIdx(), b->getEndAtomIdx()) *
10.0 +
0.5);
auto it = binnedBondLengths.find(bondLength);
if (it == binnedBondLengths.end()) {
it = binnedBondLengths.emplace(bondLength, 0U).first;
}
++it->second;
if (it->second > maxCount) {
maxCount = it->second;
mostCommonBondLengthInt = it->first;
}
}
if (mostCommonBondLengthInt > 0) {
double mostCommonBondLength =
static_cast<double>(mostCommonBondLengthInt) * 0.1;
scaleFactor = RDKIT_BOND_LEN / mostCommonBondLength;
}
}
std::unique_ptr<RDGeom::Transform3D> canonTrans;
if (canonicalize) {
auto ctd = MolTransforms::computeCentroid(conf);
canonTrans.reset(MolTransforms::computeCanonicalTransform(conf, &ctd));
if (canonicalize < 0) {
RDGeom::Transform3D rotate90;
rotate90.SetRotation(0., 1., RDGeom::Point3D(0., 0., 1.));
*canonTrans *= rotate90;
}
}
bool isScaleFactorSane = (scaleFactor > SCALE_FACTOR_THRESHOLD);
if (isScaleFactorSane && fabs(scaleFactor - 1.0) > SCALE_FACTOR_THRESHOLD) {
RDGeom::Transform3D trans;
trans.setVal(0, 0, scaleFactor);
trans.setVal(1, 1, scaleFactor);
if (canonTrans) {
trans *= *canonTrans;
}
MolTransforms::transformConformer(conf, trans);
} else if (canonTrans) {
MolTransforms::transformConformer(conf, *canonTrans);
}
if (!isScaleFactorSane) {
scaleFactor = -1.;
}
return scaleFactor;
}
} // namespace RDDepict
|