1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370
|
// $Id$
//
// Copyright (C) 2003-2010 Rational Discovery LLC
//
// @@ All Rights Reserved @@
// This file is part of the RDKit.
// The contents are covered by the terms of the BSD license
// which is included in the file license.txt, found at the root
// of the RDKit source tree.
//
#include <RDBoost/python.h>
#define PY_ARRAY_UNIQUE_SYMBOL Depictor_array_API
#include <RDBoost/Wrap.h>
#include <RDBoost/import_array.h>
#include <GraphMol/Depictor/RDDepictor.h>
#include <GraphMol/Depictor/EmbeddedFrag.h>
#include <GraphMol/Depictor/DepictUtils.h>
using namespace RDDepict;
namespace python = boost::python;
void rdDepictExceptionTranslator(DepictException const &e) {
std::ostringstream oss;
oss << "Depict error: " << e.what();
PyErr_SetString(PyExc_ValueError, oss.str().c_str());
}
namespace RDDepict {
unsigned int Compute2DCoords(RDKit::ROMol &mol, bool canonOrient,
bool clearConfs, python::dict &coordMap,
unsigned int nFlipsPerSample = 3,
unsigned int nSamples = 100, int sampleSeed = 100,
bool permuteDeg4Nodes = false,
double bondLength = -1.0,
bool forceRDKit = false) {
RDGeom::INT_POINT2D_MAP cMap;
cMap.clear();
python::list ks = coordMap.keys();
for (unsigned int i = 0;
i < python::extract<unsigned int>(ks.attr("__len__")()); i++) {
unsigned int id = python::extract<unsigned int>(ks[i]);
if (id >= mol.getNumAtoms()) {
throw_value_error("atom index out of range");
}
cMap[id] = python::extract<RDGeom::Point2D>(coordMap[id]);
}
double oBondLen = RDDepict::BOND_LEN;
if (bondLength > 0) {
RDDepict::BOND_LEN = bondLength;
}
unsigned int res;
res = RDDepict::compute2DCoords(mol, &cMap, canonOrient, clearConfs,
nFlipsPerSample, nSamples, sampleSeed,
permuteDeg4Nodes, forceRDKit);
if (bondLength > 0) {
RDDepict::BOND_LEN = oBondLen;
}
return res;
}
unsigned int Compute2DCoordsMimicDistmat(
RDKit::ROMol &mol, python::object distMat, bool canonOrient,
bool clearConfs, double weightDistMat, unsigned int nFlipsPerSample,
unsigned int nSamples, int sampleSeed, bool permuteDeg4Nodes,
double bondLength = -1.0, bool forceRDKit = false) {
PyObject *distMatPtr = distMat.ptr();
if (!PyArray_Check(distMatPtr)) {
throw_value_error("Argument isn't an array");
}
auto *dmatrix = reinterpret_cast<PyArrayObject *>(distMatPtr);
unsigned int nitems = PyArray_DIM(dmatrix, 0);
unsigned int na = mol.getNumAtoms();
if (nitems != na * (na - 1) / 2) {
throw_value_error(
"The array size does not match the number of atoms in the molecule");
}
auto *inData = reinterpret_cast<double *>(PyArray_DATA(dmatrix));
auto *cData = new double[nitems];
memcpy(static_cast<void *>(cData), static_cast<const void *>(inData),
nitems * sizeof(double));
DOUBLE_SMART_PTR dmat(cData);
double oBondLen = RDDepict::BOND_LEN;
if (bondLength > 0) {
RDDepict::BOND_LEN = bondLength;
}
unsigned int res;
res = RDDepict::compute2DCoordsMimicDistMat(
mol, &dmat, canonOrient, clearConfs, weightDistMat, nFlipsPerSample,
nSamples, sampleSeed, permuteDeg4Nodes, forceRDKit);
if (bondLength > 0) {
RDDepict::BOND_LEN = oBondLen;
}
return res;
}
python::tuple GenerateDepictionMatching2DStructure(
RDKit::ROMol &mol, RDKit::ROMol &reference, int confId,
python::object refPatt, bool acceptFailure, bool forceRDKit,
bool allowRGroups) {
RDKit::ROMol *referencePattern = nullptr;
if (refPatt != python::object()) {
referencePattern = python::extract<RDKit::ROMol *>(refPatt);
}
auto matchVect = RDDepict::generateDepictionMatching2DStructure(
mol, reference, confId, referencePattern, acceptFailure, forceRDKit,
allowRGroups);
python::list atomMap;
for (const auto &pair : matchVect) {
atomMap.append(python::make_tuple(pair.first, pair.second));
}
return python::tuple(atomMap);
}
void GenerateDepictionMatching2DStructureAtomMap(RDKit::ROMol &mol,
RDKit::ROMol &reference,
python::object atomMap,
int confId, bool forceRDKit) {
std::unique_ptr<RDKit::MatchVectType> matchVect(translateAtomMap(atomMap));
RDDepict::generateDepictionMatching2DStructure(mol, reference, *matchVect,
confId, forceRDKit);
}
void GenerateDepictionMatching3DStructure(RDKit::ROMol &mol,
RDKit::ROMol &reference, int confId,
python::object refPatt,
bool acceptFailure,
bool forceRDKit = false) {
RDKit::ROMol *referencePattern = nullptr;
if (refPatt) {
referencePattern = python::extract<RDKit::ROMol *>(refPatt);
}
RDDepict::generateDepictionMatching3DStructure(
mol, reference, confId, referencePattern, acceptFailure, forceRDKit);
}
void setPreferCoordGen(bool value) {
#ifdef RDK_BUILD_COORDGEN_SUPPORT
RDDepict::preferCoordGen = value;
#endif
}
} // namespace RDDepict
BOOST_PYTHON_MODULE(rdDepictor) {
python::scope().attr("__doc__") =
"Module containing the functionality to compute 2D coordinates for a "
"molecule";
python::register_exception_translator<RDDepict::DepictException>(
&rdDepictExceptionTranslator);
rdkit_import_array();
python::def("SetPreferCoordGen", setPreferCoordGen, python::arg("val"),
#ifdef RDK_BUILD_COORDGEN_SUPPORT
"Sets whether or not the CoordGen library should be preferred to "
"the RDKit depiction library."
#else
"Has no effect (CoordGen support not enabled)"
#endif
);
std::string docString;
docString =
"Compute 2D coordinates for a molecule. \n\
The resulting coordinates are stored on each atom of the molecule \n\n\
ARGUMENTS: \n\n\
mol - the molecule of interest\n\
canonOrient - orient the molecule in a canonical way\n\
clearConfs - if true, all existing conformations on the molecule\n\
will be cleared\n\
coordMap - a dictionary mapping atom Ids -> Point2D objects \n\
with starting coordinates for atoms that should\n\
have their positions locked.\n\
nFlipsPerSample - number of rotatable bonds that are\n\
flipped at random at a time.\n\
nSample - Number of random samplings of rotatable bonds.\n\
sampleSeed - seed for the random sampling process.\n\
permuteDeg4Nodes - allow permutation of bonds at a degree 4\n\
node during the sampling process \n\
bondLength - change the default bond length for depiction \n\
forceRDKit - use RDKit to generate coordinates even if \n\
preferCoordGen is set to true\n\n\
RETURNS: \n\n\
ID of the conformation added to the molecule\n";
python::def(
"Compute2DCoords", RDDepict::Compute2DCoords,
(python::arg("mol"), python::arg("canonOrient") = true,
python::arg("clearConfs") = true,
python::arg("coordMap") = python::dict(),
python::arg("nFlipsPerSample") = 0, python::arg("nSample") = 0,
python::arg("sampleSeed") = 0, python::arg("permuteDeg4Nodes") = false,
python::arg("bondLength") = -1.0, python::arg("forceRDKit") = false),
docString.c_str());
docString =
"Compute 2D coordinates for a molecule such \n\
that the inter-atom distances mimic those in a user-provided\n\
distance matrix. \n\
The resulting coordinates are stored on each atom of the molecule \n\n\
ARGUMENTS: \n\n\
mol - the molecule of interest\n\
distMat - distance matrix that we want the 2D structure to mimic\n\
canonOrient - orient the molecule in a canonical way\n\
clearConfs - if true, all existing conformations on the molecule\n\
will be cleared\n\
weightDistMat - weight assigned in the cost function to mimicking\n\
the distance matrix.\n\
This must be between (0.0,1.0). (1.0-weightDistMat)\n\
is then the weight assigned to improving \n\
the density of the 2D structure i.e. try to\n\
make it spread out\n\
nFlipsPerSample - number of rotatable bonds that are\n\
flipped at random at a time.\n\
nSample - Number of random samplings of rotatable bonds.\n\
sampleSeed - seed for the random sampling process.\n\
permuteDeg4Nodes - allow permutation of bonds at a degree 4\n\
node during the sampling process \n\
bondLength - change the default bond length for depiction \n\
forceRDKit - use RDKit to generate coordinates even if \n\
preferCoordGen is set to true\n\n\
RETURNS: \n\n\
ID of the conformation added to the molecule\n";
python::def(
"Compute2DCoordsMimicDistmat", RDDepict::Compute2DCoordsMimicDistmat,
(python::arg("mol"), python::arg("distMat"),
python::arg("canonOrient") = false, python::arg("clearConfs") = true,
python::arg("weightDistMat") = 0.5, python::arg("nFlipsPerSample") = 3,
python::arg("nSample") = 100, python::arg("sampleSeed") = 100,
python::arg("permuteDeg4Nodes") = true, python::arg("bondLength") = -1.0,
python::arg("forceRDKit") = false),
docString.c_str());
docString =
"Generate a depiction for a molecule where a piece of the \n\
molecule is constrained to have the same coordinates as a reference. \n\n\
This is useful for, for example, generating depictions of SAR data \n\
sets so that the cores of the molecules are all oriented the same way. \n\
ARGUMENTS: \n\n\
mol - the molecule to be aligned, this will come back \n\
with a single conformer. \n\
reference - a molecule with the reference atoms to align to; \n\
this should have a depiction. \n\
confId - (optional) the id of the reference conformation to use \n\
refPatt - (optional) a query molecule to be used to generate \n\
the atom mapping between the molecule and the reference \n\
acceptFailure - (optional) if True, standard depictions will be generated \n\
for molecules that don't have a substructure match to the \n\
reference; if False, throws a DepictException.\n\
forceRDKit - (optional) use RDKit to generate coordinates even if \n\
preferCoordGen is set to true\n\
allowRGroups - (optional) if True, terminal dummy atoms in the \n\
reference are ignored if they match an implicit \n\
hydrogen in the molecule, and a constrained \n\
depiction is still attempted\n\n\
RETURNS: a tuple of (refIdx, molIdx) tuples corresponding to the atom \n\
indices in mol constrained to have the same coordinates as atom \n\
indices in reference.\n";
python::def(
"GenerateDepictionMatching2DStructure",
RDDepict::GenerateDepictionMatching2DStructure,
(python::arg("mol"), python::arg("reference"), python::arg("confId") = -1,
python::arg("refPatt") = python::object(),
python::arg("acceptFailure") = false, python::arg("forceRDKit") = false,
python::arg("allowRGroups") = false),
docString.c_str());
docString =
"Generate a depiction for a molecule where a piece of the \n\
molecule is constrained to have the same coordinates as a reference. \n\n\
This is useful for, for example, generating depictions of SAR data \n\
sets so that the cores of the molecules are all oriented the same way. \n\
ARGUMENTS: \n\n\
mol - the molecule to be aligned, this will come back \n\
with a single conformer. \n\
reference - a molecule with the reference atoms to align to; \n\
this should have a depiction. \n\
atomMap - a sequence of (queryAtomIdx, molAtomIdx) pairs that will \n\
be used to generate the atom mapping between the molecule \n\
and the reference. \n\
confId - (optional) the id of the reference conformation to use \n\
forceRDKit - (optional) use RDKit to generate coordinates even if \n\
preferCoordGen is set to true\n";
python::def(
"GenerateDepictionMatching2DStructure",
RDDepict::GenerateDepictionMatching2DStructureAtomMap,
(python::arg("mol"), python::arg("reference"), python::arg("atomMap"),
python::arg("confId") = -1, python::arg("forceRDKit") = false),
docString.c_str());
docString =
"Generate a depiction for a molecule where a piece of the molecule \n\
is constrained to have coordinates similar to those of a 3D reference \n\
structure.\n\
ARGUMENTS: \n\n\
mol - the molecule to be aligned, this will come back \n\
with a single conformer containing the 2D coordinates. \n\
reference - a molecule with the reference atoms to align to. \n\
By default this should be the same as mol, but with \n\
3D coordinates \n\
confId - (optional) the id of the reference conformation to use \n\
referencePattern - (optional) a query molecule to map a subset of \n\
the reference onto the mol, so that only some of the \n\
atoms are aligned. \n\
acceptFailure - (optional) if True, standard depictions will be generated \n\
for molecules that don't match the reference or the\n\
referencePattern; if False, throws a DepictException.\n\
forceRDKit - (optional) use RDKit to generate coordinates even if \n\
preferCoordGen is set to true";
python::def(
"GenerateDepictionMatching3DStructure",
RDDepict::GenerateDepictionMatching3DStructure,
(python::arg("mol"), python::arg("reference"), python::arg("confId") = -1,
python::arg("refPatt") = python::object(),
python::arg("acceptFailure") = false, python::arg("forceRDKit") = false),
docString.c_str());
docString =
"Rotate the 2D depiction such that the majority of bonds have a\n\
30-degree angle with the X axis.\n\
ARGUMENTS:\n\n\
mol - the molecule to be rotated.\n\
confId - (optional) the id of the reference conformation to use.\n\
minimizeRotation - (optional) if False (the default), the molecule\n\
is rotated such that the majority of bonds have an angle\n\
with the X axis of 30 or 90 degrees. If True, the minimum\n\
rotation is applied such that the majority of bonds have\n\
an angle with the X axis of 0, 30, 60, or 90 degrees,\n\
with the goal of altering the initial orientation as\n\
little as possible .";
python::def("StraightenDepiction", RDDepict::straightenDepiction,
(python::arg("mol"), python::arg("confId") = -1,
python::arg("minimizeRotation") = false),
docString.c_str());
docString =
"Normalizes the 2D depiction.\n\
If canonicalize is != 0, the depiction is subjected to a canonical\n\
transformation such that its main axis is aligned along the X axis\n\
(canonicalize >0, the default) or the Y axis (canonicalize <0).\n\
If canonicalize is 0, no canonicalization takes place.\n\
If scaleFactor is <0.0 (the default) the depiction is scaled such\n\
that bond lengths conform to RDKit standards. The applied scaling\n\
factor is returned.\n\n\
ARGUMENTS:\n\n\
mol - the molecule to be normalized\n\
confId - (optional) the id of the reference conformation to use\n\
canonicalize - (optional) if != 0, a canonical transformation is\n\
applied: if >0 (the default), the main molecule axis is\n\
aligned to the X axis, if <0 to the Y axis.\n\
If 0, no canonical transformation is applied.\n\
scaleFactor - (optional) if >0.0, the scaling factor to apply. The default\n\
(-1.0) means that the depiction is automatically scaled\n\
such that bond lengths are the standard RDKit ones.\n\n\
RETURNS: the applied scaling factor.";
python::def(
"NormalizeDepiction", RDDepict::normalizeDepiction,
(python::arg("mol"), python::arg("confId") = -1,
python::arg("canonicalize") = 1, python::arg("scaleFactor") = -1.),
docString.c_str());
}
|