File: rdDepictor.cpp

package info (click to toggle)
rdkit 202209.3-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 203,880 kB
  • sloc: cpp: 334,239; python: 80,247; ansic: 24,579; java: 7,667; sql: 2,123; yacc: 1,884; javascript: 1,358; lex: 1,260; makefile: 576; xml: 229; fortran: 183; cs: 181; sh: 101
file content (370 lines) | stat: -rw-r--r-- 16,812 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
// $Id$
//
//  Copyright (C) 2003-2010 Rational Discovery LLC
//
//   @@ All Rights Reserved @@
//  This file is part of the RDKit.
//  The contents are covered by the terms of the BSD license
//  which is included in the file license.txt, found at the root
//  of the RDKit source tree.
//
#include <RDBoost/python.h>

#define PY_ARRAY_UNIQUE_SYMBOL Depictor_array_API
#include <RDBoost/Wrap.h>
#include <RDBoost/import_array.h>

#include <GraphMol/Depictor/RDDepictor.h>
#include <GraphMol/Depictor/EmbeddedFrag.h>
#include <GraphMol/Depictor/DepictUtils.h>

using namespace RDDepict;

namespace python = boost::python;

void rdDepictExceptionTranslator(DepictException const &e) {
  std::ostringstream oss;
  oss << "Depict error: " << e.what();
  PyErr_SetString(PyExc_ValueError, oss.str().c_str());
}

namespace RDDepict {

unsigned int Compute2DCoords(RDKit::ROMol &mol, bool canonOrient,
                             bool clearConfs, python::dict &coordMap,
                             unsigned int nFlipsPerSample = 3,
                             unsigned int nSamples = 100, int sampleSeed = 100,
                             bool permuteDeg4Nodes = false,
                             double bondLength = -1.0,
                             bool forceRDKit = false) {
  RDGeom::INT_POINT2D_MAP cMap;
  cMap.clear();
  python::list ks = coordMap.keys();
  for (unsigned int i = 0;
       i < python::extract<unsigned int>(ks.attr("__len__")()); i++) {
    unsigned int id = python::extract<unsigned int>(ks[i]);
    if (id >= mol.getNumAtoms()) {
      throw_value_error("atom index out of range");
    }
    cMap[id] = python::extract<RDGeom::Point2D>(coordMap[id]);
  }
  double oBondLen = RDDepict::BOND_LEN;
  if (bondLength > 0) {
    RDDepict::BOND_LEN = bondLength;
  }
  unsigned int res;
  res = RDDepict::compute2DCoords(mol, &cMap, canonOrient, clearConfs,
                                  nFlipsPerSample, nSamples, sampleSeed,
                                  permuteDeg4Nodes, forceRDKit);
  if (bondLength > 0) {
    RDDepict::BOND_LEN = oBondLen;
  }
  return res;
}

unsigned int Compute2DCoordsMimicDistmat(
    RDKit::ROMol &mol, python::object distMat, bool canonOrient,
    bool clearConfs, double weightDistMat, unsigned int nFlipsPerSample,
    unsigned int nSamples, int sampleSeed, bool permuteDeg4Nodes,
    double bondLength = -1.0, bool forceRDKit = false) {
  PyObject *distMatPtr = distMat.ptr();
  if (!PyArray_Check(distMatPtr)) {
    throw_value_error("Argument isn't an array");
  }

  auto *dmatrix = reinterpret_cast<PyArrayObject *>(distMatPtr);
  unsigned int nitems = PyArray_DIM(dmatrix, 0);
  unsigned int na = mol.getNumAtoms();

  if (nitems != na * (na - 1) / 2) {
    throw_value_error(
        "The array size does not match the number of atoms in the molecule");
  }
  auto *inData = reinterpret_cast<double *>(PyArray_DATA(dmatrix));
  auto *cData = new double[nitems];

  memcpy(static_cast<void *>(cData), static_cast<const void *>(inData),
         nitems * sizeof(double));

  DOUBLE_SMART_PTR dmat(cData);
  double oBondLen = RDDepict::BOND_LEN;
  if (bondLength > 0) {
    RDDepict::BOND_LEN = bondLength;
  }
  unsigned int res;
  res = RDDepict::compute2DCoordsMimicDistMat(
      mol, &dmat, canonOrient, clearConfs, weightDistMat, nFlipsPerSample,
      nSamples, sampleSeed, permuteDeg4Nodes, forceRDKit);
  if (bondLength > 0) {
    RDDepict::BOND_LEN = oBondLen;
  }
  return res;
}

python::tuple GenerateDepictionMatching2DStructure(
    RDKit::ROMol &mol, RDKit::ROMol &reference, int confId,
    python::object refPatt, bool acceptFailure, bool forceRDKit,
    bool allowRGroups) {
  RDKit::ROMol *referencePattern = nullptr;
  if (refPatt != python::object()) {
    referencePattern = python::extract<RDKit::ROMol *>(refPatt);
  }
  auto matchVect = RDDepict::generateDepictionMatching2DStructure(
      mol, reference, confId, referencePattern, acceptFailure, forceRDKit,
      allowRGroups);
  python::list atomMap;
  for (const auto &pair : matchVect) {
    atomMap.append(python::make_tuple(pair.first, pair.second));
  }
  return python::tuple(atomMap);
}

void GenerateDepictionMatching2DStructureAtomMap(RDKit::ROMol &mol,
                                                 RDKit::ROMol &reference,
                                                 python::object atomMap,
                                                 int confId, bool forceRDKit) {
  std::unique_ptr<RDKit::MatchVectType> matchVect(translateAtomMap(atomMap));

  RDDepict::generateDepictionMatching2DStructure(mol, reference, *matchVect,
                                                 confId, forceRDKit);
}

void GenerateDepictionMatching3DStructure(RDKit::ROMol &mol,
                                          RDKit::ROMol &reference, int confId,
                                          python::object refPatt,
                                          bool acceptFailure,
                                          bool forceRDKit = false) {
  RDKit::ROMol *referencePattern = nullptr;
  if (refPatt) {
    referencePattern = python::extract<RDKit::ROMol *>(refPatt);
  }

  RDDepict::generateDepictionMatching3DStructure(
      mol, reference, confId, referencePattern, acceptFailure, forceRDKit);
}
void setPreferCoordGen(bool value) {
#ifdef RDK_BUILD_COORDGEN_SUPPORT
  RDDepict::preferCoordGen = value;
#endif
}
}  // namespace RDDepict

BOOST_PYTHON_MODULE(rdDepictor) {
  python::scope().attr("__doc__") =
      "Module containing the functionality to compute 2D coordinates for a "
      "molecule";
  python::register_exception_translator<RDDepict::DepictException>(
      &rdDepictExceptionTranslator);

  rdkit_import_array();

  python::def("SetPreferCoordGen", setPreferCoordGen, python::arg("val"),
#ifdef RDK_BUILD_COORDGEN_SUPPORT
              "Sets whether or not the CoordGen library should be preferred to "
              "the RDKit depiction library."
#else
              "Has no effect (CoordGen support not enabled)"
#endif
  );
  std::string docString;
  docString =
      "Compute 2D coordinates for a molecule. \n\
  The resulting coordinates are stored on each atom of the molecule \n\n\
  ARGUMENTS: \n\n\
     mol - the molecule of interest\n\
     canonOrient - orient the molecule in a canonical way\n\
     clearConfs - if true, all existing conformations on the molecule\n\
             will be cleared\n\
     coordMap - a dictionary mapping atom Ids -> Point2D objects \n\
                with starting coordinates for atoms that should\n\
                have their positions locked.\n\
     nFlipsPerSample - number of rotatable bonds that are\n\
                flipped at random at a time.\n\
     nSample - Number of random samplings of rotatable bonds.\n\
     sampleSeed - seed for the random sampling process.\n\
     permuteDeg4Nodes - allow permutation of bonds at a degree 4\n\
                 node during the sampling process \n\
     bondLength - change the default bond length for depiction \n\
     forceRDKit - use RDKit to generate coordinates even if \n\
                  preferCoordGen is set to true\n\n\
  RETURNS: \n\n\
     ID of the conformation added to the molecule\n";
  python::def(
      "Compute2DCoords", RDDepict::Compute2DCoords,
      (python::arg("mol"), python::arg("canonOrient") = true,
       python::arg("clearConfs") = true,
       python::arg("coordMap") = python::dict(),
       python::arg("nFlipsPerSample") = 0, python::arg("nSample") = 0,
       python::arg("sampleSeed") = 0, python::arg("permuteDeg4Nodes") = false,
       python::arg("bondLength") = -1.0, python::arg("forceRDKit") = false),
      docString.c_str());

  docString =
      "Compute 2D coordinates for a molecule such \n\
  that the inter-atom distances mimic those in a user-provided\n\
  distance matrix. \n\
  The resulting coordinates are stored on each atom of the molecule \n\n\
  ARGUMENTS: \n\n\
     mol - the molecule of interest\n\
     distMat - distance matrix that we want the 2D structure to mimic\n\
     canonOrient - orient the molecule in a canonical way\n\
     clearConfs - if true, all existing conformations on the molecule\n\
             will be cleared\n\
     weightDistMat - weight assigned in the cost function to mimicking\n\
                     the distance matrix.\n\
                     This must be between (0.0,1.0). (1.0-weightDistMat)\n\
                     is then the weight assigned to improving \n\
                     the density of the 2D structure i.e. try to\n\
                     make it spread out\n\
     nFlipsPerSample - number of rotatable bonds that are\n\
                flipped at random at a time.\n\
     nSample - Number of random samplings of rotatable bonds.\n\
     sampleSeed - seed for the random sampling process.\n\
     permuteDeg4Nodes - allow permutation of bonds at a degree 4\n\
                 node during the sampling process \n\
     bondLength - change the default bond length for depiction \n\
     forceRDKit - use RDKit to generate coordinates even if \n\
                  preferCoordGen is set to true\n\n\
  RETURNS: \n\n\
     ID of the conformation added to the molecule\n";
  python::def(
      "Compute2DCoordsMimicDistmat", RDDepict::Compute2DCoordsMimicDistmat,
      (python::arg("mol"), python::arg("distMat"),
       python::arg("canonOrient") = false, python::arg("clearConfs") = true,
       python::arg("weightDistMat") = 0.5, python::arg("nFlipsPerSample") = 3,
       python::arg("nSample") = 100, python::arg("sampleSeed") = 100,
       python::arg("permuteDeg4Nodes") = true, python::arg("bondLength") = -1.0,
       python::arg("forceRDKit") = false),
      docString.c_str());

  docString =
      "Generate a depiction for a molecule where a piece of the \n\
  molecule is constrained to have the same coordinates as a reference. \n\n\
  This is useful for, for example, generating depictions of SAR data \n\
  sets so that the cores of the molecules are all oriented the same way. \n\
  ARGUMENTS: \n\n\
  mol -    the molecule to be aligned, this will come back \n\
           with a single conformer. \n\
  reference -    a molecule with the reference atoms to align to; \n\
                 this should have a depiction. \n\
  confId -       (optional) the id of the reference conformation to use \n\
  refPatt -      (optional) a query molecule to be used to generate \n\
                 the atom mapping between the molecule and the reference \n\
  acceptFailure - (optional) if True, standard depictions will be generated \n\
                  for molecules that don't have a substructure match to the \n\
                  reference; if False, throws a DepictException.\n\
  forceRDKit -    (optional) use RDKit to generate coordinates even if \n\
                  preferCoordGen is set to true\n\
  allowRGroups -  (optional) if True, terminal dummy atoms in the \n\
                  reference are ignored if they match an implicit \n\
                  hydrogen in the molecule, and a constrained \n\
                  depiction is still attempted\n\n\
  RETURNS: a tuple of (refIdx, molIdx) tuples corresponding to the atom \n\
           indices in mol constrained to have the same coordinates as atom \n\
           indices in reference.\n";
  python::def(
      "GenerateDepictionMatching2DStructure",
      RDDepict::GenerateDepictionMatching2DStructure,
      (python::arg("mol"), python::arg("reference"), python::arg("confId") = -1,
       python::arg("refPatt") = python::object(),
       python::arg("acceptFailure") = false, python::arg("forceRDKit") = false,
       python::arg("allowRGroups") = false),
      docString.c_str());

  docString =
      "Generate a depiction for a molecule where a piece of the \n\
  molecule is constrained to have the same coordinates as a reference. \n\n\
  This is useful for, for example, generating depictions of SAR data \n\
  sets so that the cores of the molecules are all oriented the same way. \n\
  ARGUMENTS: \n\n\
  mol -    the molecule to be aligned, this will come back \n\
           with a single conformer. \n\
  reference -    a molecule with the reference atoms to align to; \n\
                 this should have a depiction. \n\
  atomMap -      a sequence of (queryAtomIdx, molAtomIdx) pairs that will \n\
                 be used to generate the atom mapping between the molecule \n\
                 and the reference. \n\
  confId -       (optional) the id of the reference conformation to use \n\
  forceRDKit -   (optional) use RDKit to generate coordinates even if \n\
                 preferCoordGen is set to true\n";
  python::def(
      "GenerateDepictionMatching2DStructure",
      RDDepict::GenerateDepictionMatching2DStructureAtomMap,
      (python::arg("mol"), python::arg("reference"), python::arg("atomMap"),
       python::arg("confId") = -1, python::arg("forceRDKit") = false),
      docString.c_str());

  docString =
      "Generate a depiction for a molecule where a piece of the molecule \n\
  is constrained to have coordinates similar to those of a 3D reference \n\
  structure.\n\
  ARGUMENTS: \n\n\
  mol -    the molecule to be aligned, this will come back \n\
           with a single conformer containing the 2D coordinates. \n\
  reference -    a molecule with the reference atoms to align to. \n\
                 By default this should be the same as mol, but with \n\
                 3D coordinates \n\
  confId -       (optional) the id of the reference conformation to use \n\
  referencePattern -  (optional) a query molecule to map a subset of \n\
                      the reference onto the mol, so that only some of the \n\
                      atoms are aligned. \n\
  acceptFailure - (optional) if True, standard depictions will be generated \n\
                  for molecules that don't match the reference or the\n\
                  referencePattern; if False, throws a DepictException.\n\
  forceRDKit -    (optional) use RDKit to generate coordinates even if \n\
                  preferCoordGen is set to true";

  python::def(
      "GenerateDepictionMatching3DStructure",
      RDDepict::GenerateDepictionMatching3DStructure,
      (python::arg("mol"), python::arg("reference"), python::arg("confId") = -1,
       python::arg("refPatt") = python::object(),
       python::arg("acceptFailure") = false, python::arg("forceRDKit") = false),
      docString.c_str());

  docString =
      "Rotate the 2D depiction such that the majority of bonds have a\n\
  30-degree angle with the X axis.\n\
  ARGUMENTS:\n\n\
  mol              - the molecule to be rotated.\n\
  confId           - (optional) the id of the reference conformation to use.\n\
  minimizeRotation - (optional) if False (the default), the molecule\n\
                     is rotated such that the majority of bonds have an angle\n\
                     with the X axis of 30 or 90 degrees. If True, the minimum\n\
                     rotation is applied such that the majority of bonds have\n\
                     an angle with the X axis of 0, 30, 60, or 90 degrees,\n\
                     with the goal of altering the initial orientation as\n\
                     little as possible .";

  python::def("StraightenDepiction", RDDepict::straightenDepiction,
              (python::arg("mol"), python::arg("confId") = -1,
               python::arg("minimizeRotation") = false),
              docString.c_str());

  docString =
      "Normalizes the 2D depiction.\n\
If canonicalize is != 0, the depiction is subjected to a canonical\n\
transformation such that its main axis is aligned along the X axis\n\
(canonicalize >0, the default) or the Y axis (canonicalize <0).\n\
If canonicalize is 0, no canonicalization takes place.\n\
If scaleFactor is <0.0 (the default) the depiction is scaled such\n\
that bond lengths conform to RDKit standards. The applied scaling\n\
factor is returned.\n\n\
ARGUMENTS:\n\n\
mol          - the molecule to be normalized\n\
confId       - (optional) the id of the reference conformation to use\n\
canonicalize - (optional) if != 0, a canonical transformation is\n\
               applied: if >0 (the default), the main molecule axis is\n\
               aligned to the X axis, if <0 to the Y axis.\n\
               If 0, no canonical transformation is applied.\n\
scaleFactor  - (optional) if >0.0, the scaling factor to apply. The default\n\
               (-1.0) means that the depiction is automatically scaled\n\
               such that bond lengths are the standard RDKit ones.\n\n\
RETURNS: the applied scaling factor.";

  python::def(
      "NormalizeDepiction", RDDepict::normalizeDepiction,
      (python::arg("mol"), python::arg("confId") = -1,
       python::arg("canonicalize") = 1, python::arg("scaleFactor") = -1.),
      docString.c_str());
}